【单元测试】2017-2018年人教版七年级上《第4章几何图形初步》单元检测题含答案
- 格式:doc
- 大小:149.50 KB
- 文档页数:5
合用优选文件资料分享2017 年七年级数学上第 4 章几何图形初步单元检测题(人教版附答案)第四章检测题 ( 时间: 120 分钟满分:120分)一、选择题 ( 每题 3 分,共 30 分) 1 .将一副三角板按以以下列图地址摆放,其中∠α与∠β必然互余的是 ( C ) 2.在灯塔 O处观察到轮船A位于北偏西 54°的方向,同时轮船 B在南偏东 15°的方向,那么∠AOB的度数为 ( C ) A.69° B.111° C.141° D.159° ,第 2 题图), 第 3 题图), 第 4 题图) 3.如图,点 A,B,C按次在直线 l 上,点 M是线段 AC的中点,点 N是线段 BC的中点,若想求出 MN的长度,那么只要条件 ( A ) A.AB=12 B.BC=4 C.AM=5 D.CN=2 4 .如图,将 4×3的网格图剪去 5 个小正方形后,图中还剩下 7 个小正方形,为了使余下的部分 ( 小正方形之间最稀有一条边相连 ) 恰巧能折成一个正方体,需要再剪去 1 个小正方形,则应剪去的小正方形的编号是 ( C ) A .7 B.6 C.5 D.4 5 .如图,点 O在直线 l 上,∠1与∠2互余,∠α=116°,则∠ β的度数是( C ) A.144° B.164° C.154° D.150° , 第 5 题图 ),第 6 题图 ),第7题图) 6.(2016?凉山州)如图,是由若干个大小相同的正方体搭成的几何体,从不相同方向看所获取的平面图形,该几何体所用的正方体的个数是( A ) A.6个 B.4个C.3个D.2个 7 .如图,田亮同学用剪刀沿直线将一片平展的树叶剪掉一部分,发现剩下树叶的周长比原树叶的周长要小,能正确讲解这一现象的数学知识是 ( D ) A .垂线段最短 B .经过一点有无数条直线 C.经过两点,有且仅有一条直线 D.两点之间,线段最短 8 .已知线段AB=10 cm,点 C 是直线 AB上一点, BC=4 cm,若 M是 AC的中点, N是 BC的中点,则线段 MN的长度是 ( D ) A.7 cm B.3 cm C.7 cm 或 3 cm D.5 cm 9 .钟表在 8:25 时,时针与分针的夹角是 ( B )度. A .101.5 B .102.5 C .120 D.125 10 .若是∠1与∠2互补,∠2与∠3互余,那么∠1与∠3的关系是 ( C ) A.∠1=∠ 3 B.∠1=180°-∠ 3 C.∠ 1=90°+∠ 3 D.以上都不对二、填空题 ( 每题 3 分,共 24分) 11.用“度分秒”来表示: 8.31 度= __8__度__18__分__36__秒. 12 .一个角的余角比这个角的补角的一半小 40°,则这个角为 __80__度. 13 .已知 A,B,C三点在同一条直线上, M,N分别为线段 AB,BC的中点,且 AB=60,BC=40,则 MN的长为 __50 或10__. 14 .如图,点 O在直线 AB上,射线 OC均分∠ DOB,若∠COB=35°,则∠ AOD=__110__°. , 第 14 题图 ) , 第 15 题图 ) , 第 17 题图 ) , 第 18 题图 ) 15 .如图,两块三角板的直角极点 O重叠在一同,且 OB恰巧均分∠ COD,则∠ AOD的度数是 __135__度. 16 .平面内三条直线两两订交,最多有 a 个交点,最稀有 b 个交点,则 a+b=__4__.17 .把一张长方形纸条按如图的方式折叠后,量得∠AOB′=110°,则∠ B′OC=__35°__. 18 .如图,OA的方向是北偏东 15°,OC的方向是北偏西 40°,若∠ AOC=∠ AOB,则 OB的方向是 __北偏东 70°__. 三、解答题 ( 共 66 分) 19.(8 分) 依照以下语句,画出图形.已知四点 A,B,C,D. ①画直线 AB;②连结 AC,BD,订交于点 O;③画射线 AD,BC,交于点 P. 解:略20.(8 分) 一个角的余角比这个角的 12 少 30°,请你计算出这个角的大小.解:设这个角为 x,则它的余角为 (90 °- x) ,依题意得 12x-(90 °- x) =30°,解得 x=80°,答:这个角是 80°21.(8 分) 如图,点 M是线段 AC的中点,点 B 在线段 AC上,且 AB =4 cm,BC=2AB,求线段 MC和线段 BM的长.解:因为 AB=4 cm,BC=2AB,所以 BC=8 cm,所以 AC=AB+BC=12 cm,因为 M是线段AC中点,所以 MC=AM=12AC=6 cm,所以 BM=AM-AB=2 cm22.(8 分) 如图,已知线段 AB和 CD的公共部分 BD=13AB=14CD,线段 AB,CD的中点 E,F 之间的距离是 10 cm,求 AB,CD的长.解:设 BD=x cm,则 AB=3x cm,CD=4x cm,AC=6x cm,因为点 E,F分别为 AB,CD的中点,所以 AE=12AB=1.5x cm,CF=12CD=2x cm,所以 EF=AC-AE-CF=6x-1.5x -2x=2.5x(cm) ,因为 EF=10 cm,所以 2.5x =10,解得 x=4,所以 AB=12 cm,CD=16 cm23.(10 分) 如图,已知直线 AB和 CD订交于点 O,∠ COE是直角, OF均分∠ AOE,∠COF=34°,求∠ BOD的度数.解:因为∠ COE是直角,∠COF=34°,所以∠ EOF=56°,又因为 OF均分∠ AOE,所以∠AOF =∠ EOF=56°. 因为∠ COF=34°,所以∠ AOC=∠ AOF-∠COF=22°,所以∠ BOD=∠ AOC=22°24.(12 分) 如图,点 C在线段 AB上, AC=8 cm,CB=6 cm,点 M,N分别是 AC,BC的中点. (1) 求线段 MN的长; (2) 若 C为线段 AB上随意一点,知足AC+CB=a cm,其他条件不变,你能猜想出MN的长度吗?并说明原因; (3) 若 C在线段 AB的延伸线上,且知足 AC-CB=b cm,点M,N分别为AC,BC的中点,你能猜想出MN的长度吗?请画出图形,写出你的结论,并说明原因.解: (1) 因为点 M,N分别是 AC,BC的中点,所以 MC=12AC=4 cm,NC=12BC=3 cm,所以 MN=MC+NC=7 cm (2)MN=MC+NC=12AC+12BC=12AB=12a cm (3) 图略,MN=12b cm.原因:MN=MC-NC=12AC-12BC=12(AC-BC)=12b cm25.(12 分) 如图,OM是∠ AOC的均分线, ON是∠ BOC的均分线. (1)如图①,当∠ AOB是直角,∠BOC=60°时,∠MON的度数是多少? (2)如图②,当∠ AOB=α,∠ BOC=60°时,猜想∠ MON与α的数量关系; (3) 如图③,当∠ AOB=α,∠ BOC=β时,猜想∠ MON与α,β有数量关系吗?若是有,写出你的结论,并说明原因.解: (1) ∠MON=∠ MOC-∠ NOC=12∠AOC-12∠BOC=12( ∠AOC-∠BOC)=12∠AOB=45°(2) ∠MON=∠ MOC-∠ NOC=12∠AOC-12∠BOC=12( ∠AOC-∠ BOC)=12∠AOB= 12α (3) ∠MON=12α. 原因:∠ MON=∠ MOC-∠ NOC= 12( α+β) -12β=12α。
七年级数学第四章几何图形初步单元检测题一、选择题(每小题3分,共30分)1.生活中的实物可以抽象出各种各样的几何图形,如图所示蛋糕的形状类似于( A )A.圆柱B.球C.圆D.圆锥2.如图是我国南海地区图,图中的点分别代表三亚市,永兴岛,黄岩岛,渚碧礁,弹丸礁和曾母暗沙,该地区图上两个点之间距离最短的是( A )A.三亚﹣﹣永兴岛B.永兴岛﹣﹣黄岩岛C.黄岩岛﹣﹣弹丸礁D.渚碧礁﹣﹣曾母暗山3.下列语句错误的是( D )A.两点确定一条直线B.同角的余角相等C.两点之间线段最短D.两点之间的距离是指连接这两点的线段4.如图,C,D是线段AB上两点.若CB=4cm,DB=7cm,且D是AC的中点,则AB的长为( A )A.10cmB.11cmC.12cmD.14cm5.如图,C、D是线段AB上的两个点,CD=3cm,M是AC的中点,N是DB的中点,AB=9.8cm,那么线段MN的长等于( B )A.5.4cm B.6.4cm C.6.8cm D.7cm6.下列各组图形中都是平面图形的是( C )A.三角形、圆、球、圆锥B.点、线段、棱锥、棱柱C.角、三角形、正方形、圆D.点、角、线段、长方体7.用一副三角板可以画出的最大锐角的度数是( B )A.85°B.75°C.60°D.45°8.若∠1=40.4°,∠2=40°4′,则∠1与∠2的关系是( B )A.∠1=∠2B.∠1>∠2C.∠1<∠2D.以上都不对9.在同一条直线上依次有A,B,C,D四个点,若CD﹣BC=AB,则下列结论正确的是( D )A.B是线段AC的中点B.B是线段AD的中点C.C是线段BD的中点D.C是线段AD的中点10.如图,将甲、乙、丙、丁四个小正方形中的一个剪掉,使余下的部分不能围成一个正方体,则剪掉的这个小正方形是( D )A.甲B.乙C.丙D.丁二、填空题(每小题3分,共24分)11.如图,为抄近路践踏草坪是一种不文明的现象,请你用数学知识解释出现这一现象的原因两点之间,线段最短W.12.32.48°×2= 64 度 57 分36 秒.13.一副三角板按如图方式摆放,若∠α=21°37',则∠β的度数为68°23′.14.直线AB,BC,CA的位置关系如图所示,则下列语句:①点A在直线BC上;②直线AB经过点C;③直线AB,BC,CA两两相交;④点B是直线AB,BC,CA 的公共点,正确的有③(只填写序号).15.青青同学把一张长方形纸折了两次,如图,使点A,B都落在DG上,折痕分别是DE,DF,则∠EDF的度数为90°.16.已知BD=4,延长BD到A,使BA=6,点C是线段AB的中点,则CD的长为1 .17.往返于甲、乙两地的客车,中途停靠3个车站(来回票价一样),且任意两站间的票价都不同,共有10 种不同的票价,需准备20 种车票.18.将一副三角板如图放置,若∠AOD=20°,则∠BOC的大小为160°.三、解答题(共66分)19.(8分)计算:(1)48°39′+67°31′-21°17′;(2)23°53′×3-107°43′÷5.解:(1)48°39′+67°31′-21°17′=116°10′-21°17′=94°53′.(4分)(2)23°53′×3-107°43′÷5=71°39′-21°32′36″=50°6′24″.(8分)20.(12分)如图,已知数轴上点A表示的数为8,B是数轴上位于点A左侧一点,且AB=20,动点P从A点出发,以每秒5个单位长度的速度沿数轴向左匀速运动,设运动时间为t(t>0)秒.(1)数轴上点B表示的数;点P表示的数(用含t的代数式表示)(2)动点Q从点B出发,以每秒3个单位长度的速度沿数轴向左匀速运动,若点P、Q同时出发,问点P运动多少秒时追上点Q?(3)动点Q从点B出发,以每秒3个单位长度的速度沿数轴向右匀速运动,若点P、Q同时出发,问多少秒时,P,Q之间的距离恰好等于4?(4)若A点表示的数为a(a>0),B点表示的数为b(b<0),M,N分别把AO、BO分成两段,且较短的线段长度分别是AO、BO的n分之一,请直接写出线段MN的长度(用含有a,b,n的代数式表示).【解答】解:(1)数轴上点B表示的数为8﹣20=﹣12;点P表示的数为8﹣5t;故答案为:﹣12,8﹣5t;(2)由题意得:AP=AB+BQ,5t=20+3t,t=10,答:若点P、Q同时出发,点P运动10秒时追上点Q;(3)分两种情况:①点Q在P的左边时,BQ+4+AP=20,3t+4+5t=20,t=2,②点Q在P的右边时,BQ+AP=20+4,3t+5t=20+4,t=3,综上,点P、Q同时出发,2秒或3秒时,P,Q之间的距离恰好等于4;(4)分4种情况:①当OM<AM,ON<BN时,如图,OM==,ON==﹣,∴MN=OM+ON=﹣=;②当OM<AM,ON>BN时,如图,OM==,ON=OB=﹣=,∴MN=OM+ON=+=;③当OM>AM,ON<BN时,如图,OM=OA=,ON==﹣,∴MN=OM+ON=﹣=;④当OM>AM,ON>BN时,如图,OM=OA=,ON=OB=﹣=,∴MN=OM+ON=+=21.(10分)如图,已知线段AB,按下列要求完成画图和计算:(1)延长线段AB到点C,使BC=2AB,取AC中点D;(2)在(1)的条件下,如果AB=4,求线段BD的长度.【解答】解:(1)如图:(2)∵BC=2AB,且AB=4,∴BC=8.∴AC=AB+BC=8+4=12. ∵D 为AC 中点,(已知)∴AD=21AC=6.(线段中点的定义)∴BD=AD ﹣AB=6﹣4=2.【点评】本题考查了两点间的距离,利用线段的和差是解题关键.21.(12分)如图,将两块直角三角尺的顶点叠放在一起. (1)若∠DCE =35°,求∠ACB 的度数; (2)若∠ACB =140°,求∠DCE 的度数;(3)猜想∠ACB 与∠DCE 的关系,并说明理由.解:(1)由题意知∠ACD =∠ECB =90°,∴∠ACB =∠ACD +∠DCB =∠ACD +∠ECB -∠ECD =90°+90°-35°=145°.(3分)(2)由(1)知∠ACB =180°-∠ECD ,∴∠ECD =180°-∠ACB =40°.(6分) (3)∠ACB +∠DCE =180°.(7分)理由如下:∵∠ACB =∠ACD +∠DCB =90°+90°-∠DCE ,∴∠ACB +∠DCE =180°.(12分)23.(14分)如图1,已知∠MON=140°,∠AOC 与∠BOC 互余,OC 平分∠MOB ,(1)在图1中,若∠AOC=40°,则∠BOC= °,∠NOB= °. (2)在图1中,设∠AOC=α,∠NOB=β,请探究α与β之间的数量关系( 必须写出推理的主要过程,但每一步后面不必写出理由);(3)在已知条件不变的前提下,当∠AOB 绕着点O 顺时针转动到如图2的位置,此时α与β之间的数量关系是否还成立?若成立,请说明理由;若不成立,请直接写出此时α与β之间的数量关系.【分析】(1)先根据余角的定义计算∠BOC=50°,再由角平分线的定义计算∠BOM=100°,根据角的差可得∠BON的度数;(2)同理先计算∠MOB=2∠BOC=2(90°﹣α)=180°﹣2α,再根据∠BON=∠MON ﹣∠BOM列等式即可;(3)同理可得∠MOB=180°﹣2α,再根据∠BON+∠MON=∠BOM列等式即可.【解答】(10分)解:(1)如图1,∵∠AOC与∠BOC互余,∴∠AOC+∠BOC=90°,∵∠AOC=40°,∴∠BOC=50°,∵OC平分∠MOB,∴∠MOC=∠BOC=50°,∴∠BOM=100°,∵∠MON=40°,∴∠BON=∠MON﹣∠BOM=140°﹣100°=40°,故答案为:50,40;…(4分)(2)解:β=2α﹣40°,理由是:如图1,∵∠AOC=α,∴∠BOC=90°﹣α,∵OC平分∠MOB,∴∠MOB=2∠BOC=2(90°﹣α)=180°﹣2α,…(5分)又∵∠MON=∠BOM+∠BON,∴140°=180°﹣2α+β,即β=2α﹣40°;(7分)(3)不成立,此时此时α与β之间的数量关系为:2α+β=40°,(8分)理由是:如图2,∵∠AOC=α,∠NOB=β,∴∠BOC=90°﹣α,∵OC平分∠MOB,∴∠MOB=2∠BOC=2(90°﹣α)=180°﹣2α,∵∠BOM=∠MON+∠BON,∴180°﹣2α=140°+β,即2α+β=40°,答:不成立,此人教版七年级数学上册第4章《几何图形初步》单元检测一.