2020年福建省师大附中学高一下学期期末考试数学试题word版含解析
- 格式:doc
- 大小:1.67 MB
- 文档页数:14
2019-2020学年北京师大附中高一第二学期期末数学试卷一、选择题(共8小题).1.若sinα>0,且tanα<0,则角α的终边位于()A.第一象限B.第二象限C.第三象限D.第四象限2.函数y=sin4x,x∈R的最小正周期为()A.2πB.πC.D.3.要得到函数的图象,只需将函数y=sin2x的图象()A.向左平移个单位长度B.向右平移个单位长度C.向左平移个单位长度D.向右平移个单位长度4.在空间中,给出下列四个命题:①平行于同一个平面的两条直线互相平行;②垂直于同一个平面的两个平面互相平行;③平行于同一条直线的两条直线互相平行;④垂直于同一个平面的两条直线互相平行.其中正确命题的序号是()A.①②B.①③C.②④D.③④5.已知向量,满足||=2,||=1,•=,则向量,的夹角为()A.B.C.D.﹣6.在△ABC中,三个内角A,B,C的对边分别是a,b,c,已知B=30°,c=15,b=5,那么这个三角形是()A.等边三角形B.等腰三角形C.直角三角形D.等腰三角形或直角三角形7.如图,在长方体ABCD﹣A1B1C1D1中,若E,F,G,H分别是棱A1B1,BB1,CC1,C1D1的中点,则必有()A.BD1∥GH B.BD∥EFC.平面EFGH∥平面ABCD D.平面EFGH∥平面A1BCD18.函数f(x)=A sin x(A>0)的图象如图所示,P,Q分别为图象的最高点和最低点,O 为坐标原点,若OP⊥OQ,则A=()A.3B.C.D.1二、填空题共10小题,每小题4分,共40分.9.若角α的终边经过点P(1,2),则sinα等于.10.设向量、的长度分别为4和3,夹角为60°,则||=.11.函数f(x)=3sin x的最大值为.12.设α是第一象限角,sinα=,则tanα=.cos2α=.13.设向量=(0,2),=(,1),则•=;向量,的夹角等于.14.在△ABC中,三个内角A,B,C的对边分别是a,b,c,若a=2,B=60°,A=45°,则b=,△ABC的面积是.15.在△ABC中,三个内角A,B,C的对边分别是a,b,c,若a=2,b=3,c=4,则cos A =.16.已知函数f(x)=cos2x+sin x cos x在区间[0,m]上单调递增,则实数m的最大值是.17.已知点A(0,4),B(2,0),如果,那么点C的坐标为;设点P (3,t),且∠APB是钝角,则t的取值范围是.18.已知a,b是异面直线.给出下列结论:①一定存在平面α,使直线b⊥平面α,直线a∥平面α;②一定存在平面α,使直线b∥平面α,直线a∥平面α;③一定存在无数个平面α,使直线b与平面α交于一个定点,且直线a∥平面α;④一定存在平面α,使直线a⊥平面α,直线b⊥平面α.则所有正确结论的序号为.三、解答题共6小题,每小题13分,共78分.解答应写出文字说明、演算步骤或证明过程..19.已知函数f(x)=sin(2x﹣).(Ⅰ)求f()的值;(Ⅱ)求f(x)的最小正周期;(Ⅲ)求函数f(x)的单调递增区间.20.已知函数f(x)=2sin x cos x+2cos2x﹣1.(Ⅰ)求f(x)的最小正周期;(Ⅱ)求f(x)的对称中心的坐标;(Ⅲ)求函数f(x)在的区间[﹣,]上的最大值和最小值.21.在△ABC中,角A,B,C的对边分别为a,b,c,且a=2,cos C=﹣.(Ⅰ)求sin C的值;(Ⅱ)如果b=3,求c的值;(Ⅲ)如果c=2,求sin B的值.22.如图,四棱锥P﹣ABCD的底面是正方形,侧棱PA⊥底面ABCD,E是PA的中点.(Ⅰ)求证:CD∥平面PAB;(Ⅱ)求证:PC∥平面BDE;(Ⅲ)证明:BD⊥CE.23.如图,在多面体ABCDEF中,底面ABCD为矩形,侧面ADEF为梯形,AF∥DE,DE ⊥AD,DC=DE.(Ⅰ)求证:AD⊥CE;(Ⅱ)求证:BF∥平面CDE;(Ⅲ)判断线段BE上是否存在点Q,使得平面ADQ⊥平面BCE?并说明理由.24.已知向量=(sin x,cos x),=(cos x,﹣cos x),设函数f(x)=•(+).(1)求f(x)的最小正周期;(2)求f(x)的单调增区间;(3)若函数g(x)=f(x)﹣k,,其中k∈R,试讨论函数g(x)的零点个数.参考答案一、选择题(共8小题).1.若sinα>0,且tanα<0,则角α的终边位于()A.第一象限B.第二象限C.第三象限D.第四象限【分析】由sinα>0,则角α的终边位于一二象限,由tanα<0,则角α的终边位于二四象限,两者结合即可解决问题.解:∵sinα>0,则角α的终边位于一二象限,∵由tanα<0,∴角α的终边位于二四象限,∴角α的终边位于第二象限.故选:B.2.函数y=sin4x,x∈R的最小正周期为()A.2πB.πC.D.【分析】直接利用三角函数的周期公式求解即可.解:函数y=sin4x,x∈R的最小正周期为:=.故选:C.3.要得到函数的图象,只需将函数y=sin2x的图象()A.向左平移个单位长度B.向右平移个单位长度C.向左平移个单位长度D.向右平移个单位长度【分析】利用函数y=A sin(ωx+φ)的图象变换规律,可得结论.解:将函数y=sin2x,向左平移个单位长度,可得y=sin2(x+),即sin2(x+)=.故选:C.4.在空间中,给出下列四个命题:①平行于同一个平面的两条直线互相平行;②垂直于同一个平面的两个平面互相平行;③平行于同一条直线的两条直线互相平行;④垂直于同一个平面的两条直线互相平行.其中正确命题的序号是()A.①②B.①③C.②④D.③④【分析】利用直线与直线的平行直线与平面的垂直关系判断选项的正误即可.解:①平行于同一个平面的两条直线互相平行也可以相交也可能异面直线;所以①不正确;②垂直于同一个平面的两个平面互相平行也可能相交;所以②不正确;③平行于同一条直线的两条直线互相平行;正确;④垂直于同一个平面的两条直线互相平行.满足直线与平面垂直的性质定理,正确.故选:D.5.已知向量,满足||=2,||=1,•=,则向量,的夹角为()A.B.C.D.﹣【分析】根据平面向量的夹角公式计算即可.解:设向量,的夹角为θ,则θ∈[0,π],由||=2,||=1,•=,所以cosθ===,所以向量,的夹角为θ=.故选:C.6.在△ABC中,三个内角A,B,C的对边分别是a,b,c,已知B=30°,c=15,b=5,那么这个三角形是()A.等边三角形B.等腰三角形C.直角三角形D.等腰三角形或直角三角形【分析】由正弦定理求出sin C的值,可得C=60°或120°.再根据三角形的内角和公式求出A的值,由此即可这个三角形的形状.解:∵△ABC中,已知B=30°,c=15,b=5,由正弦定理,可得:=,∴解得:sin C=,可得:C=60°或120°.当C=60°,∵B=30°,∴A=90°,△ABC是直角三角形.当C=120°,∵B=30°,∴A=30°,△ABC是等腰三角形.故△ABC是直角三角形或等腰三角形,故选:D.7.如图,在长方体ABCD﹣A1B1C1D1中,若E,F,G,H分别是棱A1B1,BB1,CC1,C1D1的中点,则必有()A.BD1∥GH B.BD∥EFC.平面EFGH∥平面ABCD D.平面EFGH∥平面A1BCD1【分析】根据题意,结合图形,分别判断选项中的命题是否正确即可.解:对于A,由图形知BD1与GH是异面直线,∴A错误;对于B,由题意知BD与EF也是异面直线,∴B错误;对于C,平面EFGH与平面ABCD是相交的,∴C错误;对于D,平面EFGH∥平面A1BCD1,理由是:由E,F,G,H分别是棱A1B1,BB1,CC1,C1D1的中点,得出EF∥A1B,EH∥A1D1,所以EF∥平面A1BCD1,EH∥平面A1BCD1,又EF∩EH=E,所以平面EFGH∥平面A1BCD1.故选:D.8.函数f(x)=A sin x(A>0)的图象如图所示,P,Q分别为图象的最高点和最低点,O 为坐标原点,若OP⊥OQ,则A=()A.3B.C.D.1【分析】由题意,△OPQ是直角三角形,过P,Q作x轴的垂线,利用勾股定理求解QP,OP,OQ,建立关系可得A的值.解:函数f(x)=A sin x(A>0),周期T=2π,可得:P(,A),Q().连接PQ,过P,Q作x轴的垂线,可得:QP2=4[A2+],OP2=A2+],OQ2=A2+],由题意,△OPQ是直角三角形,∴QP2=OP2+OQ2,即2A2+π2=,解得:A=故选:B.二、填空题共10小题,每小题4分,共40分.9.