高中数学必修1第二章基本初等函数所有知识点和习题精选
- 格式:doc
- 大小:93.00 KB
- 文档页数:7
必修一第二章基本初等函数知识点与常考题(附解析)知识点:第二章 基本初等函数2.1 指数函数2.1.1指数与指数幂的运算【知识要点】 1、根式的概念:负数没有偶次方根;0的任何次方根都是0【注意】(1)n a =(2)当 n a = ,当 n ,0||,0a a a a a ≥⎧==⎨-<⎩2、分数指数幂(1)正数的正分数指数幂的意义,规定:0,,,1)m na a m n N n *=>∈>且(2)正数的正分数指数幂的意义:_1(0,,,1)m nm naa m n N n a*=>∈>且(3)0的正分数指数幂等于0,0的负分数指数幂没有意义3、实数指数幂的运算性质(1)(0,,)r s r sa a aa r s R +=>∈(2)()(0,,)r s rsa a a r s R =>∈(3)(b)(0,0,)r r ra ab a b r R =>>∈【注意】在化简过程中,偶数不能轻易约分;如122[(111≠2.1.2指数函数及其性质【知识要点】 1、指数函数的概念一般地,函数xy a = 叫做指数函数,其中x 是自变量,函数的定义域为R . 2定义域R ,+∞) (1)过定点(0x=0时,y=1(2)在R 上是增函数 (3)当x>0时,y>1;2.2 对数函数2.2.1对数与对数运算【知识要点】 1、对数的概念一般地,如果xa N = ,那么数x 叫做以a 为底N 的对数,记作:log a x N = ( a — 底数, N — 真数,log a N — 对数式) 【注意】(1)注意底数的限制,a>0且a ≠1; (2)真数N>0;(3)注意对数的书写格式.2、两个重要对数(1)常用对数:以10为底的对数, 10log lg N N 记为 ;(2)自然对数:以无理数e 为底的对数的对数 , log ln e N N 记为. 3、对数式与指数式的互化log x a x N a N =⇔=对数式 指数式 对数底数← a → 幂底数 对数← x → 指数 真数← N → 幂 【结论】(1)负数和零没有对数(2)log a a=1, log a 1=0,特别地,lg10=1, lg1=0 , lne=1, ln1=0 (3)对数恒等式:log Na a N =4、如果a > 0,a ≠ 1,M > 0,N > 0 有(1)log M N log log a a a M N ∙=+()两个正数的积的对数等于这两个正数的对数和 (1)N M NMa a alog log log -= 两个正数的商的对数等于这两个正数的对数差 (3)log log n n a a M n M =∈(R )一个正数的n 次方的对数等于这个正数的对数n 倍 【说明】(1)简易语言表达:”积的对数=对数的和”…… (2)有时可逆向运用公式(3)真数的取值必须是(0,+∞)(4)特别注意:N M MN a a a log log log ⋅≠()N M N M a a a log log log ±≠± 5、换底公式()log lg log 0,1,0,1,0log lg c a c b bb a ac c b a a==>≠>≠>利用换底公式推导下面的结论 ①ab b a log 1log =②log log log log a b c a b c d d =③log log m na a nb b m =2.2.2 对数函数及其性质【知识要点】 1、对数函数的概念函数log a y x = (a>0,且a ≠1) 叫做对数函数,其中x 是自变量,函数的定义域是(0,+∞).【注意】(1)对数函数的定义与指数函数类似,都是形式定义,注意辨别。
基本初等函数知识点表1 指数函数()0,1xy a a a=>≠对数数函数()log0,1ay x a a=>≠定义域x R∈()0,x∈+∞值域()0,y∈+∞y R∈图象性质过定点(0,1) 过定点(1,0)减函数增函数减函数增函数(,0)(1,)(0,)(0,1)x yx y∈-∞∈+∞∈+∞∈时,时,(,0)(0,1)(0,)(1,)x yx y∈-∞∈∈+∞∈+∞时,时,(0,1)(0,)(1,)(,0)x yx y∈∈+∞∈+∞∈-∞时,时,(0,1)(,0)(1,)(0,)x yx y∈∈-∞∈+∞∈+∞时,时,a b<a b>a b<a b>表2幂函数()y x R αα=∈p qα=0α< 01α<< 1α> 1α=p q 为奇数为奇数奇函数p q 为奇数为偶数p q 为偶数为奇数偶函数第一象限性质 减函数增函数过定点01(,)基本初等函数章末检测一、选择题1. 下列函数中,在区间(0,+∞)上为增函数的是 ( )A .y =ln(x +2)B .y =-x +1C .y =⎝⎛⎭⎫12xD .y =x +1x 1.A2. 若a <12,则化简4(2a -1)2的结果是 ( )A.2a -1 B .-2a -1 C.1-2a D .-1-2a 2.C3. 函数y =lg x +lg(5-3x )的定义域是 ( )A .[0,53)B .[0,53]C .[1,53)D .[1,53]3.C4.已知集合A ={x |y =lg(2x -x 2)},B ={y |y =2x,x >0},R 是实数集,则(∁R B )∩A 等于( )A .[0,1]B .(0,1]C .(-∞,0]D .以上都不对 4.B5. 幂函数的图象过点⎝⎛⎭⎫2,14,则它的单调递增区间是 ( ) A .(0,+∞) B .[0,+∞) C .(-∞,0) D .(-∞,+∞) 5.C6. 函数y =2+log 2(x 2+3)(x ≥1)的值域为 ( )A .(2,+∞)B .(-∞,2)C .[4,+∞)D .[3,+∞) 6.C7. 比较1.513.1、23.1、213.1的大小关系是 ( )A .23.1<213.1<1.513.1B .1.513.1<23.1<213.1C .1.513.1<213.1<23.1D .213.1<1.513.1<23.17.D8. 函数y =a x -1a(a >0,且a ≠1)的图象可能是 ( )8.D9. 若0<x <y <1,则 ( )A .3y <3xB .log x 3<log y 3C .log 4x <log 4yD .(14)x <(14)y9.C10.若偶函数f (x )在(-∞,0)内单调递减,则不等式f (-1)<f (lg x )的解集是 ( )A .(0,10)B.⎝⎛⎭⎫110,10 C.⎝⎛⎭⎫110,+∞ D.⎝⎛⎭⎫0,110∪(10,+∞)10.D11.方程log 2x +log 2(x -1)=1的解集为M ,方程22x+1-9·2x +4=0的解集为N ,那么M 与N 的关系是( )A .M =NB .M NC .M ND .M ∩N =∅ 11.B12.设偶函数f (x )=log a |x +b |在(0,+∞)上具有单调性,则f (b -2)与f (a +1)的大小关系为 ( )A .f (b -2)=f (a +1)B .f (b -2)>f (a +1)C .f (b -2)<f (a +1)D .