数形结合巧解函数选择题
- 格式:pdf
- 大小:71.04 KB
- 文档页数:2
方法技巧专题一 数形结合思想训练数形结合思想是指从几何直观的角度,利用几何图形的性质研究数量关系,寻求代数问题的解决方法(以形助数),或利用数量关系来研究几何图形的性质解决几何问题(以数助形)的一种数学思想.一、选择题1.我们学习了一次函数、二次函数和反比例函数,回顾学习过程,都是按照列表、描点、连线得到函数的图象,然后根据函数的图象研究函数的性质,这种研究方法主要体现的数学思想是( )A .演绎B .数形结合C .抽象D .公理化2.若实数a ,b ,c 在数轴上对应的点如图F 1-1所示,则下列式子中正确的是( )图F 1-1A .ac >bcB .|a -b |=a -bC .-a <-b <-cD .-a -c >-b -c3.[2017·怀化] 一次函数y =-2x +m 的图象经过点P (-2,3),且与x 轴、y 轴分别交于点A 、B ,则△AOB 的面积是( )A .12 B.14C .4D .8 4.[2017·聊城] 端午节前夕,在东昌湖举行的第七届全民健身运动会龙舟比赛中,甲、乙两队500米的赛道上,所划行的路程y (m )与时间x (min)之间的函数关系式如图F 1-2所示,下列说法错误的是( )图F 1-2A .乙队比甲队提前0.25 min 到达终点B .当乙队划行110 m 时,落后甲队15 mC .0.5 min 后,乙队比甲队每分钟快40 mD .自1.5 min 开始,甲队若要与乙队同时到达终点,甲队的速度需提高到255 m /min5.[2016·天津] 已知二次函数y =(x -h )2+1(h 为常数),在自变量x 的值满足1≤x ≤3的情况下,与其对应的函数值y 的最小值为5,则h 的值为( )A .1或-5B .-1或5C .1或-3D .1或36.[2017·鄂州 ] 如图F 1-3,抛物线y =ax 2+bx +c 的图象交x 轴于A (-2,0)和点B ,交y 轴负半轴于点C ,且OB =O C.下列结论:①2b -c =2;②a =12;③ac =b -1;④a +bc>0.其中正确的个数有( )图F 1-3A .1个B .2个C .3个D .4个 二、填空题7.如图F 1-4是由四张全等的矩形纸片拼成的图形,请利用图中空白部分面积的不同表示方法,写出一个关于a ,b 的恒等式:________.图F 1-48.[2017·十堰] 如图F 1-5,直线y =kx 和y =ax +4交于A (1,k ),则不等式kx -6<ax +4<kx 的解集为________.图F 1-59.《庄子·天下篇》中写道:“一尺之棰,日取其半,万世不竭”意思是:一根一尺的木棍,如果每天截取它的一半,永远也取不完,如图F 1-6所示.由图易得:12+122+123+…+12n =________.图F 1-610.当x =m 或x =n (m ≠n )时,代数式x 2-2x +3的值相等,则x =m +n 时,代数式x 2-2x +3的值为________. 11.已知实数a 、b 满足:a 2+1=1a ,b 2+1=1b ,则2018|a -b |=________.12.[2017·荆州] 观察下列图形:图F 1-7它们是按一定规律排列的,依照此规律,第9个图形中共有________个点. 13.(1)观察下列图形与等式的关系,并填空:图F 1-8(2)观察图F 1-9,根据(1)中结论,计算图中黑球的个数,用含有n 的代数式填空:图F 1-91+3+5+…+(2n -1)+(________)+(2n -1)+…+5+3+1=__________. 三、解答题14.[2016·菏泽] 如图F 1-10,在平面直角坐标系xOy 中,抛物线y =ax 2+bx +2过B (-2,6),C (2,2)两点. (1)试求抛物线的解析式;(2)记抛物线顶点为D ,求△BCD 的面积;(3)若直线y =-12x 向上平移b 个单位所得的直线与抛物线段BDC (包括端点B 、C )部分有两个交点,求b 的取值范围.