若角α的终边经过点P(1,2),则sinα等于.【分析】由题意利用任意角的三角函数的定义,求得sinα的值.解:∵角α的终边经过点P(1,2),则sinα==,故答案为:.10.设向量、的长度分别为4和3,夹角为60°,则||=.【分析】首先对要求的向量的模平方,变为已知向量的平方和数量积之和,代入模长和夹角,求出结果,注意最后要对求得的结果开方.解:∵、的长度分别为4和3,夹角为60°,∴=16+4×3×cos60°+9=31∵||===,故答案为:11.函数f(x)=3sin x的最大值为3.【分析】直接利用正弦型函数性质的应用求出结果.解:当x=2k(k∈Z)时,函数的最大值为3.故答案为:312.设α是第一象限角,sinα=,则tanα=.cos2α=.【分析】由已知利用同角三角函数基本关系式可求cosα,进而可求tanα的值,根据二倍角的余弦函数公式即可求解cos2α的值.解:∵α是第一象限角,sinα=,∴cosα==,∴tanα===.∴cos2α=1﹣2sin2α=1﹣2×()2=.故答案为:,.13.设向量=(0,2),=(,1),则•=2;向量,的夹角等于.【分析】直接根据数量积的定义以及夹角的计算公式即可求解结论.解:因为向量=(0,2),=(,1),故||=2;||==2;故•=0×+2×1=2;向量,的夹角θ满足cosθ===;因为θ∈[0,π]⇒θ=,故向量,的夹角等于.故答案为:2,.14.在△ABC中,三个内角A,B,C的对边分别是a,b,c,若a=2,B=60°,A=45°,则b=,△ABC的面积是.【分析】由已知利用正弦定理可求b的值,根据三角形内角和定理可求C的值,进而根据三角形的面积公式即可求解.解:若a=2,B=60°,A=45°,则由正弦定理,可得:b===,可求C=180°﹣A﹣B=75°,可得△ABC的面积S△ABC=ab sin C=×sin75°=sin(45°+30°)=(+)=.故答案为:,.15.在△ABC中,三个内角A,B,C的对边分别是a,b,c,若a=2,b=3,c=4,则cos A =.【分析】由余弦定理代入三角形的边长,可得出答案.解:在△ABC中,cos A===,故答案为:.16.已知函数f(x)=cos2x+sin x cos x在区间[0,m]上单调递增,则实数m的最大值是.【分析】利用辅助角公式进行化简,结合函数的单调性进行求解即可.解:f(x)=+sin2x=sin(2x+)+,当0≤x≤m时,≤x≤2m+,∵f(x)在区间[0,m]上单调递增,∴2m+≤,得m≤,即m的最大值为,故答案为:.17.已知点A(0,4),B(2,0),如果,那么点C的坐标为(3,﹣2);设点P(3,t),且∠APB是钝角,则t的取值范围是(1,3).【分析】第一空:根据题意,设C的坐标为(x,y),求出向量与的坐标,由共线向量的坐标表示方法可得(2,﹣4)=2(x﹣2,y),计算可得x、y的值,即可得答案;第二空:由P的坐标计算可得、的坐标,由向量数量积的计算公式可得•=(﹣3)×(﹣1)+(4﹣t)×(﹣t)<0,且(﹣3)×(﹣t)≠(﹣1)×(4﹣t),解可得t的取值范围,即可得答案.解:根据题意,设C的坐标为(x,y),又由点A(0,4),B(2,0),则=(2,﹣4),=(x﹣2,y),若,则有(2,﹣4)=2(x﹣2,y),则有2=2(x﹣2),﹣4=2y,解可得x=3,y=﹣2,则C的坐标为(3,﹣2),又由P(3,t),则=(﹣3,4﹣t),=(﹣1,﹣t),若∠APB是钝角,则•=(﹣3)×(﹣1)+(4﹣t)×(﹣t)<0,且(﹣3)×(﹣t)≠(﹣1)×(4﹣t),解可得1<t<3,即t的取值范围为(1,3);故答案为:(3,﹣2);(1,3)18.已知a,b是异面直线.给出下列结论:①一定存在平面α,使直线b⊥平面α,直线a∥平面α;②一定存在平面α,使直线b∥平面α,直线a∥平面α;③一定存在无数个平面α,使直线b与平面α交于一个定点,且直线a∥平面α;④一定存在平面α,使直线a⊥平面α,直线b⊥平面α.则所有正确结论的序号为②③.【分析】假设①④结论正确,推出矛盾结论判断①④错误,根据线面位置的性质关系判断②③.解:(1)假设①正确,则存在直线a′⊂平面α,使得a∥a′,又b⊥α,故b⊥a′,∴b⊥a,显然当异面直线a,b不垂直时,结论错误,故①错误;(2)设异面直线a,b的公垂线为m,平面α⊥m,且a,b均不在α内,则a,b均与平面α平行,故②正确;(3)在直线b上取点A,显然过点A有无数个平面均与直线a平行,故③正确;(4)假设④正确,则由a⊥α,b⊥α可得a∥b,显然这与a,b是异面直线矛盾,故④错误.故答案为:②③.三、解答题共6小题,每小题13分,共78分.解答应写出文字说明、演算步骤或证明过程..19.已知函数f(x)=sin(2x﹣).(Ⅰ)求f()的值;(Ⅱ)求f(x)的最小正周期;(Ⅲ)求函数f(x)的单调递增区间.【分析】(Ⅰ)由已知可求f()=sin=即可得解;(Ⅱ)利用正弦函数的周期公式即可求解;(Ⅲ)利用正弦函数的单调性即可求解.解:(Ⅰ)由于函数f(x)=sin(2x﹣),可得f()=sin(2×﹣)=sin =;(Ⅱ)f(x)的最小正周期T==π;(Ⅲ)令﹣+2kπ≤2x﹣≤+2kπ,k∈Z,可得:kπ﹣≤x≤kπ+,k∈Z,可得函数f(x)的单调递增区间为:[kπ﹣,kπ+],k∈Z.20.已知函数f(x)=2sin x cos x+2cos2x﹣1.(Ⅰ)求f(x)的最小正周期;(Ⅱ)求f(x)的对称中心的坐标;(Ⅲ)求函数f(x)在的区间[﹣,]上的最大值和最小值.【分析】(Ⅰ)利用辅助角公式进行化简,结合周期公式进行计算即可(Ⅱ)根据三角函数的对称性进行求解(Ⅲ)求出角的范围,结合三角函数的有界性以及最值性质进行求解即可.解:(Ⅰ)f(x)=sin2x+cos2x=2sin(2x+),则f(x)的最小正周期T=,(Ⅱ)由2x+=kπ,k∈Z,得x=kπ﹣,k∈Z,即f(x)的对称中心的坐标为(kπ﹣,0),k∈Z.(Ⅲ)当﹣≤x≤时,﹣≤2x+≤,则当2x+=时,函数取得最大值,最大值为2sin=2,当2x+=﹣时,函数取得最小值,最小值为2sin(﹣)=2×(﹣)=﹣1.21.在△ABC中,角A,B,C的对边分别为a,b,c,且a=2,cos C=﹣.(Ⅰ)求sin C的值;(Ⅱ)如果b=3,求c的值;(Ⅲ)如果c=2,求sin B的值.【分析】(Ⅰ)由同角三角函数公式以及C为三角形的内角,可得出sin C的值;(Ⅱ)由余弦定理可得c;(Ⅲ)由正弦定理求出sin A,进而求出cos A,根据大边对大角确定cos A的符号,再根据三角形内角和为π,以及两角和与差的正弦公式得出答案.解:(Ⅰ)在△ABC中,cos C=﹣,且sin2C+cos2C=1,则sin C=±,又sin C>0,故sin C=.(Ⅱ)∵a=2,b=3,∴cos C=﹣==,解得c2=16,故c=4.(Ⅲ)∵,∴,解得sin A=,又c>a,则cos A=,sin B=sin(A+C)=sin A cos C+sin C cos A=×(﹣)+×=.22.如图,四棱锥P﹣ABCD的底面是正方形,侧棱PA⊥底面ABCD,E是PA的中点.(Ⅰ)求证:CD∥平面PAB;(Ⅱ)求证:PC∥平面BDE;(Ⅲ)证明:BD⊥CE.【分析】(Ⅰ)推导出CD∥AB,由此能证明CD∥平面PAB.(Ⅱ)连结AC,BD,交于点O,连结OE,推导出OE∥PC,由此能证明PC∥平面BDE.(Ⅲ)推导出BD⊥AC,BD⊥PA,从而BD⊥平面ACE,由此能证明BD⊥CE.【解答】证明:(Ⅰ)∵四棱锥P﹣ABCD的底面是正方形,∴CD∥AB,∵CD⊄平面PAB,AB⊂平面PAB,∴CD∥平面PAB.(Ⅱ)连结AC,BD,交于点O,连结OE,∵四棱锥P﹣ABCD的底面是正方形,∴O是AC中点,∵E是PA的中点.∴OE∥PC,∵PC⊄平面BDE,OE⊂平面BDE,∴PC∥平面BDE.(Ⅲ)∵四棱锥P﹣ABCD的底面是正方形,侧棱PA⊥底面ABCD,∴BD⊥AC,BD⊥PA,∵AC∩PA=A,∴BD⊥平面ACE,∵CE⊂平面ACE,∴BD⊥CE.23.如图,在多面体ABCDEF中,底面ABCD为矩形,侧面ADEF为梯形,AF∥DE,DE ⊥AD,DC=DE.(Ⅰ)求证:AD⊥CE;(Ⅱ)求证:BF∥平面CDE;(Ⅲ)判断线段BE上是否存在点Q,使得平面ADQ⊥平面BCE?并说明理由.