不能确定 12.C 二、填空题13.函数f (x )=a x -1+3的图象一定过定点P ,则P 点的坐标是________. 13.(1,4)14.函数f (x )=log 5(2x +1)的单调增区间是________. 14.⎝⎛⎭⎫-12,+∞ 15.设函数f (x )是定义在R 上的奇函数,若当x ∈(0,+∞)时,f (x )=lg x ,则满足f (x )>0的x 的取值范围是______. 15.(-1,0)∪(1,+∞)16.定义:区间[x 1,x 2](x 1<x 2)的长度为x 2-x 1.已知函数y =|log 0.5x |的定义域为[a ,b ],值域为[0,2],则区间[a ,b ]的长度的最大值为________. 16.154 三、解答题 17.化简下列各式:(1)[(0.06415)-2.5]23-3338-π0;17.解 (1)原式=⎩⎨⎧⎭⎬⎫⎣⎡⎦⎤⎝⎛⎭⎫641 00015-5223-⎝⎛⎭⎫27813-1=⎣⎡⎦⎤⎝⎛⎭⎫410315×⎝⎛⎭⎫-52×23- ⎣⎡⎦⎤⎝⎛⎭⎫32313-1=52-32-1=0.(2)2lg 2+lg 31+12 lg 0.36+14lg 16.(2)原式=2lg 2+lg 31+12lg 0.62+14lg 24=2lg 2+lg 31+lg 2×310+lg 2=2lg 2+lg 31+lg 2+lg 3-lg 10+lg 2=2lg 2+lg 32lg 2+lg 3=1.18.已知f (x )为定义在[-1,1]上的奇函数,当x ∈[-1,0]时,函数解析式f (x )=14x -a2x (a ∈R ).(1)写出f (x )在[0,1]上的解析式; (2)求f (x )在[0,1]上的最大值.18.解 (1)∵f (x )为定义在[-1,1]上的奇函数,且f (x )在x =0处有意义,∴f (0)=0,即f (0)=140-a20=1-a =0.∴a =1.设x ∈[0,1],则-x ∈[-1,0]. ∴f (-x )=14-x -12-x =4x -2x .又∵f (-x )=-f (x ), ∴-f (x )=4x -2x . ∴f (x )=2x -4x .(2)当x ∈[0,1],f (x )=2x -4x =2x -(2x )2, ∴设t =2x (t >0),则f (t )=t -t 2.∵x ∈[0,1],∴t ∈[1,2].当t =1时,取最大值,最大值为1-1=0.19.已知x >1且x ≠43,f (x )=1+log x 3,g (x )=2log x 2,试比较f (x )与g (x )的大小.19.解 f (x )-g (x )=1+log x 3-2log x 2=1+log x 34=log x 34x ,当1<x <43时,34x <1,∴log x 34x <0;当x >43时,34x >1,∴log x 34x >0.即当1<x <43时,f (x )<g (x );当x >43时,f (x )>g (x ).20.已知函数f (x )=2x -12|x |.(1)若f (x )=2,求x 的值;(2)若2t f (2t )+mf (t )≥0对于t ∈[1,2]恒成立,求实数m 的取值范围. 20.解 (1)当x <0时,f (x )=0;当x ≥0时,f (x )=2x -12x .由条件可知2x -12x =2,即22x -2·2x -1=0,解得2x =1±2.∵2x >0,∴x =log 2(1+2).(2)当t ∈[1,2]时,2t ⎝⎛⎭⎫22t -122t +m ⎝⎛⎭⎫2t -12t ≥0, 即m (22t -1)≥-(24t -1). ∵22t -1>0,∴m ≥-(22t +1). ∵t ∈[1,2],∴-(1+22t )∈[-17,-5], 故m 的取值范围是[-5,+∞).21.已知函数f (x )=a x -1(a >0且a ≠1).(1)若函数y =f (x )的图象经过P (3,4)点,求a 的值; (2)若f (lg a )=100,求a 的值;(3)比较f ⎝⎛⎭⎫lg 1100与f (-2.1)的大小,并写出比较过程. 21.解 (1)∵函数y =f (x )的图象经过P (3,4),∴a 3-1=4,即a 2=4. 又a >0,所以a =2.(2)由f (lg a )=100知,a lg a -1=100.∴lg alg a -1=2(或lg a -1=log a 100).∴(lg a -1)·lg a =2. ∴lg 2a -lg a -2=0, ∴lg a =-1或lg a =2, ∴a =110或a =100.(3)当a >1时,f ⎝⎛⎭⎫lg 1100>f (-2.1); 当0<a <1时,f ⎝⎛⎭⎫lg 1100<f (-2.1). 因为,f ⎝⎛⎭⎫lg 1100=f (-2)=a -3, f (-2.1)=a-3.1,当a >1时,y =a x 在(-∞,+∞)上为增函数, ∵-3>-3.1,∴a -3>a-3.1.即f ⎝⎛⎭⎫lg 1100>f (-2.1); 当0<a <1时,y =a x 在(-∞,+∞)上为减函数, ∵-3>-3.1,∴a -3<a-3.1,即f ⎝⎛⎭⎫lg 1100<f (-2.1). 22.已知f (x )=10x -10-x10x +10-x.(1)求证f (x )是定义域内的增函数; (2)求f (x )的值域.22.(1)证明 因为f (x )的定义域为R ,且f (-x )=10-x -10x10-x +10x =-f (x ),所以f (x )为奇函数. f (x )=10x -10-x 10x +10-x =102x -1102x +1 =1-2102x +1.令x 2>x 1,则 f (x 2)-f (x 1)=(1-2102x 2+1)-(1-2102x 1+1)=2·102x 2-102x 1(102x 2+1)(102x 1+1).因为y =10x 为R 上的增函数,所以当x 2>x 1时,102x 2-102x 1>0. 又因为102x 1+1>0,102x 2+1>0. 故当x 2>x 1时,f (x 2)-f (x 1)>0, 即f (x 2)>f (x 1). 所以f (x )是增函数.(2)解 令y =f (x ).由y =102x -1102x +1,解得102x =1+y1-y .因为102x >0,所以-1<y <1. 即f (x )的值域为(-1,1).。
高考数学必修1第二章基本初等函数考点汇总一、指数函数(一)指数与指数幂的运算1.根式的概念:一般地,如果,那么叫做的次方根(n th root),其中 >1,且∈ *.当是奇数时,正数的次方根是一个正数,负数的次方根是一个负数.此时,的次方根用符号表示.式子叫做根式(radical),这里叫做根指数(radical exponent),叫做被开方数(radicand).当是偶数时,正数的次方根有两个,这两个数互为相反数.此时,正数的正的次方根用符号表示,负的次方根用符号- 表示.正的次方根与负的次方根可以合并成± ( >0).由此可得:负数没有偶次方根;0的任何次方根都是0,记作。