图F 1-10参考答案1.B 2.D 3.B 4.D5.B [解析] (1)如图①,当x =3,y 取得最小值时,⎩⎪⎨⎪⎧h >3,(3-h )2+1=5,解得h =5(h =1舍去);(2)如图②,当x =1,y 取得最小值时,⎩⎪⎨⎪⎧h <1,(1-h )2+1=5,解得h =-1(h =3舍去). 6.C [解析] 在y =ax 2+bx +c 中,当x =0时,y =c ,∴C (0,c ),∴OC =-c .∵OB =OC ,∴B (-c ,0).∵A (-2,0),∴-c 、-2是一元二次方程ax 2+bx +c =0的两个不相等的实数根,∴-c ·(-2)=c a ,∵c ≠0,∴a =12,②正确;∵a =12,-c 、-2是一元二次方程12x 2+bx +c =0的两个不相等的实数根,∴-c +(-2)=-b12,即2b -c =2,①正确;把B (-c ,0)代入y =ax 2+bx +c ,得0=a (-c )2+b ·(-c )+c ,即ac 2-bc +c =0.∵c ≠0,∴ac -b +1=0,∴ac =b -1,③正确;∵抛物线开口向上,∴a >0.∵抛物线的对称轴在y 轴左侧,∴-b2a <0,∴b >0.∴a +b >0.∵抛物线与y 轴负半轴交于点C ,∴c <0.∴a +bc<0,④不正确. 7.(a -b )2=(a +b )2-4ab8.1<x <52 [解析] 将A (1,k )代入y =ax +4得a +4=k ,将a +4=k 代入不等式kx -6<ax +4<kx 中得(a +4)x -6<ax +4<(a +4)x ,解不等式(a +4)x -6<ax +4得x <52,解不等式ax +4<(a +4)x 得x >1,所以不等式的解集是1<x <52.9.1-12n (或2n-12n )10.3 11.112.135 [解析] 第1个图形有3=3×1=3个点; 第2个图形有3+6=3×(1+2)=9个点; 第3个图形有3+6+9=3×(1+2+3)=18个点; …第n 个图形有3+6+9+…+3n =3×(1+2+3+…+n )=3n (n +1)2个点.当n =9时, =135个点. 13.解:(1)1+3+5+7=16=42.观察,发现规律,第一个图形:1+3=22,第二个图形:1+3+5=32,第三个图形:1+3+5+7=42,…, 第(n -1)个图形:1+3+5+…+(2n -1)=n 2. 故答案为:42;n 2. (2)观察图形发现:图中黑球可分三部分,1到n 行,第(n +1)行,(n +2)行到(2n +1)行, 即1+3+5+…+(2n -1)+[2(n +1)-1]+(2n -1)+…+5+3+1 =[1+3+5+…+(2n -1)]+(2n +1)+[(2n -1)+…+5+3+1] =n 2+2n +1+n 2 =2n 2+2n +1.故答案为:2n +1;2n 2+2n +1.14.解:(1)由题意,得⎩⎪⎨⎪⎧4a -2b +2=6,4a +2b +2=2,解得⎩⎪⎨⎪⎧a =12,b =-1.∴抛物线的解析式为y =12x 2-x +2.(2)如图,∵y =12x 2-x +2=12(x -1)2+32,∴抛物线的顶点坐标是(1,32).由B (-2,6)和C (2,2)求得直线BC 的解析式为y =-x +4. ∴对称轴与直线BC 的交点是H (1,3). ∴DH =32.∴S △BDC =S △BDH +S △CDH =12×32×3+12×32×1=3.(3)如图.①由⎩⎪⎨⎪⎧y =-12x +b ,y =12x 2-x +2消去y ,得x 2-x +4-2b =0.当Δ=0时,直线与抛物线只有一个公共点,∴(-1)2-4(4-2b )=0,解得b =158.②当直线y =-12x +b 经过点C 时,b =3.③当直线y =-12x +b 经过点B 时,b =5.综上,可知158<b ≤3.。