【分析】(I)由AD⊥DE,AD⊥CD可得AD⊥平面CDE,故而AD⊥CE;(II)证明平面ABF∥平面CDE,故而BF∥平面CDE;(III)取CE的中点P,BE的中点Q,证明CE⊥平面ADPQ即可得出平面ADQ⊥平面BCE.解:(Ⅰ)由底面ABCD为矩形,知AD⊥CD.………………(1分)又因为DE⊥AD,DE∩CD=D,………………所以AD⊥平面CDE.………………又因为CE⊂平面CDE,所以AD⊥CE.………………(Ⅱ)由底面ABCD为矩形,知AB∥CD,又因为AB⊄平面CDE,CD⊂平面CDE,所以AB∥平面CDE.………………同理AF∥平面CDE,又因为AB∩AF=A,所以平面ABF∥平面CDE.………………又因为BF⊂平面ABF,所以BF∥平面CDE.………………(Ⅲ)结论:线段BE上存在点Q(即BE的中点),使得平面ADQ⊥平面BCE.…证明如下:取CE的中点P,BE的中点Q,连接AQ,DP,PQ,则PQ∥BC.由AD∥BC,得PQ∥AD.所以A,D,P,Q四点共面.………………由(Ⅰ),知AD⊥平面CDE,所以AD⊥DP,故BC⊥DP.在△CDE中,由DC=DE,可得DP⊥CE.又因为BC∩CE=C,所以DP⊥平面BCE.………………又因为DP⊂平面ADPQ所以平面ADPQ⊥平面BCE(即平面ADQ⊥平面BCE).即线段BE上存在点Q(即BE中点),使得平面ADQ⊥平面BCE.………24.已知向量=(sin x,cos x),=(cos x,﹣cos x),设函数f(x)=•(+).(1)求f(x)的最小正周期;(2)求f(x)的单调增区间;(3)若函数g(x)=f(x)﹣k,,其中k∈R,试讨论函数g(x)的零点个数.【分析】(1)通过向量的数量积求出函数的表达式,利用二倍角公式以及两角和的正弦函数化为一个角的一个三角函数的形式,即可求出函数的最小正周期.(2)利用正弦函数的单调增区间,直接求出函数的单调增区间即可.(3)求出函数在时函数的取值范围,即可根据函数的零点的判断方法推出函数零点的个数.解:(1)函数f(x)=•(+)=(sin x,cos x)•(sin x+cos x,0)=sin2x+sin x cos x=+=.所以函数的最小正周期为:π.(2)因为函数,由,即,所以函数的单调增区间为:.(3),,所以,,函数g(x)=f(x)﹣k=﹣k,,其中k∈R,当k<0或时,零点为0个;当时函数有两个零点,当或0≤k<1时,函数有一个零点;。
Evaluation Only. Created with Aspose.Words. Copyright 2003-2016 Aspose Pty Ltd.北师大二附中2019—2020学年度高一年级第二学段语文期末考试测试题本试卷150分,考试时长150分钟。
请同学们把答案写在答题纸上,考试结束只收答题纸,不收试卷。
一、本大题共9小题。
1、下列句子中,加点的词没有词类活用现象的一项是A.老吾老,以及人之老B.臣固知王之不忍也C.君为我呼入,吾得兄事之D.项伯杀人,臣活之2、下列加点字意义及用法完全相同的一项是A.今取人则不然兵强则士勇B.缦立远视,而望幸焉廊腰缦回,檐牙高啄C.又欲肆其西封以赂秦之地封天下之谋臣D.族秦者秦也谁得而族灭也3、下列加点字意义及用法完全相同的一项是A.盘庚之迁,胥怨者民也苟以天下之大B.江南金锡不为用而为秦人积威之所劫C.因其固然今取人则不然D.或为易量或曰:六国互丧4、下列加点字意义及用法完全相同的一项是A.诸侯之所亡是故燕虽小国而后亡B.秦以攻取之外日削月割,以趋于亡C.盘盘焉将焉取之D.吾得兄事之以事秦之心礼天下之奇才5、下列加点字与例句中的用法相同的一项是例:罔民而可为也A.夜缒而出B.因人之力而敝之C.子路率尔而对曰D.二败而三胜6、下列各句中,加点字没有出现古今异义的一项是A.沛公居山东时B.金块珠砾,弃掷逦迤C.下而从六国破亡之故事D.思厥先祖父7、下列选项中与例句句式相同的一项是例句:然则一羽之不举A.夫晋,何厌之有?B.如君实责我以在位久C.百姓之不见保D.苟以天下之大8、下列有关文学常识的表述,错误的一项是A.《论语》是记录春秋末期大思想家孔子及其弟子言行的一部语录体书,是有关儒家思想的重要经典著作,《子路、曾西、冉有、公西华侍坐》选自其中。
B.《左传》是我国古代一部叙事完备的编年体史书,也是先秦散文著作的代表,它标志着我国叙事散文的成熟。
C.《答司马谏议书》是北宋文学家、政治家王安石写给司马光的回信,选自《临川先生文集》。
福建师大附中2016-2017学年下学期期末考试卷高一数学·必修4一、选择题(每小题5分,共65分;在给出的A,B,C,D 四个选项中,只有一项符合题目要求) 1. 角θ的终边与单位圆交于1(,)2P y ,则sin θ=( )(A )(B ) (C )2 (D )2±2.已知三角形的角,,A B C 的三边为,,a b c ,满足以下条件的三角形的解个数为1的是( ) A. 22,25,120a b A === B. 9,10,30a c A ===C. 06,8,60a b A === D. 011,6,45a b A ===3.若a =(2,1),b =(3,4),则向量b 在向量a 方向上的投影为( )A .52B.2C.5D.104.如图,已知3,AB a AC b BD DC a b ===, , 用、 表示AD ,则AD 等于( )A .34a b + B . 3144a b +C .1144a b +D . 1344a b +5.0000tan 21tan 24tan 21tan 24++=( )(A) 1 (B) 2 (C) 4 (D) 86.若O 为ABC ∆平面内一点,且满足()(2)0OB OC OB OC OA -⋅+-=, 则ABC ∆形状为 ( )A .钝角三角形 B.等腰三角形 C.直角三角形 D.锐角三角形 7.设函数()2sin(),f x x x ωϕ=+∈R ,其中0,||πωϕ><.若5π11π()2,()0,88f f ==且()f x 的最小正周期大于2π,则,ωϕ的值分别为( )(A )2π,312ωϕ==(B )211π,312ωϕ==-(C )111π,324ωϕ==-(D )17π,324ωϕ==8.飞机沿水平方向飞行,在A 处测得正前下方地面目标C 的俯角为30°,向前飞行10000米,到达B 处,此时测得正前下方目标C 的俯角为75°,这时飞机与地面目标的距离为( )A .5000米B .米C .4000米D .米 9. 已知1sin()63πα-=,,则2cos(2)3πα+=( ) ACD BDCAEB(A )79-(B )13- (C ) 13 (D )7910.若方程cos(2)4x m π+=在区间[0,]2π上有两个实根,则实数m 取值范围为( )(A )2[1,2--(B )2(1,2-- (C )22(D) 2,1)2 11. 已知函数2()2cos 2sin cos 1f x x x x =+-①函数()f x 关于3(,0)8π对称 ②函数()f x 关于34x π=对称 ③函数()f x 最小正周期为π ④函数()f x 向左平移8π个单位后的新函数()g x 为偶函数以上四个命题中,正确的命题的序号是:( )A. ①②③B. ①③C. ②③D. ①③④ 12.已知函数()cos(),(0,)4f x x x R πωω=+>∈,若函数()f x 在区间(,)2ππ内单调递减,则ω的取值范围为( )(A )15[,]24 (B )13[,]24 (C )3(0,]4 (D) 3[,2)413.如图,在同一平面内,点P 位于两平行直线12,l l 同侧,且P 到12,l l 的距离分别为1,3.点,M N 分别在12,l l 上,8PM PN +=,则PM PN 的最大值为( ) A.15 B.12 C.10 D. 9二、填空题(每小题5分,共25分) 14. 函数1cos 2y x =-的定义域为 . 15. 已知单位向量,a b 的夹角为3π,那么2a b -= 16. 已知[0,]2πθ∈,11cos()313πθ+=-,那么cos θ= .17. 在ABC ∆CD BD AD ==3AB =,则=⋅AD AB _________18. 如图,在ABC ∆中,3π=C ,4=BC 时,点D 在边AC 上,DB AD =,AB DE ⊥,E 为垂足,若22=DE ,则=A cos __________三、解答题(要求写出过程,共60分) 19. (本小题满分10分)已知,a b 为两个不共线向量,2,1a b ==,2,c a b d a kb =-=+ (Ⅰ)若c ∥d ,求实数k ;(Ⅱ)若7,k =-且c ⊥d ,求a 与b 的夹角. 20.