注意:当是奇数时,,当是偶数时,2.分数指数幂正数的分数指数幂的意义,规定:0的正分数指数幂等于0,0的负分数指数幂没有意义指出:规定了分数指数幂的意义后,指数的概念就从整数指数推广到了有理数指数,那么整数指数幂的运算性质也同样可以推广到有理数指数幂.3.实数指数幂的运算性质(二)指数函数及其性质1、指数函数的概念:一般地,函数叫做指数函数(exponential function),其中x是自变量,函数的定义域为R.注意:指数函数的底数的取值范围,底数不能是负数、零和1.2、指数函数的图象和性质a>1 0图象特征函数性质向x、y轴正负方向无限延伸函数的定义域为R图象关于原点和y轴不对称非奇非偶函数二、对数函数(一)对数1.对数的概念:一般地,如果,那么数叫做以为底的对数,记作:( —底数,—真数,—对数式)说明:○1 注意底数的限制,且 ;○2 ;○3 注意对数的书写格式.两个重要对数:○1 常用对数:以10为底的对数 ;○2 自然对数:以无理数为底的对数的对数 .对数式与指数式的互化(二)对数的运算性质如果,且,,,那么:○1 ? + ;○2 - ;○3 .注意:换底公式( ,且 ; ,且 ; ).利用换底公式推导下面的结论(1) ;(2) .(二)对数函数1、对数函数的概念:函数,且叫做对数函数,其中是自变量,函数的定义域是(0,+∞).注意:○1 对数函数的定义与指数函数类似,都是形式定义,注意辨别。
新课程标准数学必修1第二章课后习题解答第二章 基本初等函数(I ) 2.1指数函数 练习(P54)1. a 21=a ,a 43=43a ,a53-=531a,a32-=321a.2. (1)32x =x 32, (2)43)(b a +=(a +b )43, (3)32n)-(m =(m -n )32, (4)4n)-(m =(m -n )2,(5)56q p =p 3q 25,(6)mm 3=m213-=m 25.3. (1)(4936)23=[(76)2]23=(76)3=343216;(2)23×35.1×612=2×321×(23)31×(3×22)61=231311--×3613121++=2×3=6;(3)a 21a 41a 81-=a814121-+=a 85; (4)2x31-(21x 31-2x 32-)=x 3131+--4x 3221--=1-4x -1=1x4-. 练习(P58)1.如图图2-1-2-142.(1)要使函数有意义,需x -2≥0,即x ≥2,所以函数y =32-x 的定义域为{x |x ≥2};(2)要使函数有意义,需x ≠0,即函数y =(21)x 1的定义域是{x ∣x ≠0}.3.y =2x (x ∈N *)习题2.1 A 组(P59)1.(1)100;(2)-0.1;(3)4-π;(4)x -y .2解:(1)623b a ab=212162122123)(⨯⨯⨯b a a b =23232121--⨯b a =a 0b 0=1. (2)a aa2121=212121a a a⨯=2121a a ⨯=a 21.(3)415643)(mm m m m •••=4165413121mm m m m ••=4165413121+++mm=m 0=1.点评:遇到多重根号的式子,可以由里向外依次去掉根号,也可根据幂的运算性质来进行. 3.解:对于(1),可先按底数5,再按键,再按12,最后按,即可求得它的值.答案:1.710 0; 对于(2),先按底数8.31,再按键,再按12,最后按即可. 答案:2.881 0; 对于(3)这种无理指数幂,先按底数3,再按键,再按键,再按2,最后按即可.答案:4.728 8;对于(4)这种无理指数幂,可先按底数2,其次按键,再按π键,最后按即可.答案:8.825 0.4.解:(1)a 31a 43a127=a 1274331++=a 35; (2)a 32a 43÷a 65=a654332-+=a 127;(3)(x 31y43-)12=12431231⨯-⨯yx =x 4y -9;(4)4a 32b 31-÷(32-a 31-b 31-)=(32-×4)31313132+-+b a =-6ab 0=-6a ;(5))2516(462r t s -23-=)23(4)23(2)23(6)23(2)23(452-⨯-⨯-⨯--⨯-⨯rts=6393652----rt s =36964125s r r ;(6)(-2x 41y31-)(3x21-y 32)(-4x 41y 32)=[-2×3×(-4)]x 323231412141++-+-yx=24y ;(7)(2x 21+3y41-)(2x 21-3y41-)=(2x 21)2-(3y 41-)2=4x -9y 21-;(8)4x 41 (-3x 41y31-)÷(-6x21-y32-)=3231214141643+-++-⨯-y x =2xy 31. 点评:进行有理数指数幂的运算时,要严格按法则和运算顺序,同时注意运算结果的形式,但结果不能既有分数指数又有根式,也不能既有分母又有负指数.5.(1)要使函数有意义,需3-x ∈R ,即x ∈R ,所以函数y =23-x 的定义域为R . (2)要使函数有意义,需2x +1∈R ,即x ∈R ,所以函数y =32x +1的定义域为R .(3)要使函数有意义,需5x ∈R,即x ∈R,所以函数y =(21)5x的定义域为R . (4)要使函数有意义,需x ≠0,所以函数y =0.7x1的定义域为{x |x ≠0}.点评:求函数的定义域一是分式的分母不为零,二是偶次根号的被开方数大于零,0的0次幂没有意义.6.解:设经过x 年的产量为y ,一年内的产量是a (1+100p ),两年内产量是a (1+100p )2,…,x 年内的产量是a (1+100p )x ,则y =a (1+100p )x(x ∈N *,x ≤m ). 点评:根据实际问题,归纳是关键,注意x 的取值范围.7.(1)30.8与30.7的底数都是3,它们可以看成函数y =3x ,当x =0.8和0.7时的函数值;因为3>1,所以函数y =3x 在R 上是增函数.而0.7<0.8,所以30.7<30.8.(2)0.75-0.1与0.750.1的底数都是0.75,它们可以看成函数y =0.75x ,当x =-0.1和0.1时的函数值; 因为1>0.75,所以函数y =0.75x 在R 上是减函数.而-0.1<0.1,所以0.750.1<0.75-0.1.(3)1.012.7与1.013.5的底数都是1.01,它们可以看成函数y =1.01x ,当x =2.7和3.5时的函数值; 因为1.01>1,所以函数y =1.01x 在R 上是增函数.而2.7<3.5,所以1.012.7<1.013.5.