数形结合法巧解对数函数问题陈国平(洛阳十二中)数形结合法是高中数学的一种重要的思想方法,所谓数形结合,就是根据数学问题的条件和结论之间的内在联系,既分析其代数含义又揭示其几何意义,使数量关系和空间形式巧妙、和谐地结合起来,并充分利用这种“结合”,寻找解题思路,使问题得到解决,数形结合思想是解决数学试题的一种常用方法和技巧,特别是在解决选择题、填空题中发挥着奇特的功效,它常用来研究函数的单调性、求变量的取值范围及研究方程根的情况等.数形结合法在近年的高考题中多次体现。
下面对数函数为例进行说明。
例1 函数f (x)=| x 21log |(A )(0,21] (B )(0,1] (C )(0,+∞) (D )[1,+∞)解析:由上图可判断答案为(D )例2 使log 2 (-x) < x+1成立的x 的取值范围是 。
解:分别作出函数y= log 2 (-x) ,y= x + 1的图象,由图易知x ∈(-1, 0 )。
评注:数形结合,简明直观,作出图形,一目了然。
例3 若0 < b 1 < 2 < b 2 , log a b 1 = b 1-1 ,log a b 2 = b 2-1,则有log a 2与1的关系是( ) (A )log a 2 = 1 (B )log a 2〈 1 (C )log a 2 〉1 (D )不确定解析:因为 log a b 1 = b 1-1 ,log a b 2 = b 2-1 ,所以b 1、b 2 、看作是方程log a x=x -1的两个根,即b 1、b 2是函数y =㏒a x 和y=x-1的图像交点的横坐标。
因为0<b 1<2< b 2,所以函数y =㏒a x 和y=x-1的图像有两个交点。
当0<a<1时,函数y =㏒a x 和y=x-1的图像只有一个交点;当a>1时,函数y=y =㏒a x 和y=x-1的图像有两个交点,,所以只能是a>1,作出函数y=y =㏒a x 和y=x-1的图像如上所示,易知两交点的横坐标b1=1,b2>2,所以㏒a2>1,答案为C。
利用"数形结合"求解函数问题摘要:"数形结合"思想方法是研究数学问题的重要方法,本文对中学数学中的函数问题,谈谈如何运用"数形结合"的思想解题。
关键词:数形结合、图形、函数著名的数学家华罗庚先生说过:"数形结合千般好,数形分离万事休。
"有些繁难的代数题,假设我们借助于图形的性质,可以使许多抽象的概念及复杂的数量关系直观化、简单化,从而探索出巧妙的解法。
下面就函数的几个方面进行研究。
1、利用数形结合求函数的定义域面对求函数的定义域问题,有些人常常是顾此失彼,所以在看到题目后,首先的应该把所有使函数有意义的条件列出,待求出所有满足条件的解后用相应的图形表示出来,再逐一判断,这样才能尽量避免失误,得出正确的答案。
例1:函数f(x)的定义域是[a,b]其中a<0<b且|a|>b,求函数g(x)=f(x)+f(-x)的定义域。
分析:假设g(x)的定义域为M,f(x)f(-x)的定义域分别为A、B,那么有M=A∩B,利用数轴分析得知,阴影部分即为所求。
如图A∩B解:∵函数f(x)的定义域为[a,b]∴a≤x≤b假设使f(x)e有意义,必须有a≤-x≤b,即有-b≤x≤-a∵a<0<b ∴-b<0<-a又∵|a|>b>0 ∴.a<-b∴函数g(x)的定义域{x|a≤x≤b}∩{x|-b≤x≤-a}={x|-b≤x≤b}小结:这样的题目要是改为选择题,图形一画那就简单明了,不用解题,要是象上面的求解,画出图形有助于解题。
2、利用数形结合求函数的值域对于一些给了的定义域求值域的函数,假设只采用代数的方法思考问题,往往会太过于抽象或无从下手。
但如果根据函数的定义,引入图象,使所求的问题具体化,可从图中一目了然,那么达到事半功倍的效果。