(本小题满分12分)已知向量(cos ,sin )a x x =,(3,3)b =- ,记()f x a b =⋅ (Ⅰ)求()f x 的单调增区间; (Ⅱ)若[0,]x π∈,求()f x 的值域. 21. (本小题满分12分)如图所示,等腰梯形ABCD 的点C ,D 为半圆上的动点,CD ∥AB ,底边AB 为圆O 的直径,BOC θ∠=,1OB =. 设等腰梯形ABCD 的周长为y .(Ⅰ)请写出y 与θ之间的函数关系;(Ⅱ)当θ取何值时,等腰梯形ABCD 的周长最大? 22.(本小题满分12分)如图,锐角三角形ABC 中,角,,A B C 所对的边分别为,,a b c ,若2cos bcosB a cosC c A =⋅+⋅(Ⅰ)求角B 的大小;(Ⅱ)若线段BC 上存在一点D 使得2AD =,且6AC =,13-=CD ,求ABC ∆的面积.23. (本小题满分14分)已知函数()2sin 2f x x =,将函数()y f x =的图像向左平移6π个单位,再向上平移1个单位,得到函数()y g x =的图像. (Ⅰ)求函数()y g x =的解析式(Ⅱ)若对任何实数x ,不等式()2()mg x m g x +≥恒成立,求实数m 的取值范围. (Ⅲ)若区间[,]a b (,a b R ∈且a b <)满足:()y g x =在[,]a b 上至少含有30个零点,在所有满足上述条件的[,]a b 中,求b a -的最小值.福建师大附中2016-2017学年下学期期末考试卷高一数学·必修4参考答案DDADA BABAB DCA [2,2],33k k k Z ππππ-++∈126,29,4619.(Ⅰ)c ∥d(Ⅱ)7k =- 7d a b ∴=-又c d ⊥又2,1a b ==1a b ∴=,1cos 2a b a bθ∴== 又[0,]θπ∈20、(Ⅰ)()3cos f x a b x x ==(Ⅰ)322,232k x k k Z πππππ+≤-≤+∈∴()f x 的增区间为511[2,2],66k k k Z ππππ++∈(Ⅱ)0x π≤≤()f x ∴的值域为[-21.解:(Ⅰ)∵2cos bcosB a cosC c A =⋅+⋅由正弦定理知: 2sin sin sin cos sin()sin BcosB A cosC C A A C B =⋅+⋅=+=……2分4分 ∴在ADC 中,由C CD AC CD AC AD cos 2222⋅⋅-+=,6分 又)90,0(∈∠C , 45=∠∴C ,75180=∠-∠-=∠∴C B BAC ………8分ABC ∆ AB=2,…………………………………10分12分22.(Ⅰ)2cos 2(0)2y πθθ=+<<(Ⅱ)222sin2(12sin )222y θθ=+-+当1sin 22θ=时,即3πθ=时,max 5y =23.(Ⅰ)()2sin(2)f x x =,()2sin(2())12sin(2)163g x x x ππ=++=++(Ⅱ)()2()mg x m g x +≥令()g x t =,2()12u t t =-+ 1()3g x -≤≤,即13t -≤≤,()u t ∴在[-1,3]为增函数,max 23(3)155u ∴=-= 故35m ≥(Ⅲ)1()0sin(2)324g x x x k πππ=⇒+=-⇒=-或7,12x k k Z ππ=-∈, 即()g x 的零点相离间隔依次为3π和23π,故若()y g x =在[,]a b 上至少含有30个零点,则b a -的最小值为2431415333πππ⨯+⨯=.。
福建师大附中度下学期期末考试高一数学试题(满分:150分,时间:120分钟)说明:试卷分第I 卷和第II 卷两部分,请将答案填写在答卷纸上,考试结束后只交答案卷.第I 卷 共60分一、选择题:(每小题5分,共60分,在每小题给出的四个选项中,只有一项符合题目要求)1.若0sin 02sin <>αα且,则α是( *** )A. 第二象限角B. 第三象限角C. 第一或第三象限角D. 第二或第三象限角 2.︒︒︒︒+75sin 15cos 75cos 15sin 等于( *** )A. 0B. 21C. 23D. 13.如图,已知3,AB a AC b BD DC a b ===, , 用、 表示AD ,则AD 等于(***)A .34a b +B . 3144a b +C .1144a b +D . 1344a b +4.若a =(2,1),b =(3,4),则向量a 在向量b 方向上的投影为( *** ) A .52B.2C.5D.105.已知角α的终边过与单位圆交于点43(,)55P -,则sin()tan()2sin()cos(3)πααπαππα--⋅+-等于何值( *** ) A .45 B .54 C .53 D .53- 6.tan 20tan 4020tan 40︒︒︒︒+的值为( **** )A .1 BCD7.设1e 和2e 为不共线的向量,若21e ﹣32e 与k 1e +62e (k∈R)共线,则k 的值为( *** )A CDBA .k=4B .k=-4C .k=-9D . k=9 8.在ABC ∆中,若AC BC BA =+,则ABC ∆一定是(**** )A .钝角三角形B .锐角三角形C .直角三角形D .不能确定9.同时具有性质“(1)最小正周期是π;(2)图像关于直线3π=x 对称;(3)在]3,6[ππ-上是增函数”的一个函数是(****) A .)62sin(π+=x y B .)32cos(π+=x y C .)62sin(π-=x y D .)62cos(π-=x y10.如右图,ABCD 是由三个边长为1的正方形拼成的矩形,且EAB α∠=,CAB β∠=, 则αβ+的值为 ( **** ) A .34π B .2π C .3πD .4π11.已知,OA OB 是两个单位向量,且OA OB ⋅=0.若点C 在∠AOB 内,且∠AOC=30°, 则(,),OC mOA nOB m n R =+∈则mn等于( **** ) A .13 B 3 C 3 D .312.若对任意实数a ,函数215sin()36k y x ππ+=-()k N ∈在区间[],3a a +上的值54出现不少于4次且不多于8次,则k 的值为( **** )A .2B .4C .3或4D .2或3第Ⅱ卷 共90分 二、填空题:(每小题4分,共20分。
湖南师大附中2022-2021学年度高一第一学期期中考试数学试题-(这是边文,请据需要手工删加)题 答 要 不 内 线 封 密号位座____________ 号场考____________ 号 学____________ 名 姓____________级 班____________ 级 年(这是边文,请据需要手工删加)湖南师大附中2022-2021学年度高一第一学期期中考试 数 学命题:高一数学备课组 审题:高一数学备课组 时量:120分钟 满分:150分 得分:____________第Ⅰ卷(满分100分)一、选择题:本大题共11小题,每小题5分,共55分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知全集U ={1,2,3,4},集合A ={1,2},B ={2},则∁U (A ∪B)=A .{1,3,4}B .{3,4}C .{3}D .{4}2.已知a =0.67,b =70.6,c =log 0.76,则a ,b ,c 的大小关系是 A .b <c <a B .b <a <c C .c <a <b D .c <b <a3.下列各组函数中,f(x)与g(x)为相同函数的是 A .f(x)=x ,g(x)=x 2 B .f(x)=x ,g(x)=(x)2C .f(x)=x 2,g(x)=x 3x D .f(x)=|x|,g(x)=⎩⎨⎧x ,x ≥0-x ,x<04.已知函数f(x)=x +1x ,g(x)=2x +12x ,则下列结论正确的是A .f(x)是奇函数,g(x)是偶函数B .f(x)是偶函数,g(x)是奇函数C .f(x)和g(x)都是偶函数D .f(x)和g(x)都是奇函数5.已知函数f(x)=⎩⎪⎨⎪⎧2x ,x ≤1ln x ,x>1,e 为自然对数的底数,则f[f(e )]=A .0B .1C .2D .eln 26.已知幂函数f(x)的图象经过点⎝⎛⎭⎫2,14,则f ⎝⎛⎭⎫12的值为 A .-14 B .14C .-4D .47.函数f(x)=(2)x +3x 的零点所在的区间是A .