(4)0.993.3与0.994.5的底数都是0.99,它们可以看成函数y =0.99x ,当x =3.3和4.5时的函数值; 因为0.99<1,所以函数y =0.99x 在R 上是减函数.而3.3<4.5,所以0.994.5<0.993.3.8.(1)2m ,2n 可以看成函数y =2x ,当x =m 和n 时的函数值;因为2>1,所以函数y =2x 在R 上是增函数.因为2m <2n ,所以m <n .(2)0.2m ,0.2n 可以看成函数y =0.2x ,当x =m 和n 时的函数值;因为0.2<1, 所以函数y =0.2x 在R 上是减函数.因为0.2m <0.2n ,所以m >n . (3)a m ,a n 可以看成函数y =a x ,当x =m 和n 时的函数值;因为0<a <1, 所以函数y =a x 在R 上是减函数.因为a m <a n ,所以m >n . (4)a m ,a n 可以看成函数y =a x ,当x =m 和n 时的函数值;因为a >1, 所以函数y =a x 在R 上是增函数.因为a m >a n ,所以m >n .点评:利用指数函数的单调性是解题的关键.9.(1)死亡生物组织内碳14的剩余量P 与时间t 的函数解析式为P=(21)57301.当时间经过九个“半衰期”后,死亡生物组织内的碳14的含量为P=(21)573057309⨯=(21)9≈0.002. 答:当时间经过九个“半衰期”后,死亡生物组织内的碳14的含量约为死亡前含量的2‰, 因此,还能用一般的放射性探测器测到碳14的存在.(2)设大约经过t 万年后,用一般的放射性探测器测不到碳14,那么(21)537010000t <0.001,解得t >5.7.答:大约经过6万年后,用一般的放射性探测器是测不到碳14的.B 组1. 当0<a <1时,a 2x -7>a 4x -12⇒x -7<4x -1⇒x >-3;当a >1时,a 2x -7>a 4x -1⇒2x -7>4x -1⇒x <-3. 综上,当0<a <1时,不等式的解集是{x |x >-3};当a >1时,不等式的解集是{x |x <-3}.2.分析:像这种条件求值,一般考虑整体的思想,同时观察指数的特点,要注重完全平方公式的运用. 解:(1)设y =x 21+x21-,那么y 2=(x 21+x21-)2=x +x -1+2.由于x +x -1=3,所以y =5.(2)设y =x 2+x -2,那么y =(x +x -1)2-2.由于x +x -1=3,所以y =7.(3)设y =x 2-x -2,那么y =(x +x -1)(x -x -1),而(x -x -1)2=x 2-2+x -2=5,所以y =±35. 点评:整体代入和平方差,完全平方公式的灵活运用是解题的突破口. 3.解:已知本金为a 元.1期后的本利和为y 1=a +a ×r =a (1+r ),2期后的本利和为y 2=a (1+r )+a (1+r )×r =a (1+r )2, 3期后的本利和为y 3=a (1+r )3, …x 期后的本利和为y =a (1+r )x .将a =1 000,r =0.022 5,x =5代入上式得y =a (1+r )x =1 000×(1+0.022 5)5=1 000×1.02255≈1118. 答:本利和y 随存期x 变化的函数关系式为y =a (1+r )x ,5期后的本利和约为1 118元. 4.解:(1)因为y 1=y 2,所以a 3x +1=a -2x .所以3x +1=-2x .所以x =51-. (2)因为y 1>y 2,所以a 3x +1>a -2x . 所以当a >1时,3x +1>-2x .所以x >51-. 当0<a <1时,3x +1<-2x .所以x <51-.2.2对数函数 练习(P64)1.(1)2log 83=; (2)2log 325=; (3)21log 12=-; (4)2711log 33=- 2.(1)239=; (2)35125=; (3)2124-=; (4)41381-=3.(1)设5log 25x =,则25255x ==,所以2x =;(2)设21log 16x =,则412216x -==,所以4x =-; (3)设lg1000x =,则310100010x==,所以3x =; (4)设lg 0.001x =,则3100.00110x-==,所以3x =-;4.(1)1; (2)0; (3)2; (4)2; (5)3; (6)5.练习(P68)1.(1)lg()lg lg lg xyz x y z =++;(2)222lg lg()lg lg lg lg lg 2lg lg xy xy z x y z x y z z =-=++=++;(3)33311lg()lg lg lg lg 3lg lg22xy x y z x y z =-=+-=+-;(4)2211lg()lg (lg lg )lg 2lg lg 22y z x y z x y z ==-+=--. 2.(1)223433333log (279)log 27log 9log 3log 3347⨯=+=+=+=;(2)22lg1002lg1002lg104lg104====;(3)5lg 0.00001lg105lg105-==-=-; (4)11ln 22e ==3. (1)22226log 6log 3log log 213-===; (2)lg5lg 2lg101+==; (3)555511log 3log log (3)log 1033+=⨯==;(4)13333351log 5log 15log log log 31153--====-.4.(1)1; (2)1; (3)54练习(P73)1.函数3log y x =及13log y x =的图象如右图所示.相同点:图象都在y 轴的右侧,都过点(1,0) 不同点:3log y x =的图象是上升的,13log y x =的图象是下降的关系:3log y x =和13log y x =的图象是关于x 轴对称的.2. (1)(,1)-∞; (2)(0,1)(1,)+∞; (3)1(,)3-∞; (4)[1,)+∞3. (1)1010log 6log 8< (2)0.50.5log 6log 4< (3)2233log 0.5log 0.6> (4) 1.5 1.5log 1.6log 1.4>习题2.2 A 组(P74) 1. (1)3log 1x =; (2)41log 6x =; (3)4log 2x =; (4)2log 0.5x = (5) lg 25x = (6)5log 6x =2. (1)527x = (2) 87x = (3) 43x = (4)173x=(5) 100.3x= (6) 3xe =3. (1)0; (2) 2; (3) 2-; (4)2; (5) 14-; (6) 2. 4. (1)lg6lg 2lg3a b =+=+; (2) 3lg 42lg 22log 4lg3lg3ab===; (3) 2lg122lg 2lg3lg3log 1222lg 2lg 2lg 2b a +===+=+; (4)3lg lg3lg 22b a =-=- 5. (1)x ab =; (2) mx n=; (3) 3n x m =; (4)b x =.6. 