选择题(共10小题,每小题3分,共30分)1.下列几何体是棱锥的是()A.B.C.D.2.下面几种几何图形中,属于平面图形的是()①三角形;②长方形;③正方体;④圆;⑤四棱锥;⑥圆柱.A.①②④B.①②③C.①②⑥D.④⑤⑥3.如图的平面图形绕直线l旋转一周,可以得到的立体图形是()A.B.C.D.4.如图,图中共有线段()A.7条B.8条C.9条D.10条5.如图,轩轩同学用剪刀沿直线将一片平整的树叶剪掉一部分,发现剩下树叶的周长比原树叶的周长要小,能正确解释这一现象的数学知识是()A.两条直线相交,只有一个交点B.两点确定一条直线C.经过一点的直线有无数条D.两点之间,线段最短6.已知线段AB=10cm,PA+PB=20cm,下列说法正确的是()A.点P不能在直线AB上B.点P只能在直线AB上C.点P只能在线段AB的延长线上D.点P不能在线段AB上7.在△ABC中,作BC边上的高,以下作图正确的是()A.B.C.D.8.如图,下列条件中不能确定的是OC是∠AOB的平分线的是()A.∠AOC=∠BOC B.∠AOB=2∠AOCC.∠AOC+∠BOC=∠AOB D.9.嘉琪同学将一副三角板按如图所示位置摆放,其中∠α与∠B一定互补的是()A.B.C.D.10.下列说法正确的个数是()(1)连接两点之间的线段叫两点间的距离;(2)木匠师傅锯木料时,一般先在模板上画出两个点,然后过这两点弹出一条墨线,这样做的原理是:两点之间,线段最短;(3)若AB=2CB,则点C是AB的中点;(4)若∠A=20°18′.∠B=20°28″,∠C=20.25°,则有∠A>∠C>∠B.A.1个B.2个C.3个D.4个二.填空题(共8小题,每小题3分,共24分)11.如图所示的三角形绕边AB所在直线旋转一周所形成的几何体是.12.如图,C是线段BD的中点,AD=3,AC=7,则AB的长等于.13.把一根木条固定在墙上,至少要钉2根钉子,这是根据.14.从重庆乘火车到北京,沿途经过5个车站方可达到北京站,那么在重庆与北京两站之间需要安排不同的车票种.15.已知∠A=110.32°,用度、分、秒表示为∠A=.16.如图,上午6:30时,时针和分针所夹锐角的度数是.17.若一个角的补角比它的余角的2倍还多70°,则这个角的度数为度.18.图中,∠1与∠2的关系是.三.解答题(共5小题,19--22每小题6分,23题5分,满分29分)19.两种规格的长方体纸盒,尺寸如下(单位:厘米)(1)做这种规格的纸盒各一个,共用料多少平方厘米?(2)做一个大纸盒与做三个小纸盒,哪个用料多?多多少平方厘米?20.如图,已知∠AOB=∠COD=90°,∠BOC=34°.(1)判断∠BOC与∠AOD之间的数量关系,并说明理由;(2)若OE平分∠AOC,求∠EOC的余角的度数.21.(1)观察思考:如图,线段AB上有两个点C、D,请分别写出以点A、B、C、D为端点的线段,并计算图中共有多少条线段;(2)模型构建:如果线段上有m个点(包括线段的两个端点),则该线段上共有多少条线段?请说明你结论的正确性;(3)拓展应用:某班45名同学在毕业后的一次聚会中,若每两人握1次手问好,那么共握多少次手?请将这个问题转化为上述模型,并直接应用上述模型的结论解决问题.22.如图,点O在直线AB上,OM平分∠AOC,ON平分∠BOC,如果∠1:∠2=1:2,求∠1的度数.23.如图,∠AOB=90°,∠COD=90°,OE平分∠BOC,若∠1=30°,求∠COE的度解:∵∠AOB=90°∴∠1与∠2互余∵∠COD=90°∴∠BOC与∠2互余∴∠1=∠()∵∠1=30°∴∠BOC=30°∵OE平分∠BOC(已知)∴∠COE=BOC∴∠COE=15°四.综合运用(共2小题,24题8分,25题9分,满分17分)24.如图,数轴上有三个点A,B,C,表示的数分别是﹣4,﹣2,3.(1)若使C、B两点的距离是A、B两点的距离的2倍,则需将点C向左移动个单位;(2)点A、B、C开始在数轴上运动,若点A以每秒a个单位长度的速度向左运动,同时,点B和点C分别以每秒2个单位长度和5个单位长度的速度向右运动,设运动时间为t秒:①点A、B、C表示的数分别是、、(用含a、t的代数式表示);②若点B与点C之间的距离表示为d1,点A与点B之间的距离表示为d2,当a为何值时,5d1﹣3d2的值不会随着时间t的变化而改变,并求此时5d1﹣3d225.以直线AB上点O为端点作射线OC,使∠BOC=60°,将直角△DOE的直角顶点放在点O处.(1)如图1,若直角△DOE的边OD放在射线OB上,则∠COE=;(2)如图2,将直角△DOE绕点O按逆时针方向转动,使得OE平分∠AOC,说明OD所在射线是∠BOC的平分线;(3)如图3,将直角△DOE绕点O按逆时针方向转动,使得∠COD=15∠AOE.求∠BOD的度数.2018—2019学年人教版七年级数学上册第4章《几何图形初步》单元检测参考简答一.选择题(共10小题)1.D.2.A.3.B.4.B.5.D.6.D.7.D.8.C.9.D.10.A.二.填空题(共8小题)11.圆锥.12.11.13.两点确定一条直线.14.42.15.110°19′12″.16.15°.17.70.18.互余.三.解答题(共5小题)19.两种规格的长方体纸盒,尺寸如下(单位:厘米)(1)做这种规格的纸盒各一个,共用料多少平方厘米?(2)做一个大纸盒与做三个小纸盒,哪个用料多?多多少平方厘米?【解】:(1)2 (1.5a×2b+1.5a×30+2b×30)+2(ab+20a+20b)=6ab+90a+120b+2ab+40a+40b=8ab+130a+160b(平方厘米).答:共用料(8ab+130a+160b)平方厘米;(2)2 (1.5a×2b+1.5a×30+2b×30)=6ab+90a+120b(平方厘米);2(ab+20a+20b)×3=6ab+120a+120b (平方厘米);(6ab+120a+120b)﹣(6ab+90a+120b)=30a(平方厘米).答:做三个小纸盒的用料多,多30a平方厘米.20.如图,已知∠AOB=∠COD=90°,∠BOC=34°.(1)判断∠BOC与∠AOD之间的数量关系,并说明理由;(2)若OE平分∠AOC,求∠EOC的余角的度数.【解】:(1)∠BOC与∠AOD之间的数量关系为∠BOC+∠AOD=180°,因为∠AOB=∠COD=90°,∠AOB+∠BOC+∠COD+∠AOD=360°,所以∠BOC+∠AOD=360°﹣∠AOB﹣∠COD=180°,(2)因为∠AOB=90°,∠BOC=34°,所以∠AOC=∠AOB+∠BOC=124°,因为OE平分∠AOC,所以∠E0C=∠AOE=12∠AOC=62°,所以∠EOC余角的度数为90°﹣∠E0C=28°.21.(1)观察思考:如图,线段AB上有两个点C、D,请分别写出以点A、B、C、D为端点的线段,并计算图中共有多少条线段;(2)模型构建:如果线段上有m个点(包括线段的两个端点),则该线段上共有多少条线段?请说明你结论的正确性;(3)拓展应用:某班45名同学在毕业后的一次聚会中,若每两人握1次手问好,那么共握多少次手?请将这个问题转化为上述模型,并直接应用上述模型的结论解决问题.【解】:(1)∵以点A为左端点向右的线段有:线段AB、AC、AD,以点C为左端点向右的线段有线段CD、CB,以点D为左端点的线段有线段DB,∴共有3+2+1=6条线段;(2)设线段上有m个点,该线段上共有线段x条,则x=(m﹣1)+(m﹣2)+(m﹣3)+…+3+2+1,∴倒序排列有x=1+2+3+…+(m﹣3)+(m﹣2)+(m﹣1),∴2x=mm+m+…+m=m(m﹣1),∴x=12m(m﹣1);(3)把45位同学看作直线上的45个点,每两位同学之间的一握手看作为一条线段,直线上45个点所构成的线段条数就等于握手的次数,因此一共要进行12×45×(45﹣1)=990次握手.22.如图,点O在直线AB上,OM平分∠AOC,ON平分∠BOC,如果∠1:∠2=1:2,求∠1的度数.【解】:∵OM是∠AOC的平分线,ON是∠BOC的平分线,∴∠1=12∠BOC,∠2=12∠AOC,∵∠AOC+∠BOC=180°,∴∠1+∠2=90°,∵∠1:∠2=1:2,∴∠1=30°,答:∠1的度数为30°.23.如图,∠AOB=90°,∠COD=90°,OE平分∠BOC,若∠1=30°,求∠COE的度数.解:∵∠AOB=90°∴∠1与∠2互余互余定义∵∠COD=90°∴∠BOC与∠2互余∴∠1=∠BOC(同角的余角相等)∵∠1=30°∴∠BOC=30°等量代换∵OE平分∠BOC(已知)∴∠COE=BOC角平分线定义∴∠COE=15°【解】:∵∠AOB=90°∴∠1与∠2互余(互余定义)∵∠COD=90°∴∠BOC与∠2互余∴∠1=∠BOC (同角的余角相等)∵∠1=30°∴∠BOC=30°(等量代换)∵OE平分∠BOC(已知)∴∠COE=BOC (角平分线定义)∴∠COE=15°;故答案为:互余定义;BOC;同角的余角相等;等量代换;角平分线定义.四.综合运用(共2小题)24.如图,数轴上有三个点A,B,C,表示的数分别是﹣4,﹣2,3.(1)若使C、B两点的距离是A、B两点的距离的2倍,则需将点C向左移动1或10个单位;(2)点A、B、C开始在数轴上运动,若点A以每秒a个单位长度的速度向左运动,同时,点B和点C分别以每秒2个单位长度和5个单位长度的速度向右运动,设运动时间为t秒:①点A、B、C表示的数分别是﹣4﹣at、﹣2+2t、3+5t(用含a、t的代数式表示);②若点B与点C之间的距离表示为d1,点A与点B之间的距离表示为d2,当a为何值时,5d1﹣3d2的值不会随着时间t的变化而改变,并求此时5d1﹣3d2的值.【解】:(1)由数轴可知:A、B两点的距离为2,B点、C点表示的数分别为:﹣2、3,所以当C、B两点的距离是A、B两点的距离的2倍时,需将点C向左移动1或10个单位;故答案是:1或10;(2)①点A表示的数是﹣4﹣at;点B表示的数是﹣2+2t;点C所表示的数是3+5t.故答案是:﹣4﹣at;﹣2+2t;3+5t;②∵点A以每秒a个单位的速度向左运动,点B和点C分别以每秒2个单位长度和5个单位长度的速度向右运动,∴d1=3t+5,d2=(a+2)t+2,∴5d1﹣3d2=5(3t+5)﹣3[(a+2)t+2]=(9﹣3a)t+19,9﹣3a=0,解得a=3,故当a为3时,5d1﹣3d2的值不会随着时间t的变化而改变,此时5d1﹣3d2的值为19.25.以直线AB上点O为端点作射线OC,使∠BOC=60°,将直角△DOE的直角顶点放在点O处.(1)如图1,若直角△DOE的边OD放在射线OB上,则∠COE=30°;(2)如图2,将直角△DOE绕点O按逆时针方向转动,使得OE平分∠AOC,说明OD所在射线是∠BOC的平分线;(3)如图3,将直角△DOE绕点O按逆时针方向转动,使得∠COD=15∠AOE.求∠BOD的度数.【解】:(1)∵∠BOE=∠COE+∠COB=90°,又∵∠COB=60°,∴∠COE=30°,故答案为:30°;(2)∵OE平分∠AOC,∴∠COE=∠AOE=12 COA,∵∠EOD=90人教版七年级数学上册第四章几何图形初步单元测试A卷(1) 一.选择题(共10小题)1.如图,下列水平放置的几何体中,左视图不是矩形的是()A.B.C.D.2.如图所示正三棱柱的主视图是()A.B.C.D.3.如图是一根空心方管,它的俯视图是()A.B.C.D.4.如图所示的几何体是由七个相同的小正方体组合而成的,它的俯视图是()A.B.C.D.5.由一些相同的小立方块搭成的几何体的三视图如图所示,则搭成该几何体的小立方块有()A.3块B.4块C.6块D.9块6.某物体三视图如图,则该物体形状可能是()A.长方体B.圆锥体C.立方体D.圆柱体7.某同学画出了如图所示的几何体的三种视图,其中正确的是()A.①②B.①③C.②③D.②8.圆形的物体在太阳光的投影下是()A.圆形B.椭圆形C.线段D.以上都有可能9.下列四幅图形中,表示两棵圣诞树在同一时刻阳光下的影子的图形可能是()A.B.C.D.10.平行投影中的光线是()A.平行的B.聚成一点的C.不平行的D.向四面八方发散的二.填空题(共4小题)11.三视图都是同一平面图形的几何体有、.(写两种即可)12.一个几何体的主视图和俯视图如图所示,若这个几何体最多有m个小正方体组成,最少有n个小正方体组成,m+n=.13.一个几何体是由一些大小相同的小立方块摆成的,如下图是从正面、左面、上面看这个几何体得到的平面图形,那么组成这个几何体所用的小立方块的个数是.14.如图,是由一些大小相同的小正方体组合成的简单几何体(1)图中有块小正方体;(2)该几何体的主视图如图所示,请在下面方格纸中分别画出它的左视图和俯视图.三.解答题(共9小题)15.分别画出图中几何体的主视图、左视图、俯视图.16.画出如图所示的几何体的主视图、左视图、俯视图:17.如图是某工件的三视图,求此工件的全面积和体积.18.如图是由几个小正方体所搭成的几何体上面看到的图形,小正方形中的数字表示在该位置的小正方体的个数,请你画出从正面、左面可以看到的图形.19.一个几何体由几个大小相同的小立方块搭成,从上面看这个几何体,看到的形状如图所示,其中小正方形中的数字表示在该位置的小立方块的个数,请画出从正面,左侧面看到的几何体的形状图.20.如图是小强用八块相同的小立方体搭成的一个几何体,从正面、左面和上面观察这个几何体,请你在下面相应的位置分别画出你所看到的几何体的形状图(在答题卡上画完图后请用黑色签字笔描图)21.有两根木棒AB,CD在同一平面上直立着,其中AB这根木棒在太阳光下的影子BE如图所示,请你在图中画出这时木棒CD的影子.22.如图,阳光通过窗口照到教室内,竖直窗框在地面上留下2.1m长的影子如图所示,已知窗框的影子DE到窗下墙脚的距离CE=3.9m,窗口底边离地面的距离BC=1.2m,试求窗口的高度.(即AB的值)23.如图,在路灯下,小明的身高如图中线段AB所示,他在地面上的影子如图中线段AC所示,小亮的身高如图中线段FG所示,路灯灯泡在线段DE上.(1)请你确定灯泡所在的位置,并画出小亮在灯光下形成的影子.(2)如果小明的身高AB=1.6m,他的影子长AC=1.4m,且他到路灯的距离AD =2.1m,求灯泡的高.2019年春人教版九年级下册数学《第29章投影与视图》单元测试题参考答案与试题解析一.选择题(共10小题)1.如图,下列水平放置的几何体中,左视图不是矩形的是()A.B.C.D.【分析】根据左视图是从左面看到的视图,对各选项分析判断后利用排除法求解.【解答】解:A、圆柱的左视图是矩形,故本选项错误;B、圆锥的左视图是等腰三角形,故本选项正确;C、三棱柱的左视图是矩形,故本选项错误;D、长方体的左视图是矩形,故本选项错误.故选:B.【点评】本题考查了简单几何体的三视图,熟练掌握常见几何体的三视图是解题的关键.2.如图所示正三棱柱的主视图是()A.B.C.D.【分析】找到从正面看所得到的图形即可.【解答】解:如图所示正三棱柱的主视图是平行排列的两个矩形,故选B.【点评】本题考查了三视图的知识,主视图是从物体的正面看得到的视图.注意本题不要误选C.3.