(-2,-1)B .(0,1)C .(-1,0)D .(1,2) 8.函数f(x)=a -x 2+3x +2(0<a<1)的单调递增区间是A .⎝⎛⎭⎫-∞,32B . ⎝⎛⎭⎫32,+∞ C .⎝⎛⎭⎫-∞,-32 D .⎝⎛⎭⎫-32,+∞ 9.函数f(x)=lg (|x|-1)的大致图象是10.已知f(x)是定义在R 上的偶函数,且f (x )在(-∞,0]上单调递减,则不等式f (lg x )>f (-2)的解集是A.⎝⎛⎭⎫1100,100 B .(100,+∞)C.⎝⎛⎭⎫1100,+∞D.⎝⎛⎭⎫0,1100∪(100,+∞) 11.已知投资x 万元经销甲商品所获得的利润为P =x 4;投资x 万元经销乙商品所获得的利润为Q =a2x (a>0).若投资20万元同时经销这两种商品或只经销其中一种商品,使所获得的利润不少于5万元,则a 的最小值为A. 5 B .5 C. 2 D .2 答题卡题 号 1 2 3 4 5 6 7 8 9 10 11 得分 答 案12.已知100a =5,10b =2,则2a +b =__________.13.函数f(x)=11-2x的定义域是__________.14.若函数f(x)=|2x -2|-m 有两个不同的零点,则实数m 的取值范围是__________.三、解答题:本大题共3个小题,共30分.解答应写出文字说明,证明过程或演算步骤. 15.(本小题满分8分)(1)计算:2723-2log 23×log 218+log 23×log 34;(2)已知0<x <1,且x +x -1=3,求x 12-x -12的值.已知A={x|2x2+ax+2=0},B={x|x2+3x-b=0},且A∩B={2}.(1)求a,b的值;(2)设全集U=A∪B,求(∁U A)∪(∁U B).已知函数f(x)=b·a x (a >0,且a ≠1,b ∈R )的图象经过点A (1,6),B (3,24).(1)设g (x )=1f (x )+3-16,确定函数g (x )的奇偶性;(2)若对任意x ∈(-∞,1],不等式⎝⎛⎭⎫a b x ≥2m +1恒成立,求实数m 的取值范围.一、本大题共2个小题,每小题6分,共12分.18.设全部被4除余数为k(k=0,1,2,3)的整数组成的集合为A k, 即A k={x|x=4n+k,n∈Z},则下列结论中错误..的是()A. 2022∈A0B.-1∈A3C. 若a∈A k,b∈A k,则a-b∈A0D. a+b∈A3,则a∈A1,b∈A219.若函数f(x)=lg(ax-1)-lg(x-1)在区间[2,+∞)上是增函数,则a的取值范围是________.二、本大题共3个大题,共38分.20.(本小题满分12分)已知函数f(x)=x2+4ax+2a+6.(1)若函数y=log2f(x)的最小值为2,求a的值;(2)若对任意x∈R,都有f(x)≥0成立,求函数g(a)=2-a|a+3|的值域.今年入秋以来,某市多有雾霾天气,空气污染较为严峻.市环保争辩所对近期每天的空气污染状况进行调查争辩后发觉,每一天中空气污染指数f (x )与时刻x (时)的函数关系为:f (x )=|log 25(x +1)-a |+2a +1,x ∈[0,24],其中a 为空气治理调整参数,且a ∈(0,1).(1)若a =12,求一天中哪个时刻该市的空气污染指数最低;(2)规定每天中f (x )的最大值作为当天的空气污染指数,要使该市每天的空气污染指数不超过3,则调整参数a 应把握在什么范围内?22.(本小题满分13分)已知函数f(x)=x2+9,g(x)=ax-3.(1)当a=1时,确定函数h(x)=f(x)-g(x)在(0,+∞)上的单调性;(2)若对任意x∈[0,4],总存在x0∈[-2,2],使得g(x0)=f(x)成立,求实数a的取值范围.湖南师大附中2022-2021学年度高一第一学期期中考试数学参考答案-(这是边文,请据需要手工删加)湖南师大附中2022-2021学年度高一第一学期期中考试数学参考答案第Ⅰ卷(满分100分)11.A【解析】设投资x万元经销甲商品,投资(20-x)万元经销乙商品,总利润为y,则y=P+Q=x4+a2·20-x,0≤x≤20.令y≥5,则x4+a2·20-x≥5,即a20-x≥10-x2,即a≥1220-x对0≤x≤20恒成立.而f(x)=1220-x的最大值为5,所以a min=5,选A.二、填空题:本大题共3个小题,每小题5分,共15分.12.113. (-∞,0)14.(0,2)【解析】令|2x-2|-m=0,则|2x-2|=m.据题意,函数y=|2x-2|的图象与直线y=m有两个不同的交点,得0<m<2.三、解答题:本大题共3个小题,共30分.解答应写出文字说明,证明过程或演算步骤.15.【解析】(1)原式=(33)23-3×log22-3+log23×log322=9-3×(-3)+2=20.(4分)(2)由于x+x-1=3,则⎝⎛⎭⎫x12-x-122=x+x-1-2=1.(6分)由于0<x<1,则x12-x-12=x-1x=x-1x<0,所以x12-x-12=-1.(8分)16.【解析】由于A∩B={2},则2∈A,且2∈B.(3分)所以8+2a+2=0,且4+6-b=0,得a=-5,b=10. (5分)(2)由于A={x|2x2-5x+2=0}=⎩⎨⎧⎭⎬⎫12,2,B={x|x2+3x-10=0}={-5,2}.(7分)则U=⎩⎨⎧⎭⎬⎫-5,12,2,∁U A={-5},∁U B=⎩⎨⎧⎭⎬⎫12,(9分)所以(∁U A)∪(∁U B)=⎩⎨⎧⎭⎬⎫-5,12.(10分)17.【解析】(1)由已知,f(1)=6,f(3)=24,则⎩⎪⎨⎪⎧a·b=6b·a3=24,(1分)解得a=2,b=3,所以f(x)=3·2x.(2分)由题设,g(x)=13·2x+3-16=16⎝⎛⎭⎪⎫22x+1-1=16·1-2x2x+1.(3分)明显g(x)的定义域为R,又g(-x)=16·1-2-x2-x+1=16·2x-11+2x=-g(x),所以g(x)为奇函数.(6分)(2)设h(x)=⎝⎛⎭⎫abx=⎝⎛⎭⎫23x,则当x ∈(-∞,1]时,h (x )≥2m +1恒成立, 所以h (x )min ≥2m +1. (8分)由于h (x )在R 上为减函数,则当x ∈(-∞,1]时,h min (x )=h (1)=23.(10分)由2m +1≤23,得m ≤-16,所以m 的取值范围是⎝⎛⎦⎤-∞,-16.(12分) 第Ⅱ卷(满分50分)一、本大题共2个小题,每小题6分,共12分. 18.D19.⎝⎛⎭⎫12,1 【解析】由于f(x)=lg ax -1x -1=lg ⎝ ⎛⎭⎪⎫a +a -1x -1在[2,+∞)上是增函数,则y =a +a -1x -1在[2,+∞)上是增函数,所以a -1<0,即a <1.又f(x)在[2,+∞)上有意义,则当x ∈[2,+∞)时, ax -1>0恒成立,即a>1x恒成立,所以a>⎝⎛⎭⎫1x max =12. 故a ∈⎝⎛⎭⎫12,1.二、本大题共3个大题,共38分.20.【解析】(1)f(x)=(x +2a)2+2a +6-4a 2.(1分) 据题意,f(x)的最小值为4,则2a +6-4a 2=4,(3分) 即2a 2-a -1=0,即(2a +1)(a -1)=0,所以a =1或-12.(5分)(2)由于f(x)≥0恒成立,则Δ=16a 2-4(2a +6)≤0,(6分)即2a 2-a -3≤0,即(2a -3)(a +1)≤0.所以-1≤a ≤32.(7分)g(a)=2-a|a +3|=2-a(a +3)=-a 2-3a +2=-⎝⎛⎭⎫a +322+174.(9分)由于g(a)在区间⎣⎡⎦⎤-1, 32单调递减, 所以g(a)max =g(-1)=4, g(a)min =g ⎝⎛⎭⎫32=-194.(11分) 所以函数g(a)的值域是⎣⎡⎦⎤-194,4.(12分) 21.【解析】(1)由于a =12,则f(x)=|log 25(x +1)-12|+2≥2.(2分)当f(x)=2时,log 25(x +1)-12=0,得x +1=2512=5,即x =4.(3分)所以一天中晚上4点该市的空气污染指数最低.(4分) (2)设t =log 25(x +1),则当0≤x ≤24时,0≤t ≤1.(6分) 设g(t)=||t -a +2a +1,t ∈[0,1],则g(t)=⎩⎪⎨⎪⎧-t +3a +1,0≤t ≤at +a +1,a ≤t ≤1.