设x 年后我国的GDP 在1999年的GDP 的基础上翻两番,则(10.073)4x+=解得 1.073log 420x =≈. 答:设20年后我国的GDP 在1999年的GDP 的基础上翻两番.7. (1)(0,)+∞; (2) 3(,1]4.8. (1)m n <; (2) m n <; (3) m n >; (4)m n >. 9. 若火箭的最大速度12000v =,那么62000ln 112000ln(1)61402M M M M e mm m m ⎛⎫+=⇒+=⇒+=⇒≈ ⎪⎝⎭答:当燃料质量约为火箭质量的402倍时,火箭的最大速度可达12km/s.10. (1)当底数全大于1时,在1x =的右侧,底数越大的图象越在下方.所以,①对应函数lg y x =,②对应函数5log y x =,③对应函数2log y x =. (2)略. (3)与原函数关于x 轴对称. 11. (1)235lg 25lg 4lg92lg52lg 22lg3log 25log 4log 98lg 2lg3lg5lg 2lg3lg5⋅⋅=⨯⨯=⨯⨯= (2)lg lg lg log log log 1lg lg lg a b c b c a b c a a b c⋅⋅=⨯⨯= 12. (1)令2700O =,则312700log 2100v =,解得 1.5v =. 答:鲑鱼的游速为1.5米/秒. (2)令0v =,则31log 02100O=,解得100O =. 答:一条鱼静止时的耗氧量为100个单位.B 组1. 由3log 41x =得:143,43xx-==,于是11044333x x -+=+= 2. ①当1a >时,3log 14a<恒成立; ②当01a <<时,由3log 1log 4a a a <=,得34a <,所以304a <<.综上所述:实数a 的取值范围是3{04a a <<或1}a >3. (1)当1I = W/m 2时,112110lg 12010L -==;(2)当1210I -= W/m 2时,121121010lg 010L --==答:常人听觉的声强级范围为0120dB .4. (1)由10x +>,10x ->得11x -<<,∴函数()()f x g x +的定义域为(1,1)- (2)根据(1)知:函数()()f x g x +的定义域为(1,1)-∴ 函数()()f x g x +的定义域关于原点对称又∵ ()()log (1)log (1)()()a a f x g x x x f x g x -+-=-++=+ ∴()()f x g x +是(1,1)-上的偶函数.5. (1)2log y x =,0.3log y x =; (2)3xy =,0.1x y =.习题2.3 A 组(P79) 1.函数y =21x是幂函数. 2.解析:设幂函数的解析式为f (x )=x α,因为点(2,2)在图象上,所以2=2α.所以α=21,即幂函数的解析式为f (x )=x 21,x ≥0.3.(1)因为流量速率v 与管道半径r 的四次方成正比,所以v =k ·r 4; (2)把r =3,v =400代入v =k ·r 4中,得k =43400=81400,即v =81400r 4; (3)把r =5代入v =81400r 4,得v =81400×54≈3 086(cm 3/s ), 即r =5 cm 时,该气体的流量速率为3 086 cm 3/s .第二章 复习参考题A 组(P82)1.(1)11; (2)87; (3)10001; (4)259. 2.(1)原式=))(()()(212121212212122121b a b a b a b a -+++-=b a b b a a b b a a -++++-2121212122=ba b a -+)(2;(2)原式=))(()(1121----+-a a a a a a =aa a a 11+-=1122+-a a . 3.(1)因为lg 2=a ,lg 3=b ,log 125=12lg 5lg =32lg 210lg2•=3lg 2lg 22lg 1+-,所以log 125=ba a +-21. (2)因为2log 3a =,3log 7b =37147log 27log 56log 27⨯=⨯=2log 112log 377++=7log 2log 11)7log 2(log 33333÷++÷=b ab a ÷++÷111)1(3=13++ab ab . 4.(1)(-∞,21)∪(21,+∞);(2)[0,+∞).5.(32,1)∪(1,+∞);(2)(-∞,2);(3)(-∞,1)∪(1,+∞).6.(1)因为log 67>log 66=1,所以log 67>1.又因为log 76<log 77=1,所以log 76<1.所以log 67>log 76. (2)因为log 3π>log 33=1,所以log 3π>1.又因为log 20.8<0,所以log 3π>log 20.8.7.证明:(1)因为f (x )=3x ,所以f (x )·f (y )=3x ×3y =3x +y .又因为f (x +y )=3x +y ,所以f (x )·f (y )=f (x +y ). (2)因为f (x )=3x ,所以f (x )÷f (y )=3x ÷3y =3x -y . 又因为f (x -y )=3x -y ,所以f (x )÷f (y )=f (x -y ).8.证明:因为f (x )=lgxx+-11,a 、b ∈(-1,1), 所以f (a )+f (b )=lgbb a a +-++-11lg11=lg )1)(1()1)(1(b a b a ++--, f (ab b a ++1)=lg (ab b a ab ba +++++-1111)=lg b a ab b a ab +++--+11=lg )1)(1()1)(1(b a b a ++--. 所以f (a )+f (b )=f (abba ++1).9.(1)设保鲜时间y 关于储藏温度x 的函数解析式为y =k ·a x (a >0,且a ≠1).因为点(0,192)、(22,42)在函数图象上,所以022192,42,k a k a ⎧=⋅⎪⎨=⋅⎪⎩解得⎪⎩⎪⎨⎧≈==.93.0327,19222a k 所以y =192×0.93x ,即所求函数解析式为y =192×0.93x . (2)当x =30 ℃时,y ≈22(小时);当x =16 ℃时,y ≈60(小时),即温度在30 ℃和16 ℃的保鲜时间约为22小时和60小时. (3)图象如图:图2-210.解析:设所求幂函数的解析式为f (x )=x α,因为f (x )的图象过点(2,22), 所以22=2α,即221-=2α.所以α=21-.所以f (x )=x 21-(x >0).图略,f (x )为非奇非偶函数;同时它在(0,+∞)上是减函数.B 组1.A2.