例2.求函数y=|x+3|-|x+1|的值域。
分析:就自变量x的范围讨论去掉绝对值,将函数表示为分段函数,画出分段函数的图象,由图象即可得y 的范围⎪⎩⎪⎨⎧-+=2422)(x x f 3131-≤-≤≤--≥x x x函数的图象如图,由图象即可得y ∈[-2,2]。
一次函数数形结合思想的应用看图找交点 1.如图,直线2y x =与y kx b =+相交于点()12P ,,则关于x 的方程2kx b x +=的解是( )2.如图,一次函数1y kx =-与3y x =-+的图像都经过点()2,1P ,则不等式13kx x -≥-+的解集为( )33A .1x <-B .12x -<<C .1x <-或2x >D .2x > 4.如图,已知直线1y x =-与24y nx n =+图象交点的横坐标是2-,则关于x 的不等式40nx n x +>->解集是( )A .40x -<<B .20x -<<C . 0n x <<D .4x n -<<5.如图,已知直线y =kx +b 与直线y =x ﹣1的交点的横坐标为2,根据图象有下列四个结论:①k >0;①b >0;①方程组100x y kx y b --=⎧⎨-+=⎩的解为21x y =⎧⎨=⎩;①不等式kx +b ﹣1≥0的解集为x ≤2.其中,正确的结论有( )3A .0x >B .3x >-C .6x >-D .9x >- 7.一次函数1y kx b =+与2y x a =+的图象如图,则()0kx b x a +-+>的解集是( )A . 1x >-B . 2x >C . 1x <-D . 2x < 8.一次函数y mx n =+与y ax b =+在同一平面直角坐标系中的图象如图所示.根据图象有下列五个结论:①0a >;①0n <;①方程0mx n +=的解是2x =-;①不等式3ax b +>的解集是3x >-;①不等式0<ax b mx n +≤+的解集是3<2x -≤-.其中正确的结论个数是( )A .1B .2C .3D .49.直线y kx b =+在平面直角坐标系中的位置如图所示,则不等式1kx b +≤的解集是( )A .0x ≤B .0x ≥C .2x ≤-D .2x ≥- 10.如图,直线y=kx+b 交坐标轴于A (﹣2,0),B (0,3)两点,则不等式kx+b >0的解集是A .x >3B .﹣2<x <3C .x <﹣2D .x >﹣2二、填空题11.如图,一次函数y kx b =+的图象与x 轴、y 轴分别交于点()30A -,和点()0,2B ,则关于x 的一元一次方程0kx b +=的解为x = .12.如图,已知一次函数y kx b =+的图象与x 轴,y 轴分别交于点()2,0,点()0,3,有下列结论:①图象经过点()13-,;①关于x 的方程 0kx b +=的解为2x =;①关于x 的方22⎩。
专题复习三数形结合I、专题精讲:数学家华罗庚说得好:“数形结合百般好,隔离分家万事休,几何代数统一体,永远联系莫分离".几何图形的形象直观,便于理解,代数方法的一般性,解题过程的机械化,可操作性强,便于把握,因此数形结合思想是数学中重要的思想方法.所谓数形结合就是根据数学问题的题设和结论之间的在联系,既分析其数量关系,又揭示其几何意义使数量关系和几何图形巧妙地结合起来,并充分地利用这种结合,探求解决问题的思路,使问题得以解决的思考方法.II、典型例题剖析例1.某公司推销一种产品,设X(件)是推销产品的数量,y (元)是推销费,图3—3—1巳表示了公司每月付给推销员推销费的两种方案,看图解答下列问题:(1)求Y1与Y2的函数解析式;(2)解释图中表示的两种方案是如何付推销费的?(3)如果你是推销员,应如何选择付费方案?Y<兀)Y1 Y2-。
2。