(7分)明显g(t)在[0,a]上是减函数,在[a ,1]上是增函数,则f(x)max =max {g(0),g(1)}. (8分) 由于g(0)=3a +1,g(1)=a +2,法一:由g(0)-g(1)=2a -1>0,得a>12.所以f(x)max =⎩⎨⎧a +2,0<a ≤123a +1,12<a<1.(10分)当0<a ≤12时,2<a +2≤52<3,符合要求;(11分)当12<a<1时,由3a +1≤3,得12<a ≤23.(12分) 故调整参数a 应把握在⎝⎛⎦⎤0,23内.(13分) 法二:由题:⎩⎨⎧g (0)≤3g (1)≤3a>0即⎩⎨⎧3a +1≤3a +3≤3a>0解得0<a ≤23故调整参数a 应把握在⎝⎛⎦⎤0,23内. 22.【解析】(1)当a =1时,h(x)=x 2+9-x +3.设x 1>x 2>0,则h(x 1)-h(x 2)=x 21+9-x 1-x 22+9+x 2=x 21+9-x 22+9-(x 1-x 2)=x 21-x 22x 21+9+x 22+9-(x 1-x 2)=(x 1-x 2)⎝ ⎛⎭⎪⎪⎫x 1+x 2x 21+9+x 22+9-1. (2分) 由于x 21+9>x 21=x 1,x 22+9>x 22=x 2,则x 21+9+x 22+9>x 1+x 2, 得x 1+x 2x 21+9+x 22+9<1,即x 1+x 2x 21+9+x 22+9-1<0.(4分)又x 1-x 2>0,则h(x 1)-h(x 2)<0,即h(x 1)<h(x 2), 所以h(x)在(0,+∞)上是减函数.(5分)(2)当x ∈[0,4]时,x 2∈[0,16],则x 2+9∈[9,25], 所以f(x)的值域是[3,5].(6分)当x ∈[-2,2]时,设函数g(x)的值域为M. 据题意,[3,5]M.(8分)①当a =0时,g(x)=-3,不合题意.(9分)②当a >0时,g(x)在[-2,2]上是增函数,则⎩⎪⎨⎪⎧g (2)≥5g (-2)≤3,即⎩⎨⎧2a -3≥5-2a -3≤3a>0,解得a ≥4. ③当a <0时,g(x)在[-2,2]上是减函数,则⎩⎪⎨⎪⎧g (-2)≥5g (2)≤3,即⎩⎨⎧-2a -3≥52a -3≤3a<0,解得a ≤-4.(12分) 综上,a 的取值范围是(-∞,-4]∪[4,+∞).(13分)。
2022-2023学年高一下数学期末模拟试卷注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置. 3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符. 4.作答选择题,必须用2B 铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B 铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题:本大题共10小题,每小题5分,共50分。
在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知过点)A的直线l 的倾斜角为60︒,则直线l 的方程为( )A .40y +-=B 20y --=C 40y ++=D 20y -+=2.设定义域为R 的奇函数()f x 是增函数,若()2cos 2(2sin 2)0f m f m θθ-+-<对R θ∈恒成立,则实数m 的取值范围是( )A .(1)∞B .[1)-∞C .1,2⎛⎫-+∞ ⎪⎝⎭D .1,2⎡⎫-+∞⎪⎢⎣⎭3.设平面向量(1,2)a =,(2,)b y =-,若a b ⊥,则a b +等于( )A .BCD4.若关于x 的不等式220x ax +->在区间[]1,5上有解,则a 的取值范围是( ) A .23,5⎛⎫-+∞ ⎪⎝⎭B .23,15⎡⎤-⎢⎥⎣⎦C .()1,+∞D .23,5⎛⎤-∞ ⎥⎝⎦5.数列{}n a 中,若*11,sin ,2n n a a a a n N π+⎛⎫==∈ ⎪⎝⎭,则下列命题中真命题个数是( )(1)若数列{}n a 为常数数列,则1a =±; (2)若()0,1a ∈,数列{}n a 都是单调递增数列; (3)若a Z ∉,任取{}n a 中的9项()19129,,1k k a a k k k <<<<构成数列{}n a 的子数{}n k a (1,2,,9n =),则{}n k a 都是单调数列.A .0个B .1 个C .2个D .3个6.若3,2θππ⎛⎫∈ ⎪⎝⎭,直线:tan 1l y x θ=⋅+的倾斜角等于( ) A .θπ-B .θC .2πθ-D .πθ+7.圆心为()1,1-且过原点的圆的一般方程是 A .222210x y x y ++-+= B .222210x y x y +-++= C .22220x y x y ++-=D .22220x y x y +-+=8.已知圆心为C (6,5),且过点B (3,6)的圆的方程为( ) A .22(6)(5)10x y -+-= B .22(6)(5)10x y +++= C .22(5)(6)10x y -+-=D .22(5)(6)10x y +++=9.如图,一船自西向东匀速航行,上午10时到达一座灯塔P 的南偏西75°距塔64海里的M 处,下午2时到达这座灯塔的东南方向的N 处,则这只船的航行速度为( )海里/小时.A .6B .46C .86D .16610.如果连续抛掷一枚质地均匀的骰子100次,那么第95次出现正面朝上的点数为4的概率为( ) A .1920B .16C .120D .195二、填空题:本大题共6小题,每小题5分,共30分。
2020年福建省福州市师大附属中学高一数学理下学期期末试卷含解析一、选择题:本大题共10小题,每小题5分,共50分。
在每小题给出的四个选项中,只有是一个符合题目要求的1. 当0<x≤时,4x<log a x,则a的取值范围是( )A.(0,)B.(,1)C.(1,)D.(,2)参考答案:B【考点】对数函数图象与性质的综合应用.【专题】计算题;压轴题.【分析】由指数函数和对数函数的图象和性质,将已知不等式转化为不等式恒成立问题加以解决即可【解答】解:∵0<x≤时,1<4x≤2要使4x<log a x,由对数函数的性质可得0<a<1,数形结合可知只需2<log a x,∴即对0<x≤时恒成立∴解得<a<1故选 B 【点评】本题主要考查了指数函数和对数函数的图象和性质,不等式恒成立问题的一般解法,属基础题2. 函数的零点一定位于区间( ).(A)(1,2) (B)(2,3) (C)(3 ,4) (D)(5 , 6)参考答案:B3. 已知,若,则下列不等式成立的是()A. B. C. D.参考答案:C【分析】根据不等式的性质对每一个选项进行证明,或找反例进行排除.【详解】解:选项A:取,此时满足条件,则,显然,所以选项A错误;选项B:取,此时满足条件,则,显然,所以选项B错误;选项C:因为,所以,因为,所以,选项C正确;选项D:取,当,则,所以,所以选项D错误;故本题选C.【点睛】本题考查了不等式的性质,熟知不等式的性质是解题的关键.4. 曲线f ( x,y ) = 0关于定点M ( α,β )对称的曲线的方程是()(A)f( α –x,β –y ) = 0 (B)f( α + x,β + y ) = 0(C)f( 2 α –x,2 β –y ) = 0 (D)f( 2 α + x,2 β + y ) = 0参考答案:C5. 某流程如上图所示,现输入如下四个函数,则可以输出的函数是()A. B. C. D.第11题图参考答案:D6. 在数列{a n}中,,则的值为()A. B. C. 5 D. 以上都不对参考答案:B 【分析】先通过列举找到数列的周期,再根据周期求解.【详解】由题得,所以数列的周期为3,又2019=3×673,所以.故选:B【点睛】本题主要考查数列的递推公式和数列的周期性,意在考查学生对这些知识的理解掌握水平和分析推理能力.7. 设是奇函数且在(-∞,0)上是减函数,则不等式的解集为()A. B.C. D.参考答案:A8. 若不等式kx2+kx﹣1≤0(k为实数)的解集为R,则直线kx+y﹣2=0的斜率的最大值等于()A.2 B.4 C.5 D.8参考答案:B9. 某几何体的三视图如图(其中侧视图中的圆弧是半圆),则该几何体的表面积为()(A)(B)(C)(D)参考答案:A10. 已知是定义在上的偶函数,且在上是增函数,设,,,则的大小关系是ks5uA.B.C.D.