因为2a =5b =10,所以a =log 210,b =log 510,所以a 1+b 1=10log 12+10log 15=lg 2+lg 5=lg 10=1. 3.(1)f (x )=a 122+-x在x ∈(-∞,+∞)上是增函数.证明:任取x 1,x 2∈(-∞,+∞),且x 1<x 2.f (x 1)-f (x 2)=a 122+-x -a +1222+x =1222+x -1221+x =)12)(12()22(21221++-x x x x . 因为x 1,x 2∈(-∞,+∞), 所以.012.01212>+>+x x又因为x 1<x 2, 所以2122x x <即2122x x <<0.所以f (x 1)-f (x 2)<0,即f (x 1)<f (x 2).所以函数f (x )=a 122+-x在(-∞,+∞)上是增函数. (2)假设存在实数a 使f (x )为奇函数,则f (-x )+f (x )=0,即a 121+--x +a 122+-x =0⇒a =121+-x +121+x =122+x +121+x=1, 即存在实数a =1使f (x )=121+--x 为奇函数.4.证明:(1)因为f (x )=2x x e e --,g (x )=2xx e e -+,所以[g (x )]2-[f (x )]2=[g (x )+f (x )][g (x )-f (x )]=)22)(22(xx x x x x x x e e e e e e e e -----++++ =e x ·e -x =e x -x =e 0=1, 即原式得证.(2)因为f (x )=2x x e e --,g (x )=2xx e e -+,所以f (2x )=222x x e e -+,2f (x )·g (x )=2·2x x e e --·2x x e e -+=222xx e e --.所以f (2x )=2f (x )·g (x ).(3)因为f (x )=2x x e e --,g (x )=2xx e e -+,所以g (2x )=222x x e e -+,[g (x )]2+[f (x )]2=(2x x ee -+)2+(2xx e e --)2=4222222x x x x e e e e --+-+++=222xx e e -+.所以g (2x )=[f (x )]2+[g (x )]2.5.由题意可知,θ1=62,θ0=15,当t =1时,θ=52,于是52=15+(62-15)e -k ,解得k ≈0.24,那么θ=15+47e -0.24t . 所以,当θ=42时,t ≈2.3;当θ=32时,t ≈4.2.答:开始冷却2.3和4.2小时后,物体的温度分别为42 ℃和32 ℃.物体不会冷却到12 ℃.6.(1)由P=P 0e -k t 可知,当t =0时,P=P 0;当t =5时,P=(1-10%)P 0.于是有(1-10%)P 0=P 0e -5k ,解得k =51-ln 0.9,那么P=P 0e t )9.0ln 51(.所以,当t =10时,P=P 0e 9.01051n I ⨯⨯=P 0e ln 0.81=81%P 0.答:10小时后还剩81%的污染物. (2)当P=50%P 0时,有50%P 0=P 0et )9.0ln 51(,解得t =9.0ln 515.0ln ≈33.答:污染减少50%需要花大约33h . (3)其图象大致如下:图2-3。
第一部分基本初等函数知识点整理第二章 基本初等函数一、指数函数 (一)指数1、 指数与指数幂的运算:复习初中整数指数幂的运算性质: a m *a n =a m+n(a m )n=a mn(a*b)n =a n b n2、根式的概念:一般地,若a x n =,那么x 叫做a 的n 次方根,其中n >1,且n ∈N *.当n 是奇数时,正数的n 次方根是一个正数,负数的n 次方根是一个负数。
此时,a 的n 次方根用符号 表示。
当n 为偶数时,正数的n 次方根有两个,这两个数互为相反数。
此时正数a 的正的n 次方根用符号 表示,负的n 的次方根用符号 表示。
正的n 次方根与负的n 次方根可以合并成 (a>0)。
注意:负数没有偶次方根;0的任何次方根都是0,记作00=n。
当n 是奇数时,a a n n =,当n 是偶数时,⎩⎨⎧<≥-==)0()0(||a a a a a a nn 式子n a 叫做根式,这里n 叫做根指数,a 叫做被开方数。
3、 分数指数幂正数的分数指数幂的)1,,,0(*>∈>=n N n m a a an m nm ,)1,,,0(11*>∈>==-n N n m a a aanmnm nm0的正分数指数幂等于0,0的负分数指数幂没有意义4、 有理数指数米的运算性质(1)r a ·s r ra a+=),,0(R s r a ∈>; (2)rss r a a =)( ),,0(R s r a ∈>;(3)s r r a a ab =)(),,0(R s r a ∈>.5、无理数指数幂一般的,无理数指数幂a a(a>0,a 是无理数)是一个确定的实数。
有理数指数幂的运算性质同样使用于无理数指数幂。
(二)、指数函数的性质及其特点1、指数函数的概念:一般地,函数)1,0(≠>=a a a y x 且叫做指数函数,其中x 是自变量,函数的定义域为R .注意:指数函数的底数的取值范围,底数不能是负数、零和1.为什么?(1)在[a ,b]上,值域是)]b (f ),a (f [或)]a (f ),b (f [;(2)若0x ≠,则1)x (f ≠;)x (f 取遍所有正数当且仅当R x ∈; (3)对于指数函数)1a 0a (a )x (f x ≠>=且,总有a )1(f =; (4)当a>1时,若X 1<X 2 ,则有f(X 1)<f(X 2)。
课时23 对数的运算(2)换底公式的应用a b c abc A .1 B .2 C .3 D .5答案 A解析 ∵log a x =1log x a =2,∴log x a =12. 同理log x c =16,log x b =13. ∴log abc x =1log x abc =1log x a +log x b +log x c=1. 2.若log 34·log 48·log 8m =log 416,则m =________.答案 9解析 由换底公式,得lg 4lg 3×lg 8lg 4×lg m lg 8=lg m lg 3=log 416=2,∴lg m =2lg 3=lg 9,∴m =9.3.设3x =4y =36,求2x +1y的值. 解 由已知分别求出x 和y ,∵3x =36,4y=36,∴x =log 336,y =log 436,由换底公式得: x =log 3636log 363=1log 363,y =log 3636log 364=1log 364, ∴1x =log 363,1y=log 364, ∴2x +1y=2log 363+log 364=log 36(32×4)=log 3636=1. 4.