如图是一根空心方管,它的俯视图是()A.B.C.D.【分析】俯视图是从物体的上面看,所得到的图形;注意看到的用实线表示,看不到的用虚线表示.【解答】解:如图所示:俯视图应该是.故选:B.【点评】本题考查了作图﹣三视图,注意看到的用实线表示,看不到的用虚线表示.画物体的三视图的口诀为:主、俯:长对正;主、左:高平齐;俯、左:宽相等4.如图所示的几何体是由七个相同的小正方体组合而成的,它的俯视图是()A.B.C.D.【分析】根据俯视图的定义即可判断.【解答】解:如图所示的几何体的俯视图是D.故选:D.【点评】本题考查几何体的三视图,理解三视图的定义是正确解答的关键.5.由一些相同的小立方块搭成的几何体的三视图如图所示,则搭成该几何体的小立方块有()A.3块B.4块C.6块D.9块【分析】从俯视图中可以看出最底层小正方体的个数及形状,从主视图和左视图可以看出每一层小正方体的层数和个数,从而算出总的个数.【解答】解:从俯视图可得最底层有3个小正方体,由主视图可得有2层上面一层是1个小正方体,下面有2个小正方体,从左视图上看,后面一层是2个小正方体,前面有1个小正方体,所以此几何体共有四个正方体.故选:B.【点评】此题主要考查了由三视图想象立体图形.做这类题时要借助三种视图表示物体的特点,从主视图上弄清物体的上下和左右形状;从俯视图上弄清物体的左右和前后形状;从左视图上弄清楚物体的上下和前后形状,综合分析,合理猜想,结合生活经验描绘出草图后,再检验是否符合题意.6.某物体三视图如图,则该物体形状可能是()A.长方体B.圆锥体C.立方体D.圆柱体【分析】由主视图和左视图确定是柱体,再由俯视图确定具体形状.【解答】解:根据主视图和左视图为矩形判断出是柱体,根据俯视图是圆形可判断出这个几何体应该是圆柱,故选:D.【点评】主视图和左视图的大致轮廓为长方形的几何体为柱体,俯视图为圆形就是圆柱.7.某同学画出了如图所示的几何体的三种视图,其中正确的是()A.①②B.①③C.②③D.②【分析】从正面看到的图叫做主视图,从左面看到的图叫做左视图,从上面看到的图叫做俯视图.依此即可解题.【解答】解:根据几何体的摆放位置,主视图和俯视图正确.左视图中间有一条横线,故左视图不正确.故选:B.【点评】本题考查了三种视图及它的画法,看得到的棱画实线,看不到的棱画虚线.8.圆形的物体在太阳光的投影下是()A.圆形B.椭圆形C.线段D.以上都有可能【分析】在不同时刻,同一物体的影子的方向和大小可能不同,不同时刻物体在太阳光下的影子的大小在变,方向也在改变,依此进行分析.【解答】解:根据题意:同一物体的影子的方向和大小可能不同,不同时刻物体在太阳光下的影子的大小在变.故选:D.【点评】本题考查了平行投影特点,不同位置,不同时间,影子的大小、形状可能不同,具体形状应按照物体的外形即光线情况而定.9.下列四幅图形中,表示两棵圣诞树在同一时刻阳光下的影子的图形可能是()A.B.C.D.【分析】平行投影特点:在同一时刻,不同物体的影子同向,且不同物体的物高和影长成比例.【解答】解:A、影子的方向不相同,错误;B、影子平行,且较高的树的影子长度大于较低的树的影子,正确;C、相同树高与影子是成正比的,较高的树的影子长度小于较低的树的影子,错误;D、影子的方向不相同,错误;故选:B.【点评】本题考查了平行投影,灵活运用平行投影的性质是解题关键.10.平行投影中的光线是()A.平行的B.聚成一点的C.不平行的D.向四面八方发散的【分析】解答本题关键是要理解平行投影,平行投影中的光线是平行的,如阳光等.【解答】解:平行投影中的光线是平行的.故选:A.【点评】本题考查平行投影的定义,需注意与中心投影定义的区别.二.填空题(共4小题)11.三视图都是同一平面图形的几何体有正方体、球体.(写两种即可)【分析】三视图都相同的几何体是:正方体,三视图均为正方形;球体,三视图均为圆.【解答】解:依题意,主视图、左视图以及俯视图都相同的几何体是正方体或球体.故答案为:正方体、球体.【点评】本题考查由三视图确定几何体的形状,主要考查学生空间想象能力和对立体图形的认识.12.一个几何体的主视图和俯视图如图所示,若这个几何体最多有m个小正方体组成,最少有n个小正方体组成,m+n=16.【分析】这种题需要空间想象能力,可以想象这样的小立方体搭了左中右三排,但最左排可以为4~6个小正方体,依此求出m、n的值,从而求得m+n的值.【解答】解:最少需要7块如图(1),最多需要9块如图(2)故m=9,n=7,则m+n=16.【点评】本题灵活考查了三种视图之间的关系以及视图和实物之间的关系,同时还考查了对图形的想象力.13.一个几何体是由一些大小相同的小立方块摆成的,如下图是从正面、左面、上面看这个几何体得到的平面图形,那么组成这个几何体所用的小立方块的个数是8.【分析】从俯视图中可以看出最底层小正方体的个数及形状,从主视图可以看出每一层小正方体的层数和个数,从左视图可看出每一行小正方体的层数和个数,从而算出总的个数.【解答】解:由俯视图易得最底层小正方体的个数为6,由其他视图可知第二行第2列和第三列第二层各有一个正方体,那么共有6+2=8个正方体.【点评】考查学生对三视图掌握程度和灵活运用能力,同时也体现了对空间想象能力方面的考查.如果掌握口诀“俯视图打地基,正视图疯狂盖,左视图拆违章”就更容易得到答案.14.如图,是由一些大小相同的小正方体组合成的简单几何体(1)图中有11块小正方体;(2)该几何体的主视图如图所示,请在下面方格纸中分别画出它的左视图和俯视图.【分析】(1)根据如图所示即可得出图中小正方体的个数;(2)读图可得,左视图有2列,每列小正方形数目分别为2,2;俯视图有4列,每行小正方形数目分别为2,2,1,1.【解答】解:(1)根据如图所示即可数出有11块小正方体;(2)如图所示;左视图,俯视图分别如下图:故答案为:(1)11.【点评】此题主要考查实物体的三视图.在画图时一定要将物体的边缘、棱、顶点都体现出来,看得见的轮廓线都画成实线,看不见的画成虚线,不能漏掉.本题画几何体的三视图时应注意小正方形的数目及位置.三.解答题(共9小题)15.分别画出图中几何体的主视图、左视图、俯视图.。
2018年秋人教版七年级上册数学《第四章几何图形初步》单元测试卷注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上第I卷(选择题)一、选择题,哪种物体最接近于圆柱( )A. B. C. D.2.下列几何体的截面分别是()A. 圆、平行四边形、三角形、圆B. 圆、长方形、三角形、圆C. 圆、长方形、长方形、三角形D. 圆、长方形、三角形、三角形3.如图是我国南海地区图,图中的点分别代表三亚市,永兴岛,黄岩岛,渚碧礁,弹丸礁和曾母暗沙,该地区图上两个点之间距离最短的是()A. 三亚﹣﹣永兴岛B. 永兴岛﹣﹣黄岩岛C. 黄岩岛﹣﹣弹丸礁D. 渚碧礁﹣﹣曾母暗山4.如图,图中共有线段()A. 7条B. 8条C. 9条D. 10条5.如图,C 为线段 AB 上一点,D 为线段 BC 的中点,AB=20,AD=14,则 AC的长为( )A. 10B. 8C. 7D. 66.如图,∠AOB 是平角,∠AOC=50°,∠BOD =60°,OM 平分∠BOD,ON 平分∠AOC,则∠MON 的度数是()A. 135°B. 155°C. 125°D. 145°7.将长方形纸片按如图所示的方式折叠,BC、BD为折痕.若∠ABC=25°,则∠DBE的度数为()A. 50°B. 65°C. 45°D. 60°8.将一块长为a米,宽为b米的矩形空地建成一个矩形花园,要求在花园中修两条入口宽均为x米的小道,其中一条小道两边分别经过矩形一组对角顶点,剩余的地方种植花草,现有从左至右三种设计方案如图所示,种植花草的面积分别为S1,S2和S3,则它们的大小关系为()A. S3<S1<S2B. S1<S2<S3C. S2<S1<S3D. S1=S2=S39.下列七个图形中是正方体的平面展开图的有()A. 1个B. 2个C. 3个D. 4个10.如图是一个棱长为1的正方体的展开图,点A ,B ,C 是展开后小正方形的顶点,连接AB ,BC ,则∠ABC 的大小是( )A. 60°B. 50°C. 45°D. 30°第II 卷(非选择题)二、解答题(题型注释)6.96×108m ,太阳的体积大约是多少?(球的体积的计算公式是V=43πr 3,π取3.14)12.已知一个长方体的长为1cm ,宽为1cm ,高为2cm ,请求出: (1)长方体有 条棱, 个面; (2)长方体所有棱长的和; (3)长方体的表面积.13.如图所示,若剪下来折叠能拼成一个正方体盒子,请你想象一下,能否在空格中填上适当的数,使相对的两个面上的数互为相反数?14.如图,点 B 、C 把线段 MN 分成三部分,其比是 MB :BC :CN=2:3:4,P 是 MN 的中点,且 MN=18cm ,求 PC 的长.15.如图,∠AOB 是平角,∠DOE=90°,OC 平分∠DOB . (1)若∠AOE=32°,求∠BOC 的度数;(2)若OD 是∠AOC 的角平分线,求∠AOE 的度数.16.以直线AB 上一点O 为端点作射线 OC ,使∠BOC =60°,将一个直角三角形的直角顶点放在点O 处.(注:∠DOE =90°)(1)如图1,若直角三角板DOE 的一边OD 放在射线OB 上,则∠COE = °;(2)如图2,将直角三角板DOE 绕点O 逆时针方向转动到某个位置,若OE 恰好平分∠AOC ,请说明OD 所在射线是∠BOC 的平分线;(3)如图3,将三角板DOE 绕点O 逆时针转动到某个位置时,若恰好∠COD = 15∠AOE ,求∠BOD 的度数?17.探索性问题:已知A ,B 在数轴上分别表示m ,n . (1)填表:(2)若A ,B 两点的距离为d ,则d 与m ,n 有何数量关系.(3)在数轴上整数点P 到4和﹣5的距离之和为9,求出满足条件的所有这些整数的和.三、填空题18.下面的几何体中,属于柱体的有______个.19.如图,是正方体的一个平面展开图,在这个正方体中,与“爱”字所在面相对的面上的汉字是______20.如果线段AB=10,点C、D在直线AB上,BC=6,D是AC的中点,则A、D两点间的距离是______.21.已知线段MN=16cm,点P为任意一点,那么线段MP与NP和的最小值是_____cm.22.如图,若∠3:∠2=2:5,且∠2﹣∠1=12°,∠3等于_____.23.如图,点B、O、D在同一直线上,且OB平分∠AOC,若∠COD=150°,则∠AOC的度数是_____.24.如图,一纸片沿直线AB折成的V字形图案,已知图中∠1=62°,则∠2的度数=_______° .25.如图,A、O、B在一直线上,∠1=∠2,则与∠1互补的角是_____.若∠1=28°32′35″,则∠1的补角=_____.参考答案1.A【解析】1.根据圆柱的特点:圆柱由一个曲面,两个平面(底面)围成的;圆柱两个面之间距离叫做高,圆柱的侧面打开,得到一个长方形,这个长方形的长就是圆柱的底周长观察所给图形,观察图形用排除法可做出判断.A选项:有一个曲面,两个平面围成的,最接近圆柱,故本选项正确;B选项:有两个平面,但圆柱的母线没有垂直于底面,故本选项错误;C选项:两个底面的大小不同,故本选项错误;D选项:有两个平面,有两个曲面,故本选项错误;故选:A2.B【解析】2.根据平面图形得出截面.由图可知,下列几何体的截面分别是:圆、长方形、三角形、圆.故答案选B.3.A【解析】3.根据两点直线距离最短可在图中看出三亚-永兴岛之间距离最短.由图可得,两个点之间距离最短的是三亚-永兴岛.故答案选A.4.B【解析】4.根据线段的定义找出所有的线段即可解答.由图可知,线段有AD,DB,BC,CE,EA,DE,AB,AC,一共八条,所以答案选择B.5.B【解析】5.先根据AB=20,AD=14求出BD的长,再由D为线段BC的中点求出BC的长;由已知AB=20得出AC的长,对比四个选项即可确定出正确答案.∵AB=20,AD=14, ∴BD=AB-AD=20-14=6, ∵D 为线段BC 的中点, ∴BC=2BD=12, ∴AC=AB-BC=20-12=8. 故选:B . 6.C【解析】6.根据条件可求出∠COD 的度数,利用角平分线的性质可求出∠MOC 与∠DON 的度数,最后根据∠MON=∠MOC+∠COD+∠DON 即可求出答案. 解:∵∠AOC+∠COD+∠BOD=180°, ∴∠COD=180°-∠AOC-∠COD=70°,∵OM 、ON 分别是∠AOC 、∠BOD 的平分线, ∴∠MOC=12∠AOC=25°,∠DON=12∠BOD=30°, ∴∠MON=∠MOC+∠COD+∠DON=125°, 故选:C . 7.B【解析】7.根据折叠的性质得到∠ABC =∠A ′BC ,∠EBD =∠E ′BD ,再根据平角的定义有∠ABC +∠A ′BC +∠EBD +∠E ′BD =180°,易得∠A ′BC +∠E ′BD =180°×12=90°,则∠CBD =90°,再根据平角的定义即可求出∠DBE 的值.∵一张长方形纸片沿BC 、BD 折叠,∴∠ABC =∠A ′BC ,∠EBD =∠E ′BD ,而∠ABC +∠A ′BC +∠EBD +∠E ′BD =180°,∴∠A ′BC +∠E ′BD =180°×12=90°,即∠CBD =90°. ∵∠ABE =180°,∴∠DBE =180°-∠ABC -∠CBD =180°-25°-90°=65°. 故选B . 8.C【解析】8.利用分割图形法找出S 1、S 2、S 3的面积,再根据平行四边形的面积公式找出S 4、S 5、S 6的面积,由此即可得出结论.∵矩形的长为a 米,宽为b 米,小路的宽为x 米, ∴S 1=ab−(a+b)x+S 4;S 2=ab−(a+b)x+S 5;S 3=ab−(a+b)x+S 6.S 4=x ⋅x sin60°= 2√33x 2,S 5=x 2,S 6=x ⋅ xsin30°=2x 2, ∴S 2<S 1<S 3. 故答案选C. 9.B【解析】9.由平面图形的折叠及正方体的表面展开图的特点进行判断即可. 解:常见立方体的展开图可以总结为11幅基础图形,如下,据此可知是正方体的平面展开图的有:故选:B . 10.C【解析】10.连接AC ,由图可知∠ACB=90°,简单计算即可发现AC=BC. 解:连接AC ,由图可知∠ACB=90°,由勾股定理可得AC=BC=√5,则△ACB 是一个直角等腰三角形,则∠ABC=45°, 故选择C. 11.1.41×1027m 3.【解析】11.根据已知条件太阳的半径,然后根据球体的体积公式即能得出答案. 解:当r=6.96×108时,V=πr 3≈×3.14×(6.96×108)3≈1.41×1027m 3,答:太阳的体积大约是1.41×1027m3.12.(1)12,6;(2)16(cm);(3)长方体的表面积是10cm2.【解析】12.(1)根据长方体的性质可得出;(2)长方体的棱长总和=4(长+宽+高);(3)长方体的表面积=2(长×宽+长×高+宽×高),把相关数字代入即可.解:(1)长方体有12条棱,6个面;故答案为:12,6;(2)(1+1+2)×4,,=4×4,=16(cm).故长方体所有棱长的和是16cm;(3)(1×1+1×2+1×2)×2,=(1+2+2)×2,,=5×2,=10(cm2).故长方体的表面积是10cm2.13.A=﹣2,B=﹣3,C=﹣4.【解析】13.两数互为相反数,和为0.本题应对图形进行分析,可知A对应-2,B对应-3,C对应-4,由此可得结论.