」600500400300200100解:(1) y1=20x,y2=10x+300. 图3-3-1(2) Y1是不推销产品没有推销费,每推销10件产品得推销费200元,Y2是保底工资300元,每推销10件产品再提成100元.(3)若业务能力强,平均每月保证推销多于30件时,就选择Yi的付费方案;否则,选择Y2的付费方案.点拨:图象在上方的说明它的函数值较大,反之较小,当然,两图象相交时,说明在交点处的函数值是相等的.例2.某农场种植一种蔬菜,销售员平根据往年的销售t每于克销售价(元)情况,对今年这种蔬菜的销售价格进行了预测,预测 5情况如图3—3—2,图中的抛物线(部分)表示这种蔬菜销售价与月份之间的关系,观察图象,你能得到关于这种蔬菜销售情况的哪些信息?答题要求:(1)请提供四条信息;(2)不必求函数的解析.解:(1) 2月份每千克销售价是3.5元;7对月份每千克销售价是0.5元;(3) 1月到7月的销售价逐月下降;(4) 7月到12月的销售价逐月上升;4321o I 1 2 3 4 5 6 7 s 9 10 11 12月份图3-3-2(5) 2月与7月的销售差价是每千克3元;(6) 7月份销售价最低,1月份销售价最高;(7) 6月与8月、5月与9月、4月与10月、3月与11月,2月与12月的销售价分别相同.点拨:可以运用二次函数的性质:增减性、对称性.最大(小)值等,得出多个结论.例3.某报社为了解读者对本社一种报纸四个版面的喜欢情况,对读者作了一次问卷调查,要求读者选出自己最喜欢的一个版面,将所得数据整理后绘制成了如图3—3—3所示的条形统计图:个单位:人2000(1)请写出从条形统计图中获得的一条信息;(2)请根据条形统计图中的数据补全如图3—3—4所示的扇形统计图(要求:第二版与第三版相邻,并说明这两福统计图各有什么特点?图3-3-3(3)请你根据上述数据,对该报社提出一条合理的建议。
巧用“数形结合”求解二次函数问题作者:徐超凡来源:《中小学教学研究》2010年第06期摘要:二次函数是初中数学知识的重中之重,它与其他知识紧密相关,中考命题者钟爱有加。
如何把脉二次函数,让学生学而不厌,知难而进呢?可以把数形结合作为解决二次函数问题的武器,逐一破解“残缺型抛物线”、灵活解决“四点”“五距”,化解二次函数的探究应用问题中难点。
关键词:数形结合;残缺型抛物线;探究应用数形结合的思想,它是指把代数的精确刻划与几何的直观形象相统一,将抽象思维与直观形象水乳交融的一种思想方法。
数形结合是学好数学的一个魔法棒:它可将一些看似复杂的问题简单化,一些难于入手的问题迎刃而解。
二次函数是初中数学知识的重中之重,它与其他知识紧密相关,中考命题者钟爱有加。
如何把脉二次函数,让学生学而不厌,知难而进呢?巧妙运用数形结合可以达到四量拨千斤的效果,让学不得法的学生忘了烦恼忘了忧。
一、巧用数形结合求残缺型抛物线问题何谓“残缺型抛物线”,顾名思义,就是不完整的抛物线。
虽然抛物线不完整,但是利用已知条件及抛物线的轴对称性,可以达到既可意会,也可言传的功效,从而轻而易举解决相关问题。
例1(2007南充).如图1是二次函数y=ax2+bx+c图象的一部分,图象过点A(-3,0),对称轴为x=-1。
给出四个结论:①b2>4ac;②2a+b=0;③a-b+c=0;④5a②其中正确结论是().A ②④B ①④C ②③D ①③解析:图象开口向下,顶点在第二象限想象到抛物线一定与x轴有两个交点,所以①正确;对称轴为x=-■=-1 得2a-b=0,所以②错误;顶点在第二象限,当x=-1,a-b+c>0,所以③错误;抛物线开口向下,a例2(2009德城).如图2是抛物线y=ax2+bx+c的一部分,其对称轴为直线x=1,若其与x轴一交点为B(3 ,0),则由图象可知,不等式ax2+bx+c>0的解集是_________解析:根据图象可知抛物线开口向上,与x轴有两个公共点,对称轴右边的交点B与对称轴相距2个单位长度。