计算:(1)log 89×log 2732;(2)log 927;(3)log 21125×log 3132×log 513; (4)(log 43+log 83)(log 32+log 92).解 (1)log 89×log 2732=lg 9lg 8×lg 32lg 27=lg 32lg 23×lg 25lg 33=2lg 33lg 2×5lg 23lg 3=109; (2)log 927=log 327log 39=log 333log 332=3log 332log 33=32; (3)log 21125×log 3132×log 513=log 25-3×log 32-5×log 53-1=-3log 25×(-5log 32)×(-log 53)=-15×lg 5lg 2×lg 2lg 3×lg 3lg 5=-15; (4)原式=⎝⎛⎭⎪⎫lg 3lg 4+lg 3lg 8⎝ ⎛⎭⎪⎫lg 2lg 3+lg 2lg 9 =⎝ ⎛⎭⎪⎫lg 32lg 2+lg 33lg 2⎝ ⎛⎭⎪⎫lg 2lg 3+lg 22lg 3 =12+14+13+16=54.运用换底公式不熟练致误23A.14 B.12C .2D .4 易错分析 本题易在使用对数的运算公式时,尤其换底公式的使用过程中发生错误. 答案 D正解 log 29×log 34=lg 9lg 2×lg 4lg 3=2lg 3lg 2×2lg 2lg 3=2×2=4.一、选择题1.log 29log 23=( )A.12 B .2 C.32 D.92答案 B解析 由换底公式log 39=log 29log 23.∵log 39=2,∴log 29log 23=2.2.已知log 23=a ,log 37=b ,则log 27=() A .a +b B .a -b C .ab D.ab答案 C解析 log 27=log 23×log 37=ab .3.设2a =5b =m ,且1a +1b =2,则m =( ) A.10 B .10 C .20 D .100答案 A解析 ∵2a =5b =m ,∴a =log 2m ,b =log 5m .1a +1b =log m 2+log m 5=log m 10=2,∴m 2=10.又∵m >0,∴m =10,选A.4.1log 1419+1log 1513等于( )A .lg 3B .-lg 3C.1lg 3 D .-1lg 3答案 C解析 原式=log 1914+log 1315=log 1312+log 1315=log 13110=log 310=1lg 3.选C. 5.已知2a =3b =k (k ≠1),且2a +b =ab ,则实数k 的值为( )A .6B .9C .12D .18答案 D解析 a =log 2k ,b =log 3k ,由2a +b =ab 得2log 2k +log 3k =log 2k ·log 3k ,即2lg k lg 2+lg k lg 3=k2lg 2lg 3,得2lg 3+lg 2=lg k ,即k =18.二、填空题6.方程log 3(x -1)=log 9(x +5)的解是________.答案 4解析 由换底公式得log 9(x +5)=12log 3(x +5).∴原方程可化为2log 3(x -1)=log 3(x +5),即log 3(x -1)2=log 3(x +5),∴(x -1)2=x +5.∴x 2-3x -4=0,解得x =4或x =-1.又∵⎩⎪⎨⎪⎧ x -1>0,x +5>0,∴x >1,故x =4.7.若log a b ·log 3a =4,则b 的值为________.答案 81解析 log a b ·log 3a =4,即log 3a ·log a b =4,即log 3b =4,∴34=b ,∴b =81.8.已知2x =72y =A ,且1x +1y =1,则A 的值是________.答案 98解析 ∵2x =72y =A ,∴x =log 2A,2y =log 7A .∴1x +1y =1log 2A +2log 7A=log A 2+2log A 7=log A 2+log A 49=log A 98=1.∴A =98.三、解答题9.计算下列各式的值:(1)lg 2+lg 5-lg 8lg 5-lg 4;(2)lg 5(lg 8+lg 1000)+(lg 23)2+lg 16+lg 0.06. 解 (1)原式=1-3lg 2lg 5-2lg 2=1-3lg 21-3lg 2=1; (2)原式=lg 5(3lg 2+3)+3(lg 2)2-lg 6+lg 6-2=3lg 5×lg 2+3lg 5+3lg 22-2=3lg 2(lg 5+lg 2)+3lg 5-2=3(lg 2+lg 5)-2=3-2=1.10.已知x ,y ,z 为正数,3x =4y =6z,2x =py .(1)求p ;(2)求证:1z -1x =12y. 解 (1)设3x =4y =6z =k (显然k >0,且k ≠1),则x =log 3k ,y =log 4k ,z =log 6k .由2x =py ,得2log 3k =p log 4k =p ·log 3k log 34. ∵log 3k ≠0,∴p =2log 34.(2)证明:1z -1x =1log 6k -1log 3k =log k 6-log k 3=log k 2=12log k 4=12y ,∴1z -1x =12y.►2.2.2 对数函数及其性质。
基本初等函数章末检测一、选择题1. 下列函数中,在区间(0,+∞)上为增函数的是 ( )A .y =ln(x +2)B .y =-x +1C .y =⎝⎛⎭⎫12xD .y =x +1x1.A2. 若a <12,则化简4(2a -1)2的结果是 ( ) A.2a -1 B .-2a -1 C.1-2a D .-1-2a2.C3. 函数y =lg x +lg(5-3x )的定义域是 ( )A .[0,53)B .[0,53]C .[1,53)D .[1,53] 3.C4.已知集合A ={x |y =lg(2x -x 2)},B ={y |y =2x ,x >0},R 是实数集,则(∁R B )∩A 等于() A .[0,1] B .(0,1]C .(-∞,0]D .以上都不对4.B5. 幂函数的图象过点⎝⎛⎭⎫2,14,则它的单调递增区间是 ( )A .(0,+∞)B .[0,+∞)C .(-∞,0)D .(-∞,+∞)5.C6. 函数y =2+log 2(x 2+3)(x ≥1)的值域为 ( )A .(2,+∞)B .(-∞,2)C .[4,+∞)D .[3,+∞)6.C7. 比较1.513.1、23.1、213.1的大小关系是 ( )A .23.1<213.1<1.513.1B .1.513.1<23.1<213.1C .1.513.1<213.1<23.1D .213.1<1.513.1<23.17.D8. 函数y =a x -1a (a >0,且a ≠1)的图象可能是 ( )D9. 