解:依题意得:A=﹣2,B=﹣3,C=﹣4.14.PC=1.【解析】14.根据比例设MB=2x,BC=3x,CN=4x,再根据线段中点的定义表示出MP并求出x,再根据PC= MC﹣MP列方程代入x的值,从而得解.解:设MB=2x,则BC=3x,CN=4x,因为P是MN中点,所以MP=MN=×(2x+3x+4x)=x=9.解得x=2,∴PC=MC ﹣MP=2x+3x ﹣x=0.5x=1.15.(1)61°;(2)30°.【解析】15.(1)求出∠AOD 和∠BOD ,由OC 平分∠DOB ,求出∠BOC ;(2)根据OC 平分∠BOD ,OD 平分∠AOC 得出∠BOC=∠DOC=∠AOD ,求出∠AOD 即可得出∠AOE.解:(1)∠AOD=∠DOE ﹣∠AOE=90°﹣32°=58°,,∠BOD=∠AOB ﹣∠AOD=180°﹣58°=122°,又OC 平分∠BOD ,所以:∠BOC=∠BOD=×122°=61°;(2)因为OC 平分∠BOD,OD 平分∠AOC ,所以∠BOC=∠DOC=∠AOD ,又∠BOC+∠DOC+∠AOD=180°,所以∠AOD=×180°=60°,所以∠AOE=∠DOE ﹣∠AOD=90°﹣60°=30°.16.(1)30;(2)答案见解析;(3)65°或52.5°.【解析】16.试题分析:(1)根据图形得出∠COE=∠BOE-∠COB ,代入求出即可;(2)根据角平分线定义求出∠COE=∠AOE=12∠COA ,再根据∠AOE+∠DOB=90°,∠COE+∠COD=90°,可得∠COD=∠DOB ,从而问题得证;(3)设∠COD=x°,则∠AOE=5x°,根据题意则可得6x=30或5x +90﹣x=120,解方程即可得.试题解析:(1)∵∠BOE=∠COE+∠COB=90°,又∵∠COB=60°,∴∠COE=∠BOE-∠COB=30°,故答案为:30;(2)∵OE 平分∠AOC ,∴∠COE=∠AOE=12∠COA , ∵∠EOD=90°,∴∠AOE+∠DOB=90°,∠COE+∠COD=90°,∴∠COD=∠DOB ,∴OD所在射线是∠BOC的平分线;(3)设∠COD=x°,则∠AOE=5x°,∵∠DOE=90°,∠BOC=60°,∴6x=30或5x+90﹣x=120,∴x=5或7.5,即∠COD=65°或37.5°,∴∠BOD=65°或52.5°.17.(1)3,4,12,1,92,2;(2)d=|m﹣n|;(3)﹣5.【解析】17.(1)根据在数轴求距离的方法,让右边的点表示的数减去左边的点的表示的数,依次计算可得答案.(2)数轴上两点间的距离d等于表示两点数之差的绝对值,即d=|m-n|.(3)设P点为x,根据(2)得出的结论列出含绝对值的一元一次方程,利用绝对值的代数意义化简即可求出x的值.解:(1)5﹣2=3;0﹣(﹣4)=4;6﹣(﹣6)=12;﹣4﹣(﹣5)=1;2﹣(﹣90)=92;﹣2.5﹣(﹣4.5)=2;故答案为:3,4,12,1,92,2;(2)∵数轴上两点间的距离d等于表示两点数之差的绝对值,∴d=|m﹣n|.(3)设整数点P表示的数为x,∵点P到4和﹣5的距离之和为9,∴|x﹣4|+|x﹣(﹣5)|=9,即x﹣4+x+5=9,﹣(x﹣4)+x+5=9(﹣5和4两点间所有的整数点均成立),x﹣4﹣(x+5)=9(舍去)或﹣(x﹣4)﹣(x+5)=9,解得x=﹣5,﹣4,﹣3,﹣2,﹣1,0,1,2,3,4;∴有这些整数的和为4+3+2+1+0﹣1﹣2﹣3﹣4﹣5=﹣5.18.4【解析】18.解这类题首先要明确柱体的概念,然后根据图示进行解答.柱体分为圆柱和棱柱,所以柱体有:第1、3、5、6,故答案为:4个.19.中.【解析】19.正方体的平面展开图中,相对面的特点是之间一定相隔一个正方形,据此作答. 根据正方形的平面展开图,观察可知,爱与中相对.20.2或8【解析】20.由于线段BC 与线段AB 的位置关系不能确定,故应分C 在线段AB 内和AB 外两种情况进行解答.解:①如图1所示,∵AB=10,BC=6,∴AC=AB-BC=10-6=4,∵D 是线段AC 的中点,∴AD=12AC=12×4=2;②如图2所示,∵AB=10,BC=6,∴AC=AB+BC=10+6=16,∵D 是线段AC 的中点,∴AD=12AC=12×16=8.故答案为:2或8.21.16【解析】21. 分两种情况:①点P 在线段MN 上;②点P 在线段MN 外;然后利用两点之间距离性质,结合图形得出即可.①点P 在线段MN 上,MP+NP=MN=16cm ,②点P 在线段MN 外,当点P 在线段MN 的上部时,由两点之间线段最短可知:MP+NP > MN =16,当点P 在线段MN 的延长线上时,MP+NP > MN =16.综上所述:线段MP 和NP 的长度的和的最小值是16,此时点P 的位置在线段MN 上, 故答案为:16.22.32°【解析】22.根据比例可设∠3=2x,∠2=5x,利用方程和平角解答即可.∵∠3:∠2=2:5,设∠3=2x,∠2=5x,∵∠1+∠2+∠3=180°,∠2-∠1=12°,可得:5x-12°+5x+2x=180°,解得:x=16,所以∠3=2×16°=32°,故答案为:32°23.60°.【解析】23.根据互补得出∠COB,进而得出∠AOC的度数.∵点B、O、D在同一直线上,∠COD=150°,∴∠COB=180°-150°=30°,∵OB平分∠AOC,∴∠AOC=2×30°=60°,故答案为:60°.24.56°【解析】24.分析:由折叠的性质和平角的定义得出2∠1+∠2=180°,即可求出结果.详解:根据题意得:2∠1+∠2=180°,∴∠2=180°-2×62°=56°,故答案为:56°.25.∠AOD,151°27′25″【解析】25.根据互补和互余解答即可.∵∠1=∠2,∴与∠1互补的角是∠AOD.∵∠1=28°32′35″,∴∠1的补角=151°27′25″.故答案为:∠AOD;151°27′25″.。
《几何图形初步》单元检测题一、选择题1.如图所示,连接边长为1的正方形各边的中点,连接正方形的对角线,则图中共有三角形()A. 16个B. 32个C. 22个D. 44个2.如图是正方体的展开图,原正方体相对两个面上的数字和最大是()A. 7B. 8C. 9D. 103.已知OC平分∠AOB,则下列各式:①∠AOB=2∠AOC;②∠BOC=∠AOB;③∠AOC=∠BOC;④∠AOB=∠BOC.其中正确的是()A.①②B.①③C.②④D.①②③4.一个圆柱和一个圆锥底面积相等,圆柱的高是圆锥的2倍,圆锥的体积是圆柱的()A.12B.13C.14D.165.如图,点C为线段AB的中点,点D为线段AC的中点、已知AB=8,则BD=()A. 2B. 4C. 6D. 86.如图,点B,C,D依次在射线AP上,根据线段长度错误的是()A.AD=2aB.BC=a-bC.AC=a+bD.AC=2a-b7.如图,几何体是由3个大小完全一样的正方体组成的,它从左面看是()A.B.C.D.8.如图,共有线段()A. 3条B. 4条C. 5条D. 6条9.将正方体骰子(相对面上的点数分别为1和6、2和5、3和4)放置于水平桌面上,如图1.在图2中,将骰子向右翻滚90度,然后在桌面上按逆时针方向旋转90度,则完成一次变换.若骰子的初始位置为图1所示的状态,那么按上述规则连续完成32次变换后,骰子朝上一面的点数是()A. 6B. 5C. 3D. 210.时钟显示为8:30时,时针与分针所夹的角是()A. 90°B. 120°C. 75°D. 84°11.如图所示的是一座房子的平面图,组成这幅图的几何图形有()A.三角形、长方形B.三角形、正方形、长方形C.三角形、正方形、长方形、梯形D.正方形、长方形、梯形二、填空题12.钟表上4时15分钟,时针与分针的夹角的度数是.13.如图,∠AOB=60°,且∠AOC=1∠AOB,则∠BOC=度.314.如图,直线上四点A、B、C、D,看图填空:①AC=+BC ;②CD=AD- ;③AC+BD-BC= .15.一个直棱柱有18条棱,则它是一个直棱柱.三、解答题16.读下面的语句,并按照这些语句画出图形.(1)点P在直线AB上,但不在直线CD上.(2)点Q既不在直线a上,也不在直线b上.(3)直线a、b交于点A,直线b、c交于点B,直线c、a交于点C.(4)直线a、b、c两两相交.(5)直线a和b相交于点P;点A在直线a上,但在直线b外.17.如图,已知OE是∠COA的平分线,∠AOE=59°35′,∠AOB=∠COD=16°17′22″.(1)求∠BOC的度数.(2)比较∠AOC与∠BOD的大小.18.把一根长16米的钢管截成12段,再焊接成一个长方体形状的架子,若要求高与宽都是1米,那么做成这个长方体形状的架子体积有多大?19.女主人把一只山羊带入牧场,在彼此相距10米处打下两个小木桩,在小木桩之间系紧一条带一个环的绳子,环能从一根小木桩滑向另一根小木桩,用一条5米长的绳子把山羊系在环上,画出山羊能够达到的点所组成的图形.20.有一个小立方块,每一个面上分别写着数字1、2、3、4、5、6,有三个人分别从不同角度观察的结果如图所示,问这个小立方块相对的两个面上的数字分别是多少?答案解析1.【答案】D【解析】根据图形得:最小的三角形有4×4=16个; 两个三角形组成的三角形有4×4=16; 四个三角形组成的三角形有:8个; 八个三角形组成的三角形有:4个. ∴共有16+16+8+4=44个. 故选D . 2.【答案】B【解析】根据所给出的图形可得:2和6是相对的两个面;3和4是相对两个面;1和5是相对的两个面,则原正方体相对两个面上的数字和最大值是8; 故选B . 3.【答案】B【解析】如图:OC 平分∠AOB ,可得∠AOB =2∠AOC =2∠BOC ;∠AOC =∠BOC =12∠AOB .正确的是①③. 故选B .4.【答案】D【解析】V 圆柱=Sh ,V 圆锥=13Sh ,∵一个圆柱和一个圆锥底面积相等,圆柱的高是圆锥的2倍, ∴V 圆柱=S ·(2h ),V 圆锥=13Sh , ∴圆锥的体积是圆柱:==16. 故选D . 5.【答案】C【解析】∵点C 为线段AB 的中点,AB =8, 则BC=AC =4.点D 为线段AC 的中点,则AD=DC =2. ∴BD=CD+BC =6. 故选C . 6.【答案】C【解析】∵由图可知,AB=BD=a ,CD=b , ∴AD=AB+BD =2a ,故A 正确; BC=BD-CD=a-b ,故B 正确;AC=AB+BC=AB+BD-CD=a+a-b =2a-b ,故C 错误,D 正确. 故选C . 7.【答案】D 【解析】 8.【答案】D【解析】线段AB 、AC 、AD 、BC 、BD 、CD 共六条, 也可以根据公式计算,4×32=6,故选D .9.【答案】A【解析】先向右翻滚,然后再逆时针旋转叫做一次变换,那么连续3次变换是一个循环.本题先要找出3次变换是一个循环,然后再求32被3整除后余数是2,从而确定第1次变换的第2步变换. 解:根据题意可知连续3次变换是一循环. 因为32÷3=10…2,所以是第2次变换后的图形. 故选A . 10.【答案】C【解析】由于钟面被分成12大格,每格为30°,8点30分时, 钟面上时针指向数字8与9的中间,分针指向数字6, 所以时针与分针所成的角等于2×30°+12×30°=75°. 故选C . 11.【答案】C【解析】图中的几何图形有:三角形,正方形,矩形以及梯形. 故选C .12.【答案】(752)°【解析】4时15分,时针与分针相距1+1560=54份,4时15分钟,时针与分针的夹角的度数30×54=(752)°, 故答案为:(752)°. 13.【答案】40【解析】∵∠AOB =60°, ∠AOC =13∠AOB =20°,∠BOC =∠AOB -∠AOC =60°-20°=40°. 故答案为:40. 14.【答案】AB ;AC ;AD 【解析】 15.【答案】六【解析】根据一个n 直棱柱有3n 条棱,进行填空即可. 解:一个直棱柱有18条棱,则它是直六棱柱. 16.【答案】解:(1)如图所示:(2)如图所示:(3)如图所示:(4)如图所示:(5)如图所示:【解析】(1)根据点在不在直线的作图进行解答即可;(2)根据点在不在直线的作图进行解答即可;(3)根据直线相交的作图进行解答即可;(4)根据直线的相交进行作图即可;(5)根据直线的相交和点在直线的作图解答.17.【答案】解:(1)∵OE是∠COA的平分线,∠AOE=59°35′,∴∠AOC=2∠AOE=119°10′,∵∠AOB=16°17′22″,∴∠BOC=∠AOC-∠AOB=102°52′38″;(2)∠AOC=∠BOD,理由如下:∵∠BOC=102°52′38″,∠COD=16°17′22″,∴∠BOD=∠BOC+∠COD=119°10′,∵∠AOC=119°10′,∴∠AOC=∠BOD.【解析】(1)根据角平分线定义求出∠AOC,根据∠BOC=∠AOC-∠AOB代入求出即可;(2)∠AOC=∠BOD,理由是根据∠BOD=∠BOC+∠COD求出∠BOD=119°10′,即可得出答案.18.【答案】解:长方体的长是(16-8)÷4=2,长方体的体积是2×1×1=2(m3),答:做成这个长方体形状的架子体积是2 m3.【解析】根据长方体的宽、高,可得长方体的长,根据长方体的体积公式,可得答案.19.【答案】解:根据题意可画出图形:【解析】分三种情况:①在左点往左运动时形成半圆,②在右点往右运动时形成半圆,③在两连心线上运动时形成一条直线.20.【答案】解:从3个小立方体上的数可知,与写有数字1的面相邻的面上数字是2,3,4,6,所以数字1面对数字5面,同理,立方体面上数字3对6.故立方体面上数字2对4.【解析】由图一和图二可看出1的相对面是5;再由图二和图三可看出3的相对面是6,从而2的相对面是4.。