参考答案:C略二、填空题:本大题共7小题,每小题4分,共28分11. 在空间直角坐标系O﹣xyz中,点(3,﹣1,m)平面Oxy对称点为(3,n,﹣2),则m+n= .参考答案:1【考点】JH:空间中的点的坐标.【分析】在空间直角坐标系O﹣xyz中,点(x,y,z)平面Oxy对称点为(x,y,﹣z).【解答】解:∵在空间直角坐标系O﹣xyz中,点(3,﹣1,m)平面Oxy对称点为(3,n,﹣2),∴m=2,n=﹣1,∴m+n=2﹣1=1.故答案为:1.12. 给定下列命题:;;;;.其中错误的命题是______(填写相应序号).参考答案:①②③④⑤【分析】利用不等式的基本性质,即可判断5个命题的真假.【详解】由不等式性质可知对于①②,只有当时,才成立,故①②都错误;由不等式性质可知对于③,只有当且时,才成立,故③错误;由不等式性质可知对于④,只有当,时,才成立,故④错误;由不等式性质可知对于⑤,由得,从而,故⑤错误.故答案为:①②③④⑤【点睛】本题考查不等式的基本性质的应用,注意各个性质成立的条件,属于基础题.13. 一批设备价值1万元,由于使用磨损,每年比上一年价值降低50%,则3年后这批设备的价值为(万元)(用数字作答).参考答案:【考点】根据实际问题选择函数类型.【专题】应用题.【分析】根据一批设备价值1万元,,每年比上一年价值降低50%,可得每年设备的价值,组成为公比的等比数列,由此可得结论.【解答】解:∵一批设备价值1万元,,每年比上一年价值降低50%,∴3年后这批设备的价值为(1﹣50%)3=故答案为:【点评】本题考查等比数列模型的构建,考查学生分析解决问题的能力,属于基础题.14. 给出下列命题:(1)存在实数,使;(2)函数是偶函数;(3)是函数的一条对称轴;(4)若是第一象限的角,且,则;(5)将函数的图像先向左平移,然后将所得图像上所有点的横坐标变为原来的2倍(纵坐标不变),所得到的图像对应的解析式为.其中真命题的序号是.参考答案:(2)(3)(5)略15. 已知点A(2,-4),B(-6, 2),则的坐标为参考答案:(-8,2)16. 若,且,则= 。
南京师范大学附属实验学校2023-2024学年度第一学期高一年级期中考试数学试卷分值:150 分 时间:120 分钟一、单项选择题:本题共8小题,每小题5分,共40分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知集合A ={−1,0,1},B ={1,2,5},则A⋂B = ( )A .{1}B .{−1,0,1,5}C .{−1,0,1,2,5}D .{−1,0,2,5}2.不等式(x−3)(x +1)<0的解集是 ( )A .(−∞,−3)∪(1,+∞)B .(−∞,−1)∪(3,+∞)C .(−3,1)D .(−1,3)3.已知函数f (x )由下表给出,则f [f (1)]等于 ( )x1234f (x )2341A .4B .3C .2D .14.已知2x 2−kx +m <0的解集为(−1,t )(t >−1),则k +m 的值为 ( )A .−1B .−2C .1D .25. 已知a,b ∈R ,则“”是“a b >1”的 ( )A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件6.若2x =5,lg 2≈0.3010,则x 的值约为 ( )A .2.301B .2.322C .2.507D .2.6997.已知函数f (x )=ax 5+bx 3+2,若f (m )=7,则f (−m )=( )A.—7B.—3C.3D.78.函数y =x 4-2x 2的大致图象是 ( )A .B .a bC.D.二、多项选择题:本大题共4小题,每小题5分,共20分.在每小题给出的四个选项中有多项是符合题目要求的,全部选对得5分,部分选对但不全的得2分,错选或不选得0分,请把答案填写在答题卡相应位置上.9.满足{1,3}∪A={1,3,5}的集合A可能是()A.{5}B.{1,5}C.{1,3}D.{1,3,5}10. 下面命题为假命题的是()A.若a>b>c,ac<0,则b−a>0cB.函数y=1的单调减区间是(-∞,0)∪(0,+∞)xC.y=x+1的最小值是2xD.y=x2与s=(t)2是同一函数11.已知f(2x+1)=x2,则下列结论正确的是()A.f(-3)=4B.f(x)=x2−2x+1C.f(x)=x2D.f(3)=9412. 已知函数f(x)={x+2,x≤−1x2,−1<x<2,关于函数f(x)的结论正确的是()A.f(x)的定义域为RB. f(x)的值域为(-∞,4)C. f(1)=3D.若f(x)=3,则x的值是3三、填空题:本题共4小题,每小题5分,共20分。
湖南省长沙市湖南师范大学附中2022-2023学年高一下学期第一次大练习生物试题时量:75分钟满分:100分第Ⅰ卷选择题(共40分)一、选择题:本题共12小题,每小题2分,共24分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.孟德尔在一对相对性状杂交实验的研究过程中,发现了分离定律。
下列几组比例,最能说明分离定律实质的是A.F₂的表现型比为3₂1B.F₂产生配子的比为1₂1C.F₂的遗传因子组成比为1₂2₂1D.测交后代的比为1₂12.如图为山羊的毛色遗传图解(相关遗传因子用A和a表示),下列相关叙述,错误的是A.白色对黑色为显性B.图中黑色山羊均为纯合子C.4和5再生一只白色雄性山羊的概率为3/4D.7为纯合子的概率为1/33.下列有关孟德尔一对相对性状杂交实验的说法中正确的是①豌豆是自花传粉,实验过程免去了人工授粉的麻烦②“豌豆在自然状态下一般是纯种”属于孟德尔假说的内容③解释实验现象时,提出的“假说”是:F₂产生配子时,成对的遗传因子分离④解释性状分离现象的“演绎”过程是:若F₂产生配子时,成对的遗传因子分离,则测交后代出现两种表型,且比例接近1∶1A.₂₂B.₂₂₂C.₂₂D.₂₂4.采用以下哪一组方法,可以依次解决₂~₂中的遗传学问题①鉴定一只白羊是否纯种②在一对相对性状中区分显隐性③不断提高小麦抗病品种的纯合度④检验杂种F₂的遗传因子组成A.杂交、自交、测交、测交B.测交、杂交、自交、测交C.测交、测交、杂交、自交D.杂交、杂交、杂交、测交5.牵牛花的叶子有普通叶和枫形叶两种,种子有黑色和白色两种。
现用纯种的普通叶白色种子和纯种的枫形叶黑色种子作为亲本进行杂交,得到的F₂为普通叶黑色种子,F₂自交得F₂,结果符合基因的自由组合定律。
下列对F₂的描述中错误的是A.F₂中有9种基因型、4种表型B.F₂中普通叶与枫形叶之比为3₂1C.F₂中与亲本表型相同的个体大约占3/8D.F₂I中普通叶白色种子个体的基因型有4种6.杜洛克大红猪皮毛颜色由常染色体上两对独立遗传的基因(R、r和T、t)控制。
炎德·英才大联考湖南师大附中2025届高三月考试卷(二)地理本试题卷分选择题和非选择题两部分,共8页。
时量75分钟,满分100分。
第I 卷选择题(共48分)一、选择题(本大题共16小题,每小题3分,共48分。
在每小题给出的四个选项中,只有一项是符合题目要求)宁夏西海固是国家重点扶贫区域,该区域生态环境差,贫困人口多,扶贫措施以生态移民为主,北部闽宁镇成为移民首选地。
通过生态移民,西海固成功实现脱贫,闽宁产业也实现了多元化,主要以菌类、葡萄酒、光伏、电子装配等为主。
下图是西海固、闽宁镇区位略图。
据此完成下面小题。
1. 生态移民对西海固的积极意义是( )A. 优化居住条件B. 改善人口结构C. 减轻生态压力D. 增加劳务收入2. 闽宁成为移民首选地的自然因素是( )A 地形和水源 B. 地形和降水 C. 气温和水源 D. 气温和降水3. 闽宁实现产业多元化的有利条件是( )①自然环境优美②劳动力数量多③产业协作基础好④银川辐射作用强A. ①③B. ①④C. ②③D. ②④【答案】1. C2. A3. D 【解析】【1题详解】生态移民是将生态环境严重破坏地区的部分人口迁出,从而减轻生态压力,C 项正确;生态移民可以改善迁移者的居住条件,但不是能改善西海固的居住条件,A错误;生态移民为整体搬迁,对人口结构影响较.小,B错误;不会增加西海固的劳务收入,D错误。
所以选C。
【2题详解】闽宁地形平坦,有黄河经过,因此闽宁成为移民首选地的自然因素是地形和水源,A正确;该地降水较少,B错误;区域气温差异较小,气温不是影响移民的主要因素,CD错误。
所以选A。