若0<x <y <1,则 ( )A .3y <3xB .log x 3<log y 3C .log 4x <log 4yD .(14)x <(14)y 9.C10.若偶函数f (x )在(-∞,0)内单调递减,则不等式f (-1)<f (lg x )的解集是 ( )A .(0,10) B.⎝⎛⎭⎫110,10 C.⎝⎛⎭⎫110,+∞ D.⎝⎛⎭⎫0,110∪(10,+∞) 10.D11.方程log 2x +log 2(x -1)=1的解集为M ,方程22x+1-9·2x +4=0的解集为N ,那么M 与N 的关系是( )A .M =NB .M NC .M ND .M ∩N =∅11.B12.设偶函数f (x )=log a |x +b |在(0,+∞)上具有单调性,则f (b -2)与f (a +1)的大小关系为( )A .f (b -2)=f (a +1)B .f (b -2)>f (a +1)C .f (b -2)<f (a +1)D .不能确定12.C二、填空题13.函数f (x )=a x -1+3的图象一定过定点P ,则P 点的坐标是________.13.(1,4)14.函数f (x )=log 5(2x +1)的单调增区间是________.14.⎝⎛⎭⎫-12,+∞ 15.设函数f (x )是定义在R 上的奇函数,若当x ∈(0,+∞)时,f (x )=lg x ,则满足f (x )>0的x 的取值范围是______.15.(-1,0)∪(1,+∞)16.定义:区间[x 1,x 2](x 1<x 2)的长度为x 2-x 1.已知函数y =|log 0.5x |的定义域为[a ,b ],值域为[0,2],则区间[a ,b ]的长度的最大值为________.16.154三、解答题(2)2lg 2+lg 31+12 lg 0.36+14lg 16. (2)原式=2lg 2+lg 31+12lg 0.62+14lg 24 =2lg 2+lg 31+lg 2×310+lg 2 =2lg 2+lg 31+lg 2+lg 3-lg 10+lg 2=2lg 2+lg 32lg 2+lg 3=1.18.已知f (x )为定义在[-1,1]上的奇函数,当x ∈[-1,0]时,函数解析式f (x )=14x -a 2x (a ∈R ). (1)写出f (x )在[0,1]上的解析式;(2)求f (x )在[0,1]上的最大值.18.解 (1)∵f (x )为定义在[-1,1]上的奇函数,且f (x )在x =0处有意义,∴f (0)=0,即f (0)=140-a 20=1-a =0.∴a =1. 设x ∈[0,1],则-x ∈[-1,0].∴f (-x )=14-x -12-x =4x -2x . 又∵f (-x )=-f (x ),∴-f (x )=4x -2x .∴f (x )=2x -4x .(2)当x ∈[0,1],f (x )=2x -4x =2x -(2x )2,∴设t =2x (t >0),则f (t )=t -t 2.∵x ∈[0,1],∴t ∈[1,2].当t =1时,取最大值,最大值为1-1=0.19.已知x >1且x ≠43,f (x )=1+log x 3,g (x )=2log x 2,试比较f (x )与g (x )的大小. 19.解 f (x )-g (x )=1+log x 3-2log x 2=1+log x 34=log x 34x , 当1<x <43时,34x <1, ∴log x 34x <0; 当x >43时,34x >1,∴log x 34x >0. 即当1<x <43时,f (x )<g (x );当x >43时,f (x )>g (x ).20.已知函数f (x )=2x -12|x |. (1)若f (x )=2,求x 的值;(2)若2t f (2t )+mf (t )≥0对于t ∈[1,2]恒成立,求实数m 的取值范围.20.解 (1)当x <0时,f (x )=0;当x ≥0时,f (x )=2x -12x . 由条件可知2x -12x =2,即22x -2·2x -1=0, 解得2x =1±2.∵2x >0,∴x =log 2(1+2).(2)当t ∈[1,2]时,2t ⎝⎛⎭⎫22t -122t +m ⎝⎛⎭⎫2t -12t ≥0, 即m (22t -1)≥-(24t -1).∵22t -1>0,∴m ≥-(22t +1).∵t ∈[1,2],∴-(1+22t )∈[-17,-5],故m 的取值范围是[-5,+∞).21.已知函数f (x )=a x -1(a >0且a ≠1).(1)若函数y =f (x )的图象经过P (3,4)点,求a 的值;(2)若f (lg a )=100,求a 的值;(3)比较f ⎝⎛⎭⎫lg 1100与f (-2.1)的大小,并写出比较过程. 21.解 (1)∵函数y =f (x )的图象经过P (3,4),∴a 3-1=4,即a 2=4.又a >0,所以a =2.(2)由f (lg a )=100知,a lg a -1=100.∴lg a lg a -1=2(或lg a -1=log a 100).∴(lg a -1)·lg a =2.∴lg 2a -lg a -2=0,∴lg a =-1或lg a =2,∴a =110或a =100. (3)当a >1时,f ⎝⎛⎭⎫lg 1100>f (-2.1); 当0<a <1时,f ⎝⎛⎭⎫lg 1100<f (-2.1). 因为,f ⎝⎛⎭⎫lg 1100=f (-2)=a -3, f (-2.1)=a -3.1,当a >1时,y =a x 在(-∞,+∞)上为增函数,∵-3>-3.1,∴a -3>a -3.1.即f ⎝⎛⎭⎫lg 1100>f (-2.1);当0<a <1时,y =a x 在(-∞,+∞)上为减函数, ∵-3>-3.1,∴a -3<a -3.1,即f ⎝⎛⎭⎫lg 1100<f (-2.1).22.已知f (x )=10x -10-x10x +10-x .(1)求证f (x )是定义域内的增函数;(2)求f (x )的值域.22.(1)证明 因为f (x )的定义域为R ,且f (-x )=10-x -10x10-x +10x =-f (x ),所以f (x )为奇函数.f (x )=10x -10-x 10x +10-x =102x -1102x +1=1-2102x +1.令x 2>x 1,则f (x 2)-f (x 1)=(1-2102x 2+1)-(1-2102x 1+1)=2·102x 2-102x 1(102x 2+1)(102x 1+1).因为y =10x 为R 上的增函数, 所以当x 2>x 1时,102x 2-102x 1>0. 又因为102x 1+1>0,102x 2+1>0. 故当x 2>x 1时,f (x 2)-f (x 1)>0, 即f (x 2)>f (x 1).所以f (x )是增函数.(2)解 令y =f (x ).由y =102x -1102x +1,解得102x =1+y 1-y. 因为102x >0,所以-1<y <1. 即f (x )的值域为(-1,1).。