1、函数y =ax +1与y =ax 2+bx +1(a ≠0)的图象可能是( )2、抛物线的图象如图所示,根据图象可知,抛物线的解析式可能..是( )A 、y=x 2-x-2 B 、y=121212++-x C 、y=121212+--x x D 、y=22++-x x 3、已知二次函数2(0)y ax bx c a =++≠的图象如图所示,则下列结论:0ac >①;②方程20ax bx c ++=的两根之和大于0;y ③随x 的增大而增大;④0a b c -+<,其中正确的个数() A .4个B .3个C .2个D .1个4、二次函数2y ax bx c =++的图象如图所示,则一次函数24y bx b ac =+-与反比例函数a b cy x++=在同一坐标系内的图象大致为( )已知二次函数2y ax bx c =++(0a ≠)的图象如图4所示,有下列四个结论:20040b c b ac <>->①②③④0a b c -+<,其中正确的个数有( )A .1个B .2个C .3个D .4个图4A .B .C .D .xxxx5、如图7,⊙O 的半径为2,C 1是函数y =12x 2的图象,C 2是函数y =-12x 2的图象,则阴影部分的面积是 .6、图12为二次函数2y ax bx c =++的图象,给出下列说法:①0ab <;②方程20ax bx c ++=的根为1213x x =-=,;③0a b c ++>;④当1x >时,y 随x 值的增大而增大;⑤当0y >时,13x -<<.其中,正确的说法有 .(请写出所有正确说法的序号)7、某商品的进价为每件40元.当售价为每件60元时,每星期可卖出300件,现需降价处理,且经市场调查:每降价1元,每星期可多卖出20件.在确保盈利的前提下,解答下列问题:(1)若设每件降价x 元、每星期售出商品的利润为y 元,请写出y 与x 的函数关系式,并求出自变量x 的取值范围;(2)当降价多少元时,每星期的利润最大?最大利润是多少? (3)请画出上述函数的大致图象.8、如图,在平面直角坐标系中,OB⊥OA,且OB=2OA,点A的坐标是(-1,2).(1)求点B的坐标;(2)求过点A、O、B的抛物线的表达式;(3)连接AB,在(2)中的抛物线上求出点P,使得S△ABP=S△ABO.9、如图,已知抛物线与x交于A(-1,0)、E(3,0)两点,与y轴交于点B(0,3)。
数形结合思想在函数与方程中的应用数形结合思想,就是把代数中的数与几何中的形结合起来理解问题,通过数与形的相互转化来解决数学问题的思想.数形结合思想在高考数学中占有重要地位。
下面练习利用数形结合思想解决函数与方程问题(一)数形结合在函数中的应用例1.定义在R上的奇函数f(x)满足f(x+1)=f(-x),当x∈时,f(x)=log(x+1),则f(x)在区间内是( )2A.减函数且f(x)>0B.减函数且f(x)<0C.增函数且f(x)>0D.增函数且f(x)<0解析由f(x+1)=f(-x)可知,函数f(x)的图象关于直线x=对称,又函数f(x)为奇函数,故f(x+1)=f(-x)=-f(x),∴f(x+2)=f(x),即函数f(x)的周期为2,又当x∈时,f(x)=log(x+1),故可得到函数f(x)的大致图象如图所示.由图象可知选B.2答案 B例2.已知函数y=的图象与函数y=kx的图象恰有两个交点,则实数k的取值范围是________.解析y===函数y=kx过定点(0,0).由数形结合可知:0<k<1或1<k<k,OC∴0<k<1或1<k<2.答案 (0,1)∪(1,2)例3.已知函数y=f(x)是周期为2的周期函数,且当x∈[-1,1]时,f(x)=2|x|-1,则函数F(x)=f(x)-|lg x|的零点个数是( )A.9B.10C.11D.18解析:在坐标平面内画出y=f(x)与y=|lg x|的大致图象(如图),由图象可知,它们共有10个不同的交点,因此函数F(x)=f(x)-|lg x|的零点个数是10,故选B.答案 B[点评] 解决本题的关键是在同一坐标系中准确画出两函数的图象,有几个交点,原函数就有几个零点.1.数形结合在方程中的应用例4.已知点在函的图象上,且.求方程解的个数。