七年级数学上册第四单元几何图形初步测试卷班级座号姓名分数一、选择题(每题 3 分,共 30 分)1. 如图是一个小正方体的睁开图,把睁开图折叠成小正方体后,有“建” 字一面的相对面建上的字是()A.和B.谐C.社D.会设和谐社会第1题图2.下边左侧是用八块完整同样的小正方体搭成的几何体,从上边看该几何体获得的图是()A B C D3. 如图,四个图形是由立体图形睁开获得的,相应的立体图形按序是()A.正方体、圆柱、三棱柱、圆锥B.正方体、圆锥、三棱柱、圆柱C.正方体、圆柱、三棱锥、圆锥第3题图D.正方体、圆柱、四棱柱、圆锥4. 如图,关于直线AB,线段 CD,射线 EF,此中能订交的是()CBB A B D AAFC D E EEFFA B C D5. 以下说法中正确的选项是()A. 画一条 3 厘米长的射线B.画一条 3 厘米长的直线C. 画一条 5 厘米长的线段D.在线段、射线、直线中直线最长6. 如图,将一副三角尺按不一样地点摆放,摆放方式中∠与∠互余的是()ααβββαβαA B C D7.点 E 在线段 CD上,下边四个等式① CE=DE;② DE=1CD;③ CD= 2CE;④ CD=1DE.此中能表示 E 是线段 CD中点的有(2)2A.1 个B. 2个C. 3个D. 4个8. C 是线段 AB上一点, D 是 BC的中点,若 AB= 12cm, AC= 2cm,则 BD的长为()A. 3cmB. 4cmC. 5cmD. 6cm9. 如图是一正方体的平面睁开图,若AB= 4,则该正方体A、 B 两点间的距离为()A. 1B. 2AC. 3D. 410. 用度、分、秒表示91.34 °为()第 9题图BA. 91 ° 20/24//B. 91° 34/C. 91° 20/ 4//D. 91° 3/ 4//二、填空题(每题 4 分,共 20 分)11. 以下各图形中,不是正方体的睁开图(填序号).①②③④12.已知 M、 N 是线段 AB的三均分点, C 是 BN的中点, CM= 6cm,则 AB= cm.13.已知线段 AB,延伸 AB 到 C,使 BC= 2AB,D 为 AB的中点,若 BD= 3cm,则 AC的长为cm.14.若时针由 2 点 30分走到 2点 55分,则时针转过度,分针转过度 .15.一个角的补角是这个角的余角的 4 倍,则这个角的度数是.三、解答题:(本大题共50 分)16. (每题 5 分,共 10 分)依据以下语句,画出图形.A⑴已知四点A、 B、 C、 D.D①画直线 AB;②连结 AC、 BD,订交于点O;B C③画射线 AD、 BC,交于点P.⑵如图,已知线段a、 b,画一条线段,使它等于2a- b. (不要求写画法)ab17.计算题:(每题 5 分,共 20 分)⑴( 180°- 91° 32/ 24//)× 3⑵ 34° 25/× 3+35° 42/1还少 20°,求这个角 .⑶ 一个角的余角比它的补角的3⑷如图, AOB为直线, OC均分∠ AOD,∠ BOD= 42°,求∠ AOC的度数 .CDA O B18.(本大题 6 分)如图,是由 7 块正方体木块堆成的物体,请说出图⑴、图⑵、图⑶分别是从哪一个方向看获得的?⑴⑵⑶19.(本大题 7 分)如图是一个正方体的平面睁开图,标明了 A 字母的是正方体的正面,假如正方体的左面与右边标明的式子相等.- 2⑴求 x 的值 .3x1⑵求正方体的上边和底面的数字和.第 24题图A3x- 220.(本大题 7 分)研究题:如图,将册页一角斜折过去,使角的极点 A 落在 A/处, BC为折痕, BD均分∠A/ BE,求∠ CBD的度数 .A /C DA B E第25题图七年级数学第四单元几何图形初步测试卷参照答案一、 DBABC CCCBA二、 11、12、1213、1814、12.5° 150°15、60°三、 16、略17、(1)265°15/ 48//(2)138°57/(3)75°(4)69°18、上边下边(或正面)左面(或右边或侧边)19、(1)x=1(2)4。
人教版七年级数学上册_第四章_几何图形初步_单元检测试卷(有答案)一、 选择题 (本题共计 10 小题 ,每题 3 分 ,共计30分 , )1. 下列立体图形中是圆柱的是( )A.B.C.D. 2. 如图所示的是五星红旗上的一颗五角星,其图中所示的角 的度数为( )A. B. C. D.3. 在下列说法中,正确的有( )①比较角的大小就是比较它们角的度数大小②角的大小与边的长短无关③从角的顶点出发的一条射线把这个角分成两个角,这条射线叫做这个角的平分线 ④如果 ,则 是 的平分线.A. 个B. 个C. 个D. 个4. 比较 与 时,把它们的顶点 和边 重合,把 和 放在 的同一侧,若 ,则( )A. 落在 的内部B. 落在 的外部C. 和 重合D.不能确定 的位置 5. 如图所示,点 在直线 上, 与 互余, ,则 的度数是( )A. B. C. D.6. 下列说法错误的是( )A. ″的余角是B.点 是线段 上的点, , ,点 是线段 的中点,则线段C. ,经过顶点 引一条射线 ,且 ,则D.已知线段 , 如图,则尺规作图中,线段 7. 如图,将一个直角三角形板 的顶点 放在直线 上,若 ,则 等于( )A. B. C.D.8. 平面内有三条直线,它们的交点个数可能有( )种情形.A. B. C. D.9. 时钟钟面上的秒针绕中心旋转,下列说法正确的是()A.时针不动,分针旋转了B.时针不动,分针旋转了C.时针和分针都没有旋转D.分针旋转了,时针旋转角度很小10. 下列说法正确的是()A.经过一点可以作两条直线B.棱柱侧面的形状可能是一个三角形C.长方体的截面形状一定是长方形D.棱柱的每条棱长都相等二、填空题(本题共计10 小题,每题3 分,共计30分,)11. 在一平面内有四个点,过其中任意两个点画直线,可以画________条直线.12. 如图所示,从地到地有多条道路,一般地,为了省时人们会走中间的一条直路而不会走其他的路.其理由是________.13. 已知直线上有三点,,,线段,,点是线段的中点,则________.14. 工人师傅在用方砖铺地时,常常打两个木桩,然后沿着拉紧的线铺砖,这样地砖就铺得整齐,这个事实说明的原理是________.15. 如图,线段表示一根对折以后的绳子,现从处把绳子剪断,剪断后的各段绳子中最长的一段,若,则这条绳子的原长为________.16. 若与互余,则与的关系是________.17. 一天小时中,时钟的分针和时针共组合成________次平角,________次周角.18. 如图所示,已知,,且点是的中点,则________.19. 从小丽家出发,向南走,再向西走到公园;从小刚家出发,向南走,再向西走也到公园,那么小刚家在小丽家的________方向.20. 如图,可以表示成________或________,可以表示成_人教版七年级数学上册《第4章几何图形初步》单元测试一.选择题1.由一些相同的小立方块搭成的几何体的三视图如图所示,则搭成该几何体的小立方块有()A.3块B.4块C.6块D.9块2.由4个相同的小立方体搭成的几何体如图所示,则它的主视图是()A.B.C.D.3.下列图形不是正方体展开图的是()A.B.C.D.4.如图,下列不正确的几何语句是()A.直线AB与直线BA是同一条直线B.射线OA与射线OB是同一条射线C.射线OA与射线AB是同一条射线D.线段AB与线段BA是同一条线段5.若∠C=90°,∠A=25°30',则∠C﹣∠A的结果是()A.75°30'B.74°30'C.65°30'D.64°30'6.下列说法中正确的有()A.连接两点的线段叫做两点间的距离B.过一点有且只有一条直线与已知直线垂直C.对顶角相等D.线段AB的延长线与射线BA是同一条射线7.如图,AB是一条直线,OC是∠AOD的平分线,OE在∠BOD 内,∠DOE=∠BOD,∠COE=72°,则∠EOB=()A.36°B.72°C.108°D.120°8.若∠A,∠B互为补角,且∠A<∠B,则∠A的余角是()A.(∠A+∠B)B.∠B C.(∠B﹣∠A)D.∠A 9.如图,M是线段AB的中点,NB为MB的四分之一,MN=a,则AB表示为()A.B.C.2a D.1.5a10.如图,将矩形ABCD沿EM折叠,使顶点B恰好落在CD边的中点N上.若AB=6,AD=9,则五边形ABMND的周长为()A.28B.26C.25D.22二.填空题11.青青同学把一张长方形纸折了两次,如图,使点A,B都落在DG 上,折痕分别是DE,DF,则∠EDF的度数为.12.如图,已知直线AB、CD相交于点O,OE平分∠COB,若∠EOB=50°,则∠BOD的度数是.13.图1是一个正方体的展开图,该正方体从图2所示的位置依次翻到第1格、第2格、第3格、第4格、第5格,此时这个正方体朝上一面的字是.14.如图所示的图案,可以看成是由字母“Y”绕中心每次旋转度构成的.15.如图,射线OA的方向是北偏东20°,射线OB的方向是北偏西40°,OD是OB的反向延长线.若OC是∠AOD的平分线,则∠BOC=°,射线OC的方向是.16.如图所示的三角形绕边AB所在直线旋转一周所形成的几何体是.17.一个角的补角加上10°后,等于这个角的余角的3倍,则这个角=°.18.如图,以图中的A、B、C、D为端点的线段共有条.三.解答题19.如图,已知线段AB和CD的公共部分BD=AB=CD,线段AB、CD的中点E、F之间距离是10cm,求AB,CD的长.20.如图,直线AB、CD相交于O,∠BOC=70°,OE是∠BOC的角平分线,OF是OE的反向延长线.(1)求∠1,∠2,∠3的度数;(2)判断OF是否平分∠AOD,并说明理由.21.如图,已知OD平分∠AOB,射线OC在∠AOD内,∠BOC=2∠AOC,∠AOB=114°,求∠COD度数.22.有一个正方体,在它的各个面上分别标上数字1、2、3、4、5、6,甲、乙、丙三位同学从三个不同的角度去观察此正方体,观察结果如图所示:请画出正方体的一种表面展开图,(要求把数字标注在表面展开图中)23.将一张纸如图所示折叠后压平,点F在线段BC上,EF、GF为两条折痕,若∠1=57°,∠2=20°,求∠3的度数.24.如图,线段AC=6cm,线段BC=15cm,点M是AC的中点,在CB上取一点N,使得CN:NB=1:2,求MN的长.25.(14分)数学活动课上,小聪同学摆弄着自己刚购买的一套三角板,将两块直角三角板的直角顶点C叠放在一起,然后转动三角板,在转动过程中,请解决以下问题:(1)如图(1):当∠DCE=30°时,∠ACB+∠DCE=,若∠DCE为任意锐角时,你还能求出∠ACB与∠DCE的数量关系吗?若能,请求出;若不能,请说明理由.(2)当转动到图(2)情况时,∠ACB与∠DCE有怎样的数量关系?请说明理由.新人教版七年级数学上册《第4章几何图形初步》单元测试参考答案与试题解析一.选择题1.B.2.A.3.B.4.C.5.D.6.C.7.B.8.C.9.A.10.A.二.填空题11.90°.12.80°.13.我.14.36.15.120,北偏东80°.16.圆锥.17.40.18.6.三.解答题19.解:设BD=xcm,则AB=3xcm,CD=4xcm,AC=6xcm.∵点E、点F分别为AB、CD的中点,∴AE=AB=1.5xcm,CF=CD=2xcm.∴EF=AC﹣AE﹣CF=6x﹣1.5x﹣2x=2.5xcm.∵EF=10cm,∴2.5x=10,解得:x=4.∴AB=12cm,CD=16cm.20.解:(1)∵∠BOC+∠2=180°,∠BOC=70°,∴∠2=180°﹣70°=110°;∵OE是∠BOC的角平分线,∴∠1=35°.∵∠1+∠2+∠3=180°,∴∠3=180°﹣∠1﹣∠2=180°﹣35°﹣110°=35°.(2)∵∠2+∠3+∠AOF=180°,∴∠AOF=180°﹣∠2﹣∠3=180°﹣110°﹣35°=35°.∴∠AOF=∠3=35°,∴OF平分∠AOD.21.解:∵OD平分∠AOB,∴∠AOD=∠AOB=×114°=57°,∵∠BOC=2∠AOC,∠AOB=114°,∴∠AOC=∠AOB=×114°=38°,∴∠COD=∠AOD﹣∠AOC=57°﹣38°=19°.22.解:从3个小立方体上的数可知,与写有数字1的面相邻的面上数字是2,3,4,6,所以数字1面对数字5面,同理,立方体面上数字3对6.故立方体面上数字2对4.作图为:23.解:如图由折叠可知,∠EFB′=∠1=57°,∠2=20°,∠3=∠GFC′,∵∠EFB′+∠1+∠2+∠3+∠GFC′=180°,∴∠3==23°.24.解:∵M是AC的中点,∴MC=AM=AC=×6=3cm,又∵CN:NB=1:2∴CN=BC=×15=5cm,∴MN=MC+NC=3cm+5cm=8cm.25.解:(1)∠ACB+∠DCE=180°;若∠DCE为任意锐角时,∠ACB+∠DCE=180°,理由如下:∵∠ACE+∠DCE=90°,∠BCD+∠DCE=90°,∴∠ACB+∠DCE=∠ACE+∠DCE+∠BCD+∠DCE=90°+90°=180°;(2)∠ACB+∠DCE=180°.理由如下:∵∠ACD=90°=∠ECB,∠ACD+∠ECB+∠ACB+∠DCE=360°,∴∠ECD+∠ACB=360°﹣(∠ACD+∠ECB)=360°﹣180°=180°人教版七年级数学上册《第4章几何图形初步》单元测试一.选择题1.由一些相同的小立方块搭成的几何体的三视图如图所示,则搭成该几何体的小立方块有()A.3块B.4块C.6块D.9块2.由4个相同的小立方体搭成的几何体如图所示,则它的主视图是()A.B.C.D.3.下列图形不是正方体展开图的是()A.B.C.D.4.如图,下列不正确的几何语句是()A.直线AB与直线BA是同一条直线B.射线OA与射线OB是同一条射线C.射线OA与射线AB是同一条射线D.线段AB与线段BA是同一条线段5.若∠C=90°,∠A=25°30',则∠C﹣∠A的结果是()A.75°30'B.74°30'C.65°30'D.64°30'6.下列说法中正确的有()A.连接两点的线段叫做两点间的距离B.过一点有且只有一条直线与已知直线垂直C.对顶角相等D.线段AB的延长线与射线BA是同一条射线7.如图,AB是一条直线,OC是∠AOD的平分线,OE在∠BOD 内,∠DOE=∠BOD,∠COE=72°,则∠EOB=()A.36°B.72°C.108°D.120°8.若∠A,∠B互为补角,且∠A<∠B,则∠A的余角是()A.(∠A+∠B)B.∠B C.(∠B﹣∠A)D.∠A 9.如图,M是线段AB的中点,NB为MB的四分之一,MN=a,则AB表示为()A.B.C.2a D.1.5a10.如图,将矩形ABCD沿EM折叠,使顶点B恰好落在CD边的中点N上.若AB=6,AD=9,则五边形ABMND的周长为()A.28B.26C.25D.22二.填空题11.青青同学把一张长方形纸折了两次,如图,使点A,B都落在DG 上,折痕分别是DE,DF,则∠EDF的度数为.12.如图,已知直线AB、CD相交于点O,OE平分∠COB,若∠EOB=50°,则∠BOD的度数是.13.图1是一个正方体的展开图,该正方体从图2所示的位置依次翻到第1格、第2格、第3格、第4格、第5格,此时这个正方体朝上一面的字是.14.如图所示的图案,可以看成是由字母“Y”绕中心每次旋转度构成的.15.如图,射线OA的方向是北偏东20°,射线OB的方向是北偏西40°,OD是OB的反向延长线.若OC是∠AOD的平分线,则∠BOC=°,射线OC的方向是.16.如图所示的三角形绕边AB所在直线旋转一周所形成的几何体是.17.一个角的补角加上10°后,等于这个角的余角的3倍,则这个角=°.18.如图,以图中的A、B、C、D为端点的线段共有条.三.解答题19.如图,已知线段AB和CD的公共部分BD=AB=CD,线段AB、CD的中点E、F之间距离是10cm,求AB,CD的长.20.如图,直线AB、CD相交于O,∠BOC=70°,OE是∠BOC的角平分线,OF是OE的反向延长线.(1)求∠1,∠2,∠3的度数;(2)判断OF是否平分∠AOD,并说明理由.21.如图,已知OD平分∠AOB,射线OC在∠AOD内,∠BOC=2∠AOC,∠AOB=114°,求∠COD度数.22.有一个正方体,在它的各个面上分别标上数字1、2、3、4、5、6,甲、乙、丙三位同学从三个不同的角度去观察此正方体,观察结果如图所示:请画出正方体的一种表面展开图,(要求把数字标注在表面展开图中)23.将一张纸如图所示折叠后压平,点F在线段BC上,EF、GF为两条折痕,若∠1=57°,∠2=20°,求∠3的度数.24.如图,线段AC=6cm,线段BC=15cm,点M是AC的中点,在CB上取一点N,使得CN:NB=1:2,求MN的长.25.(14分)数学活动课上,小聪同学摆弄着自己刚购买的一套三角板,将两块直角三角板的直角顶点C叠放在一起,然后转动三角板,在转动过程中,请解决以下问题:(1)如图(1):当∠DCE=30°时,∠ACB+∠DCE=,若∠DCE为任意锐角时,你还能求出∠ACB与∠DCE的数量关系吗?若能,请求出;若不能,请说明理由.(2)当转动到图(2)情况时,∠ACB与∠DCE有怎样的数量关系?请说明理由.