【3题详解】自然环境不是影响产业多元化的主要因素,①错误;闽宁接收生态移民,获得大量劳动力,②正确;闽宁经济发展水平较低,产业协作基础较差,③错误;距离银川较近,受银川的辐射作用较强,④正确。
所以选D。
【点睛】生态移民亦称环境移民系指原居住在自然保护区、生态环境严重破坏地区、生态脆弱区以及自然环境条件恶劣、基本不具备人类生存条件的地区的人口,搬离原来的居住地,在另外的地方定居并重建家园的人口迁移。
2020年福建省师大附中学高一下学期期末考试数学试题必修4一、选择题(每小题5分,共65分;在给出的A,B,C,D四个选项中,只有一项符合题目要求)1. 角的终边与单位圆交于,则()A. B. C. D.【答案】D【解析】由单位圆的性质可得:,则: .本题选择D选项.2. 已知三角形的角的三边为,满足以下条件的三角形的解个数为1的是()A. B.C. D.【答案】D【解析】由所给条件:,满足题意的三角形个数为0个;,满足题意的三角形个数为2个;,满足题意的三角形个数为0个;,满足题意的三角形个数为1个;本题选择D选项.3. 若=(2,1),=(3,4),则向量在向量方向上的投影为()A. B. 2 C. D. 10【答案】A【解析】由题意可得:,则向量在向量方向上的投影为 .4. 如图,已知表示,则等于()A. B. C. D.【答案】D【解析】由题意可得: .本题选择D选项.点睛:(1)应用平面向量基本定理表示向量的实质是利用平行四边形法则或三角形法则进行向量的加、减或数乘运算.(2)用向量基本定理解决问题的一般思路是:先选择一组基底,并运用该基底将条件和结论表示成向量的形式,再通过向量的运算来解决.5. ()A. 1B. 2C. 4D. 8【答案】A【解析】由题意:,则: .本题选择A选项.6. 若为平面内一点,且满足,则形状为()A. 钝角三角形B. 等腰三角形C. 直角三角形D. 锐角三角形【答案】B【解析】由题意可得: ,即:,据此有:,即形状为等腰三角形.点睛:判断三角形形状的两种途径一是化边为角;二是化角为边,并常用正弦(余弦)定理实施边、角转换.7. 设函数,其中.若且的最小正周期大于,则的值分别为()A. B. C. D.【答案】A【解析】由f(x)的最小正周期大于2π,得,又,得,∴T=3π,则 .∴,∴ .取k=0,得 .∴ .本题选择A选项.8. 飞机沿水平方向飞行,在A处测得正前下方地面目标C的俯角为30°,向前飞行10000米,到达B处,此时测得正前下方目标C的俯角为75°,这时飞机与地面目标的距离为()A. 5000米B. 5000米C. 4000米D. 米【答案】B【解析】试题分析:由题意可得,AB=10000,A=30°,C=45°,△ABC中由正弦定理可得,,,故选B。
考点:正弦定理在实际问题中的应用。
点评:中档题,解题的关键是根据已知题意把所求的实际问题转化为数学问题,结合图形分析,恰当选用9. 已知,,则()A. B. C. D.【答案】A【解析】由题意:,则: .本题选择A选项.点睛:给值求值问题一般是正用公式将所求“复角”展开,看需要求相关角的哪些三角函数值,然后根据角的范围求出相应角的三角函数值,代入展开式即可.10. 若方程在区间上有两个实根,则实数取值范围为()A. B. C. D.【答案】B【解析】绘制函数区间上的图象,结合题意可得实数取值范围为 .本题选择B选项.11. 已知函数①函数关于对称②函数关于对称③函数最小正周期为④函数向左平移个单位后的新函数为偶函数以上四个命题中,正确的命题的序号是:()A. ①②③B. ①③C. ②③D. ①③④【解析】整理函数的解析式:,据此可得:①函数关于对称②当时,,函数的对称轴为不是;③函数最小正周期为;④函数向左平移个单位后的新函数为偶函数;综上:正确的命题的序号是①③④.本题选择D选项.12. 已知函数,若函数在区间内单调递减,则的取值范围为( )A. B. C. D.【答案】C【解析】由可得函数的单调递减区间为,令可得:,结合题意有:,求解不等式组有:,且,故:的取值范围为.本题选择C选项.13. 如图,在同一平面内,点位于两平行直线同侧,且到的距离分别为.点分别在上,,则的最大值为( )A. 15B. 12C. 10D. 9【答案】A【解析】如下图,过点P作的垂线为y轴,以为x轴,建立平面直角坐标系,:y=0, ,P(0,-1),设,所以由,可知,或,而当时,当时,,可知两种情况最大值均为15,选A.【点睛】向量是衔接代数和几何的桥梁,所以用坐标法解决向量问题是,是代数在几何中的何中的体现,对于规矩,等腰,垂直的图形,更多的会采用坐标法。
建立合适的坐标将有利于我们解决向量及几何问题。
二、填空题(每小题5分,共25分)14. 函数的定义域为____________.【答案】【解析】函数有意义,则:,求解三角不等式可得函数的定义域为.15. 已知单位向量的夹角为,那么=_______【答案】【解析】解:因为单位向量,的夹角为,故,故16. 已知,,那么________.【答案】【解析】由题意可得:,则: .17. 在中,,,则_________【答案】【解析】由题意可得:D为△ABC的内心,如图所示,取AB的中点E,则:,且DE为边AB的中垂线,据此有: .学§科§网...学§科§网...学§科§网...学§科§网...学§科§网...学§科§网...学§科§网... 18. 如图,在中,时,点在边上,,,为垂足若,则__________【答案】【解析】在△ABC中,∵DE⊥AB,DE=,∴AD= ,∴BD=AD=.∵AD=BD,∴A=∠ABD,∴∠BDC=∠A+∠ABD=2∠A,在△BCD中,由正弦定理得,即,整理得cosA= .三、解答题(要求写出过程,共60分)19. 知为两个不共线向量,,(Ⅰ)若∥,求实数;(Ⅱ)若且⊥,求与的夹角.【答案】(Ⅰ)(Ⅱ)【解析】试题分析:(Ⅰ)利用向量平行的充要条件得到关于实数的方程组,求解方程组可得;(Ⅱ)向量垂直,则数量积为0,结合夹角公式求得余弦值,据此可得.试题解析:(Ⅰ)∥(Ⅱ)又又,又20. 已知向量,,记(Ⅰ)求的单调增区间;(Ⅱ)若,求的值域.【答案】(Ⅰ)的增区间为(Ⅱ)【解析】试题分析:(Ⅰ)化简函数的解析式为,结合正弦函数的性质可得的增区间为.(Ⅱ)由函数的解析式结合函数的定义域可得函数的值域为.试题解析:(Ⅰ)(Ⅰ)的增区间为(Ⅱ)的值域为点睛:(1)题目条件给出向量的坐标中含有三角函数的形式,运用向量共线或垂直或等式成立等,得到三角函数的关系式,然后求解.(2)给出用三角函数表示的向量坐标,要求的是向量的模或者其他向量的表达形式,解题思路是经过向量的运算,利用三角函数在定义域内的有界性,求得值域等.21. 如图所示,等腰梯形的点,为半圆上的动点,∥,底边为圆的直径,,. 设等腰梯形的周长为.(Ⅰ)请写出与之间的函数关系;(Ⅱ)当取何值时,等腰梯形的周长最大?【答案】(Ⅰ)(Ⅱ)时,【解析】试题分析:(Ⅰ)利用几何关系可得与之间的函数关系是. (Ⅱ)利用二倍角公式化简三角函数的解析式可得时,.试题解析:(Ⅰ)(Ⅱ)当时,即时,22. 如图,锐角三角形中,角所对的边分别为,若(Ⅰ)求角B的大小;(Ⅱ)若线段上存在一点使得,且,,求的面积.【答案】(Ⅰ);(Ⅱ)【解析】试题分析:(1)利用题意求得;(2)利用正弦定理结合余弦定理可得试题解析:解法一:(1)在中,,,,解法二:(1)在中,,,,,,.(2)在中,由余弦定理可得,, ,在中,由正弦定理可得,,.23. 已知函数,将函数的图像向左平移个单位,再向上平移1个单位,得到函数的图像.(Ⅰ)求函数的解析式(Ⅱ)若对任何实数,不等式恒成立,求实数的取值范围.(Ⅲ)若区间(且)满足:在上至少含有30个零点,在所有满足上述条件的中,求的最小值.【答案】(Ⅰ);(Ⅱ);(Ⅲ) .【解析】试题分析:(Ⅰ)利用题意结合平移变换的性质可得;(Ⅱ)不等式恒成立等价于,结合对勾函数的性质可得.(Ⅲ)求得两个零点之间的距离,结合函数的特征可得的最小值为.试题解析:(Ⅰ),(Ⅱ)令,,即,在[-1,3]为增函数,故(Ⅲ)或,即的零点相离间隔依次为和,故若在上至少含有30个零点,则的最小值为.点睛:已知f(x)=A sin(ωx+φ)(A>0,ω>0)的部分图象求其解析式时,A比较容易看图得出,困难的是求待定系数ω和φ,常用如下两种方法:(1)由即可求出ω;确定φ时,若能求出离原点最近的右侧图象上升(或下降)的“零点”横坐标x0,则令ωx0+φ=0(或ωx0+φ=π),即可求出φ.(2)代入点的坐标,利用一些已知点(最高点、最低点或“零点”)坐标代入解析式,再结合图形解出ω和φ,若对A,ω的符号或对φ的范围有要求,则可用诱导公式变换使其符合要求.。