思路分析方程解的个数问题,用数形结合思想,其实是画出图像求图像交点个数答案:3解析:,画出及的图像,方程解的个数既为函数图像交点的个数,由图像知原方程有3个解。
数形结合 A 组一、选择题1. 函数f (x )=⎪⎩⎪⎨⎧>≤-)1|(|||)1|(|12x x x x ,如果方程f (x )=a 有且只有一个实根,那么a 满足( )A.a <0B.0≤a <1C.a =1D.a >1答案:C解析 :由图知a =1时,图象只有一个交点,故选C.2.已知函数f (x )=x 2+e x-12(x <0)与g (x )=x 2+ln(x +a )的图象上存在关于y 轴对称的点,则a 的取值范围是( )A.⎝ ⎛⎭⎪⎫-∞,1eB.()-∞,eC.⎝ ⎛⎭⎪⎫-1e ,eD.⎝ ⎛⎭⎪⎫-e ,1e答案:B解析:由题意可得,当x >0时,y =f (-x )与y =g (x )的图象有交点,即g (x )=f (-x )有正解,即x 2+ln(x +a )=(-x )2+e -x-12有正解,即e-x-ln(x +a )-12=0有正解,令F (x )=e -x-ln(x +a )-12,则F ′(x )=-e -x-1x +a<0,故函数F (x )=e -x-ln(x +a )-12在(0,+∞)上是单调递减的,要使方程g (x )=f (-x )有正解,则存在正数x 使得F (x )≥0,即e -x-ln(x +a )-12≥0,所以a ≤1e 2e x x ---,又y =1e 2e x x ---在(0,+∞)上单调递减,所以a <1e 02e 0---=12e ,选B.3.已知圆C :(x -3)2+(y -4)2=1和两点A (-m,0),B (m ,0)(m >0),若圆C 上存在点P ,使得∠APB =90°,则m 的最大值为( ) A.7 B.6 C.5 D.4 答案:B解析.根据题意,画出示意图,如图所示,则圆心C 的坐标为(3,4),半径r =1,且|AB |=2m . 因为∠APB =90°,连接OP ,易知|OP |=12|AB |=m .要求m 的最大值,即求圆C 上的点P 到原点O 的最大距离.因为|OC |=32+42=5,所以|OP |max =|OC |+r =6, 即m 的最大值为6.4.设平面点集A ={(x ,y )|(y -x )·(y -1x)≥0},B ={(x ,y )|(x -1)2+(y -1)2≤1},则A ∩B 所表示的平面图形的面积为( ) A.34π B.35π C.47π D.π2答案:D 解析:因为对于集合A ,(y -x )⎝⎛⎭⎪⎫y -1x ≥0,所以⎩⎪⎨⎪⎧y -x ≥0,y -1x≥0或⎩⎪⎨⎪⎧y -x ≤0,y -1x≤0,其表示的平面区域如图.对于集合B ,(x -1)2+(y -1)2≤1表示以(1,1)为圆心,1为半径的圆及其内部区域,其面积为π.由题意意知A ∩B 所表示的平面图形为图中阴影部分,曲线y =1x与直线y =x 将圆(x -1)2+(y -1)2=1分成S 1,S 2,S 3,S 4四部分.因为圆(x -1)2+(y -1)2=1与y =1x的图象都关于直线y =x 对称,从而S 1=S 2,S 3=S 4,而S 1+S 2+S 3+S 4=π,所以S 阴影=S 2+S 4=π2.二、填空题5.已知函数y =f (x )(x ∈R ),对函数y =g (x )(x ∈I ),定义g (x )关于f (x )的“对称函数”为函数y =h (x )(x ∈I ),y =h (x )满足:对任意x ∈I ,两个点(x ,h (x )),(x ,g (x ))关于点(x ,f (x ))对称.若h (x )是g (x )=4-x 2关于f (x )=3x +b 的“对称函数”,且h (x )>g (x )恒成立,则实数b 的取值范围是________.