新人教版七年级数学上册《第4章几何图形初步》单元测试参考答案与试题解析一.选择题1.B.2.A.3.B.4.C.5.D.6.C.7.B.8.C.9.A.10.A.二.填空题11.90°.12.80°.13.我.14.36.15.120,北偏东80°.16.圆锥.17.40.18.6.三.解答题19.解:设BD=xcm,则AB=3xcm,CD=4xcm,AC=6xcm.∵点E、点F分别为AB、CD的中点,∴AE=AB=1.5xcm,CF=CD=2xcm.∴EF=AC﹣AE﹣CF=6x﹣1.5x﹣2x=2.5xcm.∵EF=10cm,∴2.5x=10,解得:x=4.∴AB=12cm,CD=16cm.20.解:(1)∵∠BOC+∠2=180°,∠BOC=70°,∴∠2=180°﹣70°=110°;∵OE是∠BOC的角平分线,∴∠1=35°.∵∠1+∠2+∠3=180°,∴∠3=180°﹣∠1﹣∠2=180°﹣35°﹣110°=35°.(2)∵∠2+∠3+∠AOF=180°,∴∠AOF=180°﹣∠2﹣∠3=180°﹣110°﹣35°=35°.∴∠AOF=∠3=35°,∴OF平分∠AOD.21.解:∵OD平分∠AOB,∴∠AOD=∠AOB=×114°=57°,∵∠BOC=2∠AOC,∠AOB=114°,∴∠AOC=∠AOB=×114°=38°,∴∠COD=∠AOD﹣∠AOC=57°﹣38°=19°.22.解:从3个小立方体上的数可知,与写有数字1的面相邻的面上数字是2,3,4,6,所以数字1面对数字5面,同理,立方体面上数字3对6.故立方体面上数字2对4.作图为:23.解:如图由折叠可知,∠EFB′=∠1=57°,∠2=20°,∠3=∠GFC′,∵∠EFB′+∠1+∠2+∠3+∠GFC′=180°,∴∠3==23°.24.解:∵M是AC的中点,∴MC=AM=AC=×6=3cm,又∵CN:NB=1:2∴CN=BC=×15=5cm,∴MN=MC+NC=3cm+5cm=8cm.25.解:(1)∠ACB+∠DCE=180°;若∠DCE为任意锐角时,∠ACB+∠DCE=180°,理由如下:∵∠ACE+∠DCE=90°,∠BCD+∠DCE=90°,∴∠ACB+∠DCE=∠ACE+∠DCE+∠BCD+∠DCE=90°+90°=180°;(2)∠ACB+∠DCE=180°.理由如下:∵∠ACD=90°=∠ECB,∠ACD+∠ECB+∠ACB+∠DCE=360°,∴∠ECD+∠ACB=360°﹣(∠ACD+∠ECB)=360°﹣180°=180°人教版七年级数学上册《第4章几何图形初步》单元测试一.选择题1.由一些相同的小立方块搭成的几何体的三视图如图所示,则搭成该几何体的小立方块有()A.3块B.4块C.6块D.9块2.由4个相同的小立方体搭成的几何体如图所示,则它的主视图是()A.B.C.D.3.下列图形不是正方体展开图的是()A.B.C.D.4.如图,下列不正确的几何语句是()A.直线AB与直线BA是同一条直线B.射线OA与射线OB是同一条射线C.射线OA与射线AB是同一条射线D.线段AB与线段BA是同一条线段5.若∠C=90°,∠A=25°30',则∠C﹣∠A的结果是()A.75°30'B.74°30'C.65°30'D.64°30'6.下列说法中正确的有()A.连接两点的线段叫做两点间的距离B.过一点有且只有一条直线与已知直线垂直C.对顶角相等D.线段AB的延长线与射线BA是同一条射线7.如图,AB是一条直线,OC是∠AOD的平分线,OE在∠BOD 内,∠DOE=∠BOD,∠COE=72°,则∠EOB=()A.36°B.72°C.108°D.120°8.若∠A,∠B互为补角,且∠A<∠B,则∠A的余角是()A.(∠A+∠B)B.∠B C.(∠B﹣∠A)D.∠A 9.如图,M是线段AB的中点,NB为MB的四分之一,MN=a,则AB表示为()A.B.C.2a D.1.5a10.如图,将矩形ABCD沿EM折叠,使顶点B恰好落在CD边的中点N上.若AB=6,AD=9,则五边形ABMND的周长为()A.28B.26C.25D.22二.填空题11.青青同学把一张长方形纸折了两次,如图,使点A,B都落在DG 上,折痕分别是DE,DF,则∠EDF的度数为.12.如图,已知直线AB、CD相交于点O,OE平分∠COB,若∠EOB=50°,则∠BOD的度数是.13.图1是一个正方体的展开图,该正方体从图2所示的位置依次翻到第1格、第2格、第3格、第4格、第5格,此时这个正方体朝上一面的字是.14.如图所示的图案,可以看成是由字母“Y”绕中心每次旋转度构成的.15.如图,射线OA的方向是北偏东20°,射线OB的方向是北偏西40°,OD是OB的反向延长线.若OC是∠AOD的平分线,则∠BOC=°,射线OC的方向是.16.如图所示的三角形绕边AB所在直线旋转一周所形成的几何体是.17.一个角的补角加上10°后,等于这个角的余角的3倍,则这个角=°.18.如图,以图中的A、B、C、D为端点的线段共有条.三.解答题19.如图,已知线段AB和CD的公共部分BD=AB=CD,线段AB、CD的中点E、F之间距离是10cm,求AB,CD的长.20.如图,直线AB、CD相交于O,∠BOC=70°,OE是∠BOC的角平分线,OF是OE的反向延长线.(1)求∠1,∠2,∠3的度数;(2)判断OF是否平分∠AOD,并说明理由.21.如图,已知OD平分∠AOB,射线OC在∠AOD内,∠BOC=2∠AOC,∠AOB=114°,求∠COD度数.22.有一个正方体,在它的各个面上分别标上数字1、2、3、4、5、6,甲、乙、丙三位同学从三个不同的角度去观察此正方体,观察结果如图所示:请画出正方体的一种表面展开图,(要求把数字标注在表面展开图中)23.将一张纸如图所示折叠后压平,点F在线段BC上,EF、GF为两条折痕,若∠1=57°,∠2=20°,求∠3的度数.24.如图,线段AC=6cm,线段BC=15cm,点M是AC的中点,在CB上取一点N,使得CN:NB=1:2,求MN的长.25.(14分)数学活动课上,小聪同学摆弄着自己刚购买的一套三角板,将两块直角三角板的直角顶点C叠放在一起,然后转动三角板,在转动过程中,请解决以下问题:(1)如图(1):当∠DCE=30°时,∠ACB+∠DCE=,若∠DCE为任意锐角时,你还能求出∠ACB与∠DCE的数量关系吗?若能,请求出;若不能,请说明理由.(2)当转动到图(2)情况时,∠ACB与∠DCE有怎样的数量关系?请说明理由.新人教版七年级数学上册《第4章几何图形初步》单元测试参考答案与试题解析一.选择题1.B.2.A.3.B.4.C.5.D.6.C.7.B.8.C.9.A.10.A.二.填空题11.90°.12.80°.13.我.14.36.15.120,北偏东80°.16.圆锥.17.40.18.6.三.解答题19.解:设BD=xcm,则AB=3xcm,CD=4xcm,AC=6xcm.∵点E、点F分别为AB、CD的中点,∴AE=AB=1.5xcm,CF=CD=2xcm.∴EF=AC﹣AE﹣CF=6x﹣1.5x﹣2x=2.5xcm.∵EF=10cm,∴2.5x=10,解得:x=4.∴AB=12cm,CD=16cm.20.解:(1)∵∠BOC+∠2=180°,∠BOC=70°,∴∠2=180°﹣70°=110°;∵OE是∠BOC的角平分线,∴∠1=35°.∵∠1+∠2+∠3=180°,∴∠3=180°﹣∠1﹣∠2=180°﹣35°﹣110°=35°.(2)∵∠2+∠3+∠AOF=180°,∴∠AOF=180°﹣∠2﹣∠3=180°﹣110°﹣35°=35°.∴∠AOF=∠3=35°,∴OF平分∠AOD.21.解:∵OD平分∠AOB,∴∠AOD=∠AOB=×114°=57°,∵∠BOC=2∠AOC,∠AOB=114°,∴∠AOC=∠AOB=×114°=38°,∴∠COD=∠AOD﹣∠AOC=57°﹣38°=19°.22.解:从3个小立方体上的数可知,与写有数字1的面相邻的面上数字是2,3,4,6,所以数字1面对数字5面,同理,立方体面上数字3对6.故立方体面上数字2对4.作图为:23.解:如图由折叠可知,∠EFB′=∠1=57°,∠2=20°,∠3=∠GFC′,∵∠EFB′+∠1+∠2+∠3+∠GFC′=180°,∴∠3==23°.24.解:∵M是AC的中点,∴MC=AM=AC=×6=3cm,又∵CN:NB=1:2∴CN=BC=×15=5cm,∴MN=MC+NC=3cm+5cm=8cm.25.解:(1)∠ACB+∠DCE=180°;若∠DCE为任意锐角时,∠ACB+∠DCE=180°,理由如下:∵∠ACE+∠DCE=90°,∠BCD+∠DCE=90°,∴∠ACB+∠DCE=∠ACE+∠DCE+∠BCD+∠DCE=90°+90°=180°;(2)∠ACB+∠DCE=180°.理由如下:∵∠ACD=90°=∠ECB,∠ACD+∠ECB+∠ACB+∠DCE=360°,∴∠ECD+∠ACB=360°﹣(∠ACD+∠ECB)=360°﹣180°=180°。
第 1 页 共 34 页人教版七年级上册第四章几何图形初步单元检测试题(含答案)一、单选题(共10题;共30分)1.如图,图中的长方形共有( )个.A. 9B. 8C. 5D. 4 2.如图所示几何图形中,是棱柱的是( )A. B. C. D.3.如图,是一个几何体的表面展开图,则该几何体是( ) A. 正方体 B. 长方体 C. 三棱柱 D. 四棱锥4.如图,∠AOC >∠BOD ,则( )A. ∠AOB >∠CODB. ∠AOB=∠CODC. ∠AOB <∠CODD. 以上都有可能5.如图所示,∠AOC=∠BOD=90°,若∠AOB=150°,则∠DOC 的度数为( )A. 30°B. 40°C. 50°D. 60°6.如图,线段CD 在线段AB 上,且CD=2,若线段AB 的长度是一个正整数,则图中以A ,B ,C ,D 这四点中任意两点为端点的所有线段长度之和可能是( )A. 28B. 29C. 30D. 317.将一个圆分割成四个大小相同的扇形,则每个扇形的圆心角是( )度. A.45 B.60 C.90 D.1208.若∠AOB=90°,∠BOC=40°,则∠AOC 的度数为( )A. 50°B. 50° 或120°C. 50°或130°D. 130° 9.直棱柱的侧面都是( )A. 正方形B. 长方形C. 五边形D. 菱形 10.如果时钟上的时针、分针和秒针都是匀速地转动,那么从3时整(3:00)开始,在1分钟的时间内,3根针中,出现一根针与另外两根针所成的角相等的情况有 ( ) A. 1次 B. 2次 C. 3次 D. 4次二、填空题(共8题;共24分)11.已知∠α=36°14′25″,则∠α的余角的度数是________.12.如果一个六棱柱的一条侧棱长为5cm ,那么所有侧棱之和为________ cm13.(1)102°43′32″+77°16′28″=________;(2)98°12′25″÷5=________.14.如图,∠AOB 中,OD 是∠BOC 的平分线,OE 是∠AOC 的平分线,若∠AOB=135°,则∠EOD=________°.15.(1)32°43′30″=________°;(2)86.47°=________ °________′________″16.已知:点A、B、C在同一直线上,若AB=12cm,BC=4cm,且满足D、E分别是AB、BC的中点,则线段DE的长为________cm.17.用棱长是1cm的小正方体组成如图所示的几何体,把这个几何体放在桌子上,并把暴露.的面涂上颜色,那么涂颜色面的面积之和是________cm218.用平面截几何体可得到平面图形,在表示几何体的字母后填上它可截出的平面图形的号码.如A(1、5、6);则B(________);C(________);D(________);E(________).三、解答题(共6题;共42分)19.如图,OC平分∠BOD,∠AOD=110°,∠COD=35°,求∠AOB的度数.20.直线AB、CD相交于点O,OE平分∠AOD,∠FOC=90°,∠1=40°,求∠2与∠3的度数。
人教版七年级数学上册第4章《几何图形初步》单元检测一.选择题(共10小题,每小题3分,共30分)1.下列几何体是棱锥的是()A.B.C.D.2.下面几种几何图形中,属于平面图形的是()①三角形;②长方形;③正方体;④圆;⑤四棱锥;⑥圆柱.A.①②④B.①②③C.①②⑥D.④⑤⑥3.如图的平面图形绕直线l旋转一周,可以得到的立体图形是()A.B.C.D.4.如图,图中共有线段()A.7条B.8条C.9条D.10条5.如图,轩轩同学用剪刀沿直线将一片平整的树叶剪掉一部分,发现剩下树叶的周长比原树叶的周长要小,能正确解释这一现象的数学知识是()A.两条直线相交,只有一个交点B.两点确定一条直线C.经过一点的直线有无数条D.两点之间,线段最短6.已知线段AB=10cm,PA+PB=20cm,下列说法正确的是()A.点P不能在直线AB上B.点P只能在直线AB上C.点P只能在线段AB的延长线上D.点P不能在线段AB上7.在△ABC中,作BC边上的高,以下作图正确的是()A.B.C.D.8.如图,下列条件中不能确定的是OC是∠AOB的平分线的是()A.∠AOC=∠BOC B.∠AOB=2∠AOCC.∠AOC+∠BOC=∠AOB D.9.嘉琪同学将一副三角板按如图所示位置摆放,其中∠α与∠B一定互补的是()A.B.C.D.10.下列说法正确的个数是()(1)连接两点之间的线段叫两点间的距离;(2)木匠师傅锯木料时,一般先在模板上画出两个点,然后过这两点弹出一条墨线,这样做的原理是:两点之间,线段最短;(3)若AB=2CB,则点C是AB的中点;(4)若∠A=20°18′.∠B=20°28″,∠C=20.25°,则有∠A>∠C>∠B.A.1个B.2个C.3个D.4个二.填空题(共8小题,每小题3分,共24分)11.如图所示的三角形绕边AB所在直线旋转一周所形成的几何体是.12.如图,C是线段BD的中点,AD=3,AC=7,则AB的长等于.13.把一根木条固定在墙上,至少要钉2根钉子,这是根据.14.从重庆乘火车到北京,沿途经过5个车站方可达到北京站,那么在重庆与北京两站之间需要安排不同的车票种.15.已知∠A=110.32°,用度、分、秒表示为∠A=.16.如图,上午6:30时,时针和分针所夹锐角的度数是.17.若一个角的补角比它的余角的2倍还多70°,则这个角的度数为度.18.图中,∠1与∠2的关系是.三.解答题(共5小题,19--22每小题6分,23题5分,满分29分)19.两种规格的长方体纸盒,尺寸如下(单位:厘米)(1)做这种规格的纸盒各一个,共用料多少平方厘米?(2)做一个大纸盒与做三个小纸盒,哪个用料多?多多少平方厘米?20.如图,已知∠AOB=∠COD=90°,∠BOC=34°.(1)判断∠BOC与∠AOD之间的数量关系,并说明理由;(2)若OE平分∠AOC,求∠EOC的余角的度数.21.(1)观察思考:如图,线段AB上有两个点C、D,请分别写出以点A、B、C、D为端点的线段,并计算图中共有多少条线段;(2)模型构建:如果线段上有m个点(包括线段的两个端点),则该线段上共有多少条线段?请说明你结论的正确性;(3)拓展应用:某班45名同学在毕业后的一次聚会中,若每两人握1次手问好,那么共握多少次手?请将这个问题转化为上述模型,并直接应用上述模型的结论解决问题.22.如图,点O在直线AB上,OM平分∠AOC,ON平分∠BOC,如果∠1:∠2=1:2,求∠1的度数.23.