答案:(210,+∞) 解析 由已知得h x +4-x 22=3x +b ,所以h (x )=6x +2b -4-x 2.h (x )>g (x )恒成立,即6x +2b -4-x 2>4-x 2,3x +b >4-x 2恒成立.在同一坐标系内,画出直线y =3x +b 及半圆y =4-x 2(如图所示),可得b10>2,即b >210,故答案为(210,+∞).6.椭圆x 2a 2+y 2b2=1(a >b >0)的左、右顶点分别是A ,B ,左、右焦点分别是F 1,F 2,若|AF 1|,|F 1F 2|,|F 1B |成等比数列,则此椭圆的离心率为________.【解析】 ∵|AF 1|=a -c ,|F 1F 2|=2c ,|F 1B |=a +c ,且三者成等比数列,则|F 1F 2|2=|AF 1|·|F 1B |,即4c 2=(a -c )·(a +c ),得a 2=5c 2,∴e =c a =55.【答案】 55三、解答题7.已知函数f (x )=2ln x -x 2+ax (a ∈R ).(1)当a =2时,求f (x )的图象在x =1处的切线方程; (2)若函数g (x )=f (x )-ax +m在⎣⎢⎡⎦⎥⎤1e ,e 上有两个零点,求实数m 的取值范围.解:(1)当a =2时,f (x )=2ln x -x 2+2x ,f ′(x )=2x-2x +2,切点坐标为(1,1),切线的斜率k =f ′(1)=2,则切线方程为y -1=2(x -1),即y =2x -1.(2)g (x )=2ln x -x 2+m ,则g ′(x )=2x -2x =-2(x +1)(x -1)x.∵x ∈⎣⎢⎡⎦⎥⎤1e ,e ,∴当g ′(x )=0时,x =1.当1e <x <1时,g ′(x )>0; 当1<x <e 时,g ′(x )<0.故g (x )在x =1处取得极大值g (1)=m -1.又g ⎝ ⎛⎭⎪⎫1e =m -2-1e 2,g (e)=m +2-e 2,g (e)-g ⎝ ⎛⎭⎪⎫1e =4-e 2+1e 2<0,则g (e)<g ⎝ ⎛⎭⎪⎫1e ,∴g (x )在⎣⎢⎡⎦⎥⎤1e ,e 上的最小值是g (e).g (x )在⎣⎢⎡⎦⎥⎤1e ,e 上有两个零点的条件是⎩⎪⎨⎪⎧g (1)=m -1>0,g ⎝ ⎛⎭⎪⎫1e =m -2-1e 2≤0, 解得1<m ≤2+1e2,∴实数m 的取值范围是⎝⎛⎦⎥⎤1,2+1e 2.8.已知函数f (x )的图象是由函数g (x )=cos x 的图象经如下变换得到:先将g (x )图象上所有点的纵坐标伸长到原来的2倍(横坐标不变),再将所得到的图象向右平移π2个单位长度.(1)求函数f (x )的解析式,并求其图象的对称轴方程;(2)已知关于x 的方程f (x )+g (x )=m 在[0,2π)内有两个不同的解α,β. ①求实数m 的取值范围; ②证明:cos(α-β)=2m 25-1. 解 法一 (1)将g (x )=cos x 的图象上所有点的纵坐标伸长到原来的2倍(横坐标不变)得到y =2cos x 的图象,再将y =2cos x 的图象向右平移π2个单位长度后得到y =2cos ⎝ ⎛⎭⎪⎫x -π2的图象,故f (x )=2sin x . 从而函数f (x )=2sin x 图象的对称轴方程为x =k π+π2(k ∈Z ). (2)①f (x )+g (x )=2sin x +cos x =5⎝ ⎛⎭⎪⎫25sin x +15cos x =5sin(x +φ)⎝⎛⎭⎪⎫其中sin φ=15,cos φ=25.依题意,sin(x +φ)=m5在[0,2π)内有两个不同的解α,β,当且仅当⎪⎪⎪⎪⎪⎪m 5<1,故m 的取值范围是(-5,5). ②证明 因为α,β是方程5sin(x +φ)=m 在[0,2π)内的两个不同的解。