如图,∠AOB=90°,∠COD=90°,OE平分∠BOC,若∠1=30°,求∠COE的度数.解:∵∠AOB=90°∴∠1与∠2互余∵∠COD=90°∴∠BOC与∠2互余∴∠1=∠()∵∠1=30°∴∠BOC=30°∵OE平分∠BOC(已知)∴∠COE=BOC∴∠COE=15°四.综合运用(共2小题,24题8分,25题9分,满分17分)24.如图,数轴上有三个点A,B,C,表示的数分别是﹣4,﹣2,3.(1)若使C、B两点的距离是A、B两点的距离的2倍,则需将点C向左移动个单位;(2)点A、B、C开始在数轴上运动,若点A以每秒a个单位长度的速度向左运动,同时,点B和点C分别以每秒2个单位长度和5个单位长度的速度向右运动,设运动时间为t秒:①点A、B、C表示的数分别是、、(用含a、t的代数式表示);②若点B与点C之间的距离表示为d1,点A与点B之间的距离表示为d2,当a为何值时,5d1﹣3d2的值不会随着时间t的变化而改变,并求此时5d1﹣3d2的值.25.以直线AB上点O为端点作射线OC,使∠BOC=60°,将直角△DOE的直角顶点放在点O处.(1)如图1,若直角△DOE的边OD放在射线OB上,则∠COE=;(2)如图2,将直角△DOE绕点O按逆时针方向转动,使得OE平分∠AOC,说明OD所在射线是∠BOC的平分线;(3)如图3,将直角△DOE绕点O按逆时针方向转动,使得∠COD=15∠AOE.求∠BOD的度数.2018—2019学年人教版七年级数学上册第4章《几何图形初步》单元检测参考简答一.选择题(共10小题)1.D.2.A.3.B.4.B.5.D.6.D.7.D.8.C.9.D.10.A.二.填空题(共8小题)11.圆锥.12.11.13.两点确定一条直线.14.42.15.110°19′12″.16.15°.17.70.18.互余.三.解答题(共5小题)19.两种规格的长方体纸盒,尺寸如下(单位:厘米)(1)做这种规格的纸盒各一个,共用料多少平方厘米?(2)做一个大纸盒与做三个小纸盒,哪个用料多?多多少平方厘米?【解】:(1)2 (1.5a×2b+1.5a×30+2b×30)+2(ab+20a+20b)=6ab+90a+120b+2ab+40a+40b=8ab+130a+160b(平方厘米).答:共用料(8ab+130a+160b)平方厘米;(2)2 (1.5a×2b+1.5a×30+2b×30)=6ab+90a+120b(平方厘米);2(ab+20a+20b)×3=6ab+120a+120b (平方厘米);(6ab+120a+120b)﹣(6ab+90a+120b)=30a(平方厘米).答:做三个小纸盒的用料多,多30a平方厘米.20.如图,已知∠AOB=∠COD=90°,∠BOC=34°.(1)判断∠BOC与∠AOD之间的数量关系,并说明理由;(2)若OE平分∠AOC,求∠EOC的余角的度数.【解】:(1)∠BOC与∠AOD之间的数量关系为∠BOC+∠AOD=180°,因为∠AOB=∠COD=90°,∠AOB+∠BOC+∠COD+∠AOD=360°,所以∠BOC+∠AOD=360°﹣∠AOB﹣∠COD=180°,(2)因为∠AOB=90°,∠BOC=34°,所以∠AOC=∠AOB+∠BOC=124°,因为OE平分∠AOC,所以∠E0C=∠AOE=12∠AOC=62°,所以∠EOC余角的度数为90°﹣∠E0C=28°.21.(1)观察思考:如图,线段AB上有两个点C、D,请分别写出以点A、B、C、D为端点的线段,并计算图中共有多少条线段;(2)模型构建:如果线段上有m个点(包括线段的两个端点),则该线段上共有多少条线段?请说明你结论的正确性;(3)拓展应用:某班45名同学在毕业后的一次聚会中,若每两人握1次手问好,那么共握多少次手?请将这个问题转化为上述模型,并直接应用上述模型的结论解决问题.【解】:(1)∵以点A为左端点向右的线段有:线段AB、AC、AD,以点C为左端点向右的线段有线段CD、CB,以点D为左端点的线段有线段DB,∴共有3+2+1=6条线段;(2)设线段上有m个点,该线段上共有线段x条,则x=(m﹣1)+(m﹣2)+(m﹣3)+…+3+2+1,∴倒序排列有x=1+2+3+…+(m﹣3)+(m﹣2)+(m﹣1),∴2x=mm+m+…+m=m(m﹣1),∴x=12m(m﹣1);(3)把45位同学看作直线上的45个点,每两位同学之间的一握手看作为一条线段,直线上45个点所构成的线段条数就等于握手的次数,因此一共要进行12×45×(45﹣1)=990次握手.22.如图,点O在直线AB上,OM平分∠AOC,ON平分∠BOC,如果∠1:∠2=1:2,求∠1的度数.【解】:∵OM是∠AOC的平分线,ON是∠BOC的平分线,∴∠1=12∠BOC,∠2=12∠AOC,∵∠AOC+∠BOC=180°,∴∠1+∠2=90°,∵∠1:∠2=1:2,∴∠1=30°,答:∠1的度数为30°.23.如图,∠AOB=90°,∠COD=90°,OE平分∠BOC,若∠1=30°,求∠COE的度数.解:∵∠AOB=90°∴∠1与∠2互余互余定义∵∠COD=90°∴∠BOC与∠2互余∴∠1=∠BOC(同角的余角相等)∵∠1=30°∴∠BOC=30°等量代换∵OE平分∠BOC(已知)∴∠COE=BOC角平分线定义∴∠COE=15°【解】:∵∠AOB=90°∴∠1与∠2互余(互余定义)∵∠COD=90°∴∠BOC与∠2互余∴∠1=∠BOC (同角的余角相等)∵∠1=30°∴∠BOC=30°(等量代换)∵OE平分∠BOC(已知)∴∠COE=BOC (角平分线定义)∴∠COE=15°;故答案为:互余定义;BOC;同角的余角相等;等量代换;角平分线定义.四.综合运用(共2小题)24.如图,数轴上有三个点A,B,C,表示的数分别是﹣4,﹣2,3.(1)若使C、B两点的距离是A、B两点的距离的2倍,则需将点C向左移动1或10个单位;(2)点A、B、C开始在数轴上运动,若点A以每秒a个单位长度的速度向左运动,同时,点B和点C分别以每秒2个单位长度和5个单位长度的速度向右运动,设运动时间为t秒:①点A、B、C表示的数分别是﹣4﹣at、﹣2+2t、3+5t(用含a、t的代数式表示);②若点B与点C之间的距离表示为d1,点A与点B之间的距离表示为d2,当a为何值时,5d1﹣3d2的值不会随着时间t的变化而改变,并求此时5d1﹣3d2的值.【解】:(1)由数轴可知:A、B两点的距离为2,B点、C点表示的数分别为:﹣2、3,所以当C、B两点的距离是A、B两点的距离的2倍时,需将点C向左移动1或10个单位;故答案是:1或10;(2)①点A表示的数是﹣4﹣at;点B表示的数是﹣2+2t;点C所表示的数是3+5t.故答案是:﹣4﹣at;﹣2+2t;3+5t;②∵点A以每秒a个单位的速度向左运动,点B和点C分别以每秒2个单位长度和5个单位长度的速度向右运动,∴d1=3t+5,d2=(a+2)t+2,∴5d1﹣3d2=5(3t+5)﹣3[(a+2)t+2]=(9﹣3a)t+19,9﹣3a=0,解得a=3,故当a为3时,5d1﹣3d2的值不会随着时间t的变化而改变,此时5d1﹣3d2的值为19.25.以直线AB上点O为端点作射线OC,使∠BOC=60°,将直角△DOE的直角顶点放在点O处.(1)如图1,若直角△DOE的边OD放在射线OB上,则∠COE=30°;(2)如图2,将直角△DOE绕点O按逆时针方向转动,使得OE平分∠AOC,说明OD所在射线是∠BOC的平分线;(3)如图3,将直角△DOE绕点O按逆时针方向转动,使得∠COD=15∠AOE.求∠BOD的度数.【解】:(1)∵∠BOE=∠COE+∠COB=90°,又∵∠COB=60°,∴∠COE=30°, 故答案为:30°;(2)∵OE 平分∠AOC ,∴∠COE=∠AOE=12COA ,∵∠EOD=90人教版七年级上册第四章几何图形初步单元测试卷一、 选择题 (本题共计 10 小题,每题 分,共计30分 , )1. 以下几何图形中,表示立体图形的是( ) A.B.C.D.2. 同一副三角板(两块)画角,不可能画出的角的度数是( ) A. B. C. D.3. 两个锐角的和( ) A.必定是锐角 B.必定是钝角 C.必定是直角D.可能是锐角,可能是直角,也可能是钝角4. 如图,下列说法正确的是( )A. 的方向是北偏东B. 的方向是南偏东C. 的方向是南偏西D. 的方向是北偏西5. 已知 ″,则 的余角是( ) A. B. C.D.6. 如图所示的图形绕虚线旋转一周,所形成的几何体是( )A.B.C.D.7. 下列说法:①射线 和射线 是同一条射线;②若 ,则点 为线段 的中点; ③同角的补角相等;④点 在线段 上, , 分别是线段 , 的中点.若 ,则线段 . 其中说法正确的是( ) A.①② B.②③ C.②④ D.③④8. 已知 , 是 的平分线, , 是 的平分线,则 的度数为( ) A. B. C. D. 或9. 五棱柱的顶点总个数有( )个. A. B. C. D.10. 延长线段 到点 ,使 ,点 是线段 的中点,则 为( ) A. B. C. D.二、 填空题 (本题共计 6 小题,每题 分,共计18分 , )11. 如图所示:小明从学校回家有 条路行径走,他走最近的路线是________号路线.其道理用几何知识解释为________.12. 如图所示的图形绕虚线旋转一周得到的几何体的名称是________.13. 工人师傅在砌墙时,先在两端各固定一点,中间拉紧一条细线,然后沿着细线砌墙就能砌直.运用的数学原理:________.14. 如图,线段,点分线段为,是线段的中点,则线段________.15. 观察下列各图,在第个图中有一个角,第个图中共有个角,第个图中共有个角,则第个图中角的个数是________,第个图中角的个数为________.16. 时钟在人教版七年级上册第四章几何图形初步单元测试卷一、选择题(每小题3分,共30分)1.(2017广西河池中考)如图4-5-1,点O在直线AB上,若∠BOC=60°,则∠AOC的大小是( )图4-5-1A.60°B.90°C.120°D.150°2.下面说法:①若线段AC=BC,则C是线段AB的中点;②两点之间,直线最短;③延长直线AB;④若一个角既有余角又有补角,则它的补角一定比它的余角大.其中正确的有( )3.(2017四川南充中考)图4-5-2是由7个小正方体组合而成的几何体,从正面看,所看到的图形是( )图4-5-24.如图4-5-3所示,小于平角的角有( )图4-5-3A.9个B.8个C.7个D.6个5.如图4-5-4,C、D是线段AB上两点,若BC=3 cm,BD=5 cm,且D是AC的中点,则AC的长为( )图4-5-4A.2 cmB.4 cmC.8 cmD.13 cm6.小明由点A出发向正东方向走10 m到达点B,再由点B向东南方向走10 m到达点C,则下列结论正确的是( )A.∠ABC=22.5°B.∠ABC=45°C.∠ABC=67.5°D.∠ABC=135°7.如图4-5-5所示,OC是∠AOB的平分线,OD是∠BOC的平分线,那么下列各式正确的是( )图4-5-5A.∠COD=∠AOBB.∠AOD=∠AOBC.∠BOD=∠AOBD.∠BOC=∠AOD8.(2017湖南张家界中考)如图4-5-6是一个正方体的表面展开图,则正方体中与“美”字所在面相对的面上标的字是( )图4-5-6A.丽B.张C.家D.界9.射线OA上有B、C两点,若OB=8,BC=2,线段OB、BC的中点分别为D、E,则线段DE的长为( )A.5B.3C.1D.5或310.(2017山西忻州一中期末)如图4-5-7,∠AOB=∠COD,若∠AOD=110°,∠BOC=70°,则以下结论正确的有( )图4-5-7①∠AOC=∠BOD=90°;②∠AOB=20°;③∠AOB=∠AOD-∠AOC;④∠AOB=∠BOD.A.1个B.2个C.3个D.4个二、填空题(每小题3分,共30分)11.(2017浙江诸暨中学期末)∠AOB的大小可由量角器测得(如图4-5-8所示),则∠AOB 的补角的大小为.图4-5-812.如图4-5-9所示,延长线段AB到C,使BC=4,若AB=8,则线段AC的长是BC长的倍.图4-5-913.如果一个角的补角是150°,那么这个角的余角为°.14.如图4-5-10,已知M、N分别是AC、CB的中点,MN=6 cm,则AB= cm.图4-5-1015.如图4-5-11所示,O是直线AB上一点,OC是∠AOB的平分线.图4-5-11(1)图中互余的角是;(2)图中互补的角是.16.如图4-5-12,∠AOB=90°,∠BOC=30°,OD平分∠AOC,则∠BOD=.图4-5-1217.(2017贵州安顺西秀旧州中学期末)如图4-5-13所示,已知∠AOB=70°,∠BOC=20°,OE平分∠AOB,OF平分∠BOC,则∠EOF的度数是.图4-5-1318.点A、B、C是数轴上的三个点,且BC=2AB.已知点A表示的数是-1,点B表示的数是3,点C表示的数是.19.如图4-5-14,OM、ON分别是∠BOC和∠AOC的平分线,∠AOB=84°.图4-5-14(1)∠MON=;(2)当OC在∠AOB内绕点O转动时,∠MON的值改变.(填“会”或“不会”)20.如图4-5-15,将长方形纸片ABCD的∠C沿着GF折叠(点F在BC上,不与B,C重合),使点C落在长方形内部的点E处,若FH平分∠BFE,则∠GFH的度数是.图4-5-15三、解答题(共40分)21.(8分)计算:(1)48°39'40″+67°41'35″;(2)49°28'52″÷4.22.(6分)如果一个角的余角是它的补角的,求这个角的度数.23.(6分)画图并计算:已知线段AB=2 cm,延长线段AB至点C,使得BC=AB,再反向延长AC至点D,使得AD=AC.(1)准确地画出图形,并标出相应的字母;(2)哪个点是线段DC的中点?线段AB的长是线段DC长的几分之几?(3)求出线段BD的长度.24.(6分)如图4-5-16所示,已知∠AOB=90°,∠EOF=60°,OE平分∠AOB,OF平分∠BOC,求∠AOC和∠BOC的度数.图4-5-1625.(6分)图4-5-17是一个正方体盒子的表面展开图,该正方体六个面上分别标有不同的数字,且相对两个面上的数字互为相反数.(1)把-10,8,10,-3,-8,3分别填入图中的六个小正方形中;(2)若某两个相对面上的数字分别为-和-5,求x的值.图4-5-1726.(8分)如图4-5-18所示,请按照要求解答问题.(1)数轴上的点C在2、3的正中间位置,则点C表示的数是,线段AB的中点D 表示的数是;(2)线段AB的中点D与线段BC的中点E的距离为;(3)在数轴上方有一点M,下方有一点N,且∠ABM=120°,∠CBN=60°,请画出示意图,并判断BC是否平分∠MBN.简要说明理由.图4-5-18第四章几何图形初步答案解析一、选择题(每小题3分,共30分)1.(2017广西河池中考)如图4-5-1,点O在直线AB上,若∠BOC=60°,则∠AOC的大小是( )图4-5-1A.60°B.90°C.120°D.150°答案 C ∵∠BOC=60°,∠BOC+∠AOC=180°,∴∠AOC=120°.2.下面说法:①若线段AC=BC,则C是线段AB的中点;②两点之间,直线最短;③延长直线AB;④若一个角既有余角又有补角,则它的补角一定比它的余角大.其中正确的有( )A.0个B.1个C.2个D.3个答案 B ①如图,C不是线段AB的中点,故①不正确;②两点之间,线段最短,故②不正确;③直线向两边无限延伸,不能延长,故③不正确;④正确,故选B.3.(2017四川南充中考)图4-5-2是由7个小正方体组合而成的几何体,从正面看,所看到的图形是( )图4-5-2答案 A 从正面看所得的图形就是从前向后看立体图形所得到的平面图形.可看到四个正方形,其中左边从上到下共有3个正方形,右边只有1个正方形.故选A.4.如图4-5-3所示,小于平角的角有( )图4-5-3A.9个B.8个C.7个D.6个答案 C 符合条件的角中以A为顶点的角有1个,以B为顶点的角有2个,以C为顶点的角有1个,以D为顶点的角有1个,以E为顶点的角有2个,共有1+2+1+1+2=7(个)角,故选C.5.如图4-5-4,C、D是线段AB上两点,若BC=3 cm,BD=5 cm,且D是AC的中点,则AC的长为( )图4-5-4A.2 cmB.4 cmC.8 cmD.13 cm答案 B ∵BC=3 cm,BD=5 cm,∴CD=BD-BC=2 cm,∵D是AC的中点,∴AC=2CD=4 cm,故选B.6.小明由点A出发向正东方向走10 m到达点B,再由点B向东南方向走10 m到达点C,则下列结论正确的是( )A.∠ABC=22.5°B.∠ABC=45°C.∠ABC=67.5°D.∠ABC=135°答案 D 由题意作图如下:由图可得∠ABC=90°+45°=135°.7.如图4-5-5所示,OC是∠AOB的平分线,OD是∠BOC的平分线,那么下列各式正确的是( )图4-5-5A.∠COD=∠AOBB.∠AOD=∠AOBC.∠BOD=∠AOBD.∠BOC=∠AOD答案 D 设∠COD=x,因为OD平分∠BOC,所以∠BOD=∠COD=x,∠BOC=2x.又OC平分∠AOB,所以∠AOC=∠BOC=2x,则∠AOB=4x,所以∠COD=∠AOB,∠AOD=∠AOB,∠BOD=∠AOB,∠BOC=∠AOD,故选D.8.(2017湖南张家界中考)如图4-5-6是一个正方体的表面展开图,则正方体中与“美”字所在面相对的面上标的字是( )图4-5-6A.丽B.张C.家D.界答案 C 同一行或列中,中间间隔一个小正方形的两个小正方形在正方体中就是一对相对面,所以“丽”与“张”相对;相对面不共顶点,所以“的”与“美”“家”不相对,从而“的”与“界”相对;因此剩下的两个字“美”与“家”是相对的.9.射线OA上有B、C两点,若OB=8,BC=2,线段OB、BC的中点分别为D、E,则线段DE的长为( )A.5B.3C.1D.5或3答案 D 如图1,DE=3;如图2,DE=5.图1 图210.(2017山西忻州一中期末)如图4-5-7,∠AOB=∠COD,若∠AOD=110°,∠BOC=70°,则以下结论正确的有( )图4-5-7①∠AOC=∠BOD=90°;②∠AOB=20°;③∠AOB=∠AOD-∠AOC;④∠AOB=∠BOD.A.1个B.2个C.3个D.4个答案 C 因为∠AOD=110°,∠BOC=70°,所以∠COD+∠AOB=40°,又因为∠AOB=∠COD,所以∠AOB=∠COD=20°,所以∠AOC=∠BOD=90°,故①②正确;∠AOD-∠AOC=∠COD=∠AOB,故③正确;∠AOB=∠BOD,故④不正确.所以正确的有3个.二、填空题(每小题3分,共30分)11.(2017浙江诸暨中学期末)∠AOB的大小可由量角器测得(如图4-5-8所示),则∠AOB 的补角的大小为.图4-5-8答案120°解析由题图知∠AOB=60°,所以∠AOB的补角的大小为180°-60°=120°.12.如图4-5-9所示,延长线段AB到C,使BC=4,若AB=8,则线段AC的长是BC长的倍.图4-5-9答案 3解析由题图可知AC=AB+BC=8+4=12,所以AC=3BC.13.如果一个角的补角是150°,那么这个角的余角为°.答案60解析因为180°-150°=30°,所以这个角的大小为30°,所以这个角的余角为90°-30°=60°.14.如图4-5-10,已知M、N分别是AC、CB的中点,MN=6 cm,则AB= cm.图4-5-10答案12解析因为M、N分别是AC、CB的中点,所以CM=AC,CN=CB,则AB=AC+BC=2CM+2CN=2(CM+CN)=2MN=2×6=12(cm).15.如图4-5-11所示,O是直线AB上一点,OC是∠AOB的平分线.图4-5-11(1)图中互余的角是;(2)图中互补的角是.答案(1)∠AOD与∠DOC(2)∠AOD与∠BOD,∠AOC与∠BOC解析(1)因为O是直线AB上一点,OC是∠AOB的平分线,所以∠AOC=∠BOC=∠AOB=90°,所以∠AOD+∠DOC=90°,即∠AOD与∠DOC互余.(2)∠AOD+∠BOD=180°,∠AOC+∠BOC=180°,即∠AOD与∠BOD互补,∠AOC与∠BOC互补.16.如图4-5-12,∠AOB=90°,∠BOC=30°,OD平分∠AOC,则∠BOD=.图4-5-12答案30°解析因为∠AOB=90°,∠BOC=30°,所以∠AOC=90°+30°=120°.又因为OD平分∠AOC,所以∠COD=∠AOC=60°,所以∠BOD=∠COD-∠COB=60°-30°=30°.17.(2017贵州安顺西秀旧州中学期末)如图4-5-13所示,已知∠AOB=70°,∠BOC=20°,OE平分∠AOB,OF平分∠BOC,则∠EOF的度数是.图4-5-13答案45°解析因为OE平分∠AOB,OF平分∠BOC,所以∠EOB=×70°=35°,∠BOF=×20°=10°,故∠EOF=∠EOB+∠BOF=35°+10°=45°.18.点A、B、C是数轴上的三个点,且BC=2AB.已知点A表示的数是-1,点B表示的数是3,点C表示的数是.答案-5或11解析AB=3-(-1)=4,因为点A、B、C是数轴上的三个点,且BC=2AB,所以BC的长为8,所以点C表示的数为3+8=11或3-8=-5.19.如图4-5-14,OM、ON分别是∠BOC和∠AOC的平分线,∠AOB=84°.图4-5-14(1)∠MON=;(2)当OC在∠AOB内绕点O转动时,∠MON的值改变.(填“会”或“不会”)答案(1)42°(2)不会解析(1)∠MON=∠MOC+∠NOC=∠BOC+∠AOC=(∠BOC+∠AO C)=×∠AOB=×84°=42°.(2)由(1)可知,∠MON=∠AOB,∴∠MON的值不会随着OC在∠AOB内绕点O转动而改变.20.如图4-5-15,将长方形纸片ABCD的∠C沿着GF折叠(点F在BC上,不与B,C重合),使点C落在长方形内部的点E处,若FH平分∠BFE,则∠GFH的度数是.图4-5-15答案90°解析由折叠可知,∠CFG=∠EFG=∠CFE,因为FH平分∠BFE,所以∠EFH=∠BFH=∠EFB.因为∠CFG+∠EFG+∠EFH+∠BFH=180°,所以∠GFH=∠EFG+∠EFH=90°.三、解答题(共40分)21.(8分)计算:(1)48°39'40″+67°41'35″;(2)49°28'52″÷4.解析(1)48°39'40″+67°41'35″=115°80'75″=116°21'15″.(2)49°28'52″÷4=12°+88'52″÷4=12°22'+52″÷4=12°22'13″.22.(6分)如果一个角的余角是它的补角的,求这个角的度数.解析设这个角的度数为x°,则它的余角为(90-x)°,它的补角为(180-x)°,根据题意得90-x=×(180-x),解得x=30.答:这个角的度数是30°.23.(6分)画图并计算:已知线段AB=2 cm,延长线段AB至点C,使得BC=AB,再反向延长AC至点D,使得AD=AC.(1)准确地画出图形,并标出相应的字母;(2)哪个点是线段DC的中点?线段AB的长是线段DC长的几分之几?(3)求出线段BD的长度.解析(1)如图.(2)点A是线段DC的中点,AB=CD.(3)BC=AB=×2=1(cm),因而AC=AB+BC=2+1=3(cm).所以AD=AC=3 cm,故BD=DA+AB=3+2=5(cm).24.(6分)如图4-5-16所示,已知∠AOB=90°,∠EOF=60°,OE平分∠AOB,OF平分∠BOC,求∠AOC和∠BOC的度数.图4-5-16解析因为OE平分∠AOB,∠AOB=90°,所以∠BOE=45°.又∠EOF=60°,所以∠BOF=∠EOF-∠BOE=60°-45°=15°.又因为OF平分∠BOC,所以∠BOC=2∠BOF=30°,所以∠AOC=∠AOB+∠BOC=90°+30°=120°.25.(6分)图4-5-17是一个正方体盒子的表面展开图,该正方体六个面上。
第四章检测题
(时间:120分钟满分:120分)
一、选择题(每小题3分,共30分)
1.将一副三角板按如图所示位置摆放,其中∠α与∠β一定互余的是(C)
2.在灯塔O处观测到轮船A位于北偏西54°的方向,同时轮船B在南偏东15°的方向,那么∠AOB的度数为(C)
A.69°B.111°C.141°D.159°
,第2题图),第3题图)
,第4题图)
3.如图,点A,B,C顺次在直线l上,点M是线段AC的中点,点N是线段BC的中点,若想求出MN的长度,那么只需条件(A)
A.AB=12 B.BC=4 C.AM=5 D.CN=2
4.如图,将4×3的网格图剪去5个小正方形后,图中还剩下7个小正方形,为了使余下的部分(小正方形之间至少有一条边相连)恰好能折成一个正方体,需要再剪去1个小正方形,则应剪去的小正方形的编号是(C)
A.7 B.6 C.5 D.4
5.如图,点O在直线l上,∠1与∠2互余,∠α=116°,则∠β的度数是(C) A.144°B.164°C.154°D.150°
,第5题图),第6题图)
,第7题图)
6.(2016·凉山州)如图,是由若干个大小相同的正方体搭成的几何体,从不同方向看所得到的平面图形,该几何体所用的正方体的个数是(A)
A.6个B.4个C.3个D.2个
7.如图,田亮同学用剪刀沿直线将一片平整的树叶剪掉一部分,发现剩下树叶的周长
比原树叶的周长要小,能正确解释这一现象的数学知识是(D)
A.垂线段最短B.经过一点有无数条直线
C.经过两点,有且仅有一条直线D.两点之间,线段最短
8.已知线段AB=10 cm,点C是直线AB上一点,BC=4 cm,若M是AC的中点,N 是BC的中点,则线段MN的长度是(D)
A.7 cm B.3 cm C.7 cm或3 cm D.5 cm
9.钟表在8:25时,时针与分针的夹角是(B)度.
A.101.5 B.102.5 C.120 D.125
10.如果∠1与∠2互补,∠2与∠3互余,那么∠1与∠3的关系是(C)
A.∠1=∠3 B.∠1=180°-∠3 C.∠1=90°+∠3 D.以上都不对
二、填空题(每小题3分,共24分)
11.用“度分秒”来表示:8.31度=__8__度__18__分__36__秒.
12.一个角的余角比这个角的补角的一半小40°,则这个角为__80__度.
13.已知A,B,C三点在同一条直线上,M,N分别为线段AB,BC的中点,且AB =60,BC=40,则MN的长为__50或10__.
14.如图,点O在直线AB上,射线OC平分∠DOB,若∠COB=35°,则∠AOD=__110__°.
,第14题图),第15题图)
,第17题图),第18题图)
15.如图,两块三角板的直角顶点O重叠在一起,且OB恰好平分∠COD,则∠AOD 的度数是__135__度.
16.平面内三条直线两两相交,最多有a个交点,最少有b个交点,则a+b=__4__.17.把一张长方形纸条按如图的方式折叠后,量得∠AOB′=110°,则∠B′OC=__35°__.
18.如图,OA的方向是北偏东15°,OC的方向是北偏西40°,若∠AOC=∠AOB,则OB的方向是__北偏东70°__.
三、解答题(共66分)
19.(8分)根据下列语句,画出图形.
已知四点A,B,C,D.
①画直线AB;
②连接AC,BD,相交于点O;
③画射线AD,BC,交于点P.
解:略
20.(8分)一个角的余角比这个角的1
2
少30°,请你计算出这个角的大小.
解:设这个角为x ,则它的余角为(90°-x ),依题意得1
2x -(90°-x )=30°,解得x
=80°,答:这个角是80°
21.(8分)如图,点M 是线段AC 的中点,点B 在线段AC 上,且AB =4 cm ,BC =2AB ,求线段MC 和线段BM 的长.
解:因为AB =4 cm ,BC =2AB ,所以BC =8 cm ,所以AC =AB +BC =12 cm ,因为M 是线段AC 中点,所以MC =AM =1
2
AC =6 cm ,所以BM =AM -AB =2 cm
22.(8分)如图,已知线段AB 和CD 的公共部分BD =13AB =1
4CD ,线段AB ,CD 的中
点E ,F 之间的距离是10 cm ,求AB ,CD 的长.
解:设BD =x cm ,则AB =3x cm ,CD =4x cm ,AC =6x cm ,因为点E ,F 分别为AB ,CD 的中点,所以AE =12AB =1.5x cm ,CF =1
2CD =2x cm ,所以EF =AC -AE -CF =6x -
1.5x -2x =
2.5x (cm ),因为EF =10 cm ,所以2.5x =10,解得x =4,所以AB =12 cm ,CD
=16 cm
23.(10分)如图,已知直线AB 和CD 相交于点O ,∠COE 是直角,OF 平分∠AOE ,∠COF =34°,求∠BOD 的度数.
解:因为∠COE 是直角,∠COF =34°,所以∠EOF =56°,又因为OF 平分∠AOE ,所以∠AOF =∠EOF =56°.因为∠COF =34°,所以∠AOC =∠AOF -∠COF =22°,所以∠BOD =∠AOC =22°
24.(12分)如图,点C 在线段AB 上,AC =8 cm ,CB =6 cm ,点M ,N 分别是AC ,BC 的中点.
(1)求线段MN 的长;
(2)若C 为线段AB 上任意一点,满足AC +CB =a cm ,其他条件不变,你能猜想出MN 的长度吗?并说明理由;
(3)若C 在线段AB 的延长线上,且满足AC -CB =b cm ,点M ,N 分别为AC ,BC 的中点,你能猜想出MN 的长度吗?请画出图形,写出你的结论,并说明理由.
解:(1)因为点M ,N 分别是AC ,BC 的中点,所以MC =12AC =4 cm ,NC =1
2BC =3 cm ,
所以MN =MC +NC =7 cm (2)MN =MC +NC =12AC +12BC =12AB =1
2a cm (3)图略,MN
=12b cm.理由:MN =MC -NC =12AC -12BC =12(AC -BC )=1
2
b cm
25.(12分)如图,OM 是∠AOC 的平分线,ON 是∠BOC 的平分线.
(1)如图①,当∠AOB 是直角,∠BOC =60°时,∠MON 的度数是多少? (2)如图②,当∠AOB =α,∠BOC =60°时,猜想∠MON 与α的数量关系;
(3)如图③,当∠AOB =α,∠BOC =β时,猜想∠MON 与α,β有数量关系吗?如果有,写出你的结论,并说明理由.
解:(1)∠MON =∠MOC -∠NOC =12∠AOC -12∠BOC =12(∠AOC -∠BOC )=1
2∠AOB
=45° (2)∠MON =∠MOC -∠NOC =12∠AOC -12∠BOC =12(∠AOC -∠BOC )=1
2∠
AOB =12α (3)∠MON =12α.理由:∠MON =∠MOC -∠NOC =12(α+β)-12β=1
2α。