“数形结合”在二次函数中的应用
- 格式:doc
- 大小:140.50 KB
- 文档页数:5
初中二次函数蕴含的思维方法作者:***来源:《教育·教学科研》2020年第03期“二次函数”是初中数学的重要组成部分,也是中考的热点和难点。
二次函数中蕴含着丰富的思维方法,学生掌握好了这些思维方法就能掌握好二次函数的知识内容,对以后学习有非常重要的作用,它不但能提升学生的思维能力,也能激发学生的潜力。
下面,笔者就二次函数中几种常用的思维方法进行简单的探究。
数形结合思维的应用我国著名数学家华罗庚曾说:“数形结合百般好,隔裂分家万事休。
”每个几何图形都蕴含着一定的数量关系,而数量关系又常常可以通过几何图形予以直观地反映和描述,所以数形结合思维也就成为研究数学的重要思维方法之一。
二次函数中“数”“形”并进,让学生做到见“数”识“形”,见“形”而想“数”。
1.1二次函数y=ax2+bx+c(a≠0)的图象与系数a,b,c的关系。
例:如图抛物线y=ax2+bx+c的对称轴为直线x=1,且过点(3,0),下列结论:①abc>0;②a-b+c0;④b2-4ac>0;正确的有()个?A.1B.2C.3D.4解析:由抛物线开口方向得到a>0,由抛物线对称轴方程得到b=-2a1.2通过观察图象,由交点坐标可以直接写出不等式解集。
例:二次函数y1=ax2+bx+c的图象与一次函数y2=kx+b(k≠0)的图象(如图):当y2>y1时,根据图象写出x的取值范围。
解析:通过观察图像可知,使得的的取值范围是:-2函数方程思维的应用方程和方程组是初中阶段比较重要的部分,并且与数学其他板块的关联性也比较强,同时还是解决其他数学问题的工具。
解决二次函数问题常常会使用方程和方程组的思维,同样求解一元二次方程解时,也可以用到二次函数图象来解决。
2.1求两个函数交点坐标的应用。
例:如图,函数y= 与y=-2x+8的图象交于点A、B.求A、B两点的坐标。
解析:联立函数y= 和y=-2x+8得到关于x,y的方程组,解出方程组即可得到A、B两点的坐标。
例谈二次函数教学中“数形结合”思想的应用作者:黄贤琼来源:《学校教育研究》2020年第03期摘要:“数形结合”是一种重要的数学思想,在初中函数教学中有着重要的作用。
在二次函数教学中,渗透“数形结合”这种重要的数学思想,对于解决二次函数问题尤为重要。
“数形结合”的本质是:利用几何图形的性质反应数量关系,而数量关系决定了几何图形的性质,通过“以形助数”或者“以数解形”的方式来解决问题,起到事半功倍的效果。
关键词:数形结合数学思想二次函数著名数学家华罗庚说过:数与形,本是相倚依,焉能分作两边飞;数无形时少直觉,形无数时难入微,数形结合百般好,隔离分家万事休,切莫忘,几何代数统一体,永远联系,切莫分离。
“数形结合”是一种重要的数学思想,在初中函数教学中有着重要的作用。
二次函数是继一次函数后,初中学生学习函数的一个难点,也是中考的一个热点。
那么在二次函数教学中,渗透“数形结合”这种重要的数学思想,对于解决二次函数问题尤为重要。
“数形结合”的本质是:利用几何图形的性质反应数量关系,而数量关系决定了几何图形的性质,通过“以形助数”或者“以数解形”的方式来解决问题,起到事半功倍的效果。
笔者从以下几个角度来阐述二次函数教学中“数形结合思想”的应用。
一、“以形助数”,充分利用二次图像解决函数性质《二次函数》教学中,实现“数形结合”的途径是充分把握好二次函数图像与性质的关系。
“以形助数”是要根据问题的已知条件,解读暗含的数据信息,准确的画出函数的图像,然后直观的形象的分析,利于找出解决问题的思路。
例如,已知二次函数图像与x轴的交点的横坐标为1,当x=2时有最小值-1,求此二次函数的解析式。
解析:根据题目的已知条件,分析关键点,可以得到图像的特征。
二次函数的图像是抛物线,我们画出图形,如下图所示。
根据图形我们知道二次函数图像与x轴交点为(1,0),顶点为(2,-1),对称轴是x=2,利用抛物线的对称性,我们可以得出二次函数与x轴的另一个交点为(3,0)。
课题:数形结合在二次函数中的应用公主岭四中 曹立华教学目标:1. 知识目标:理解二次函数解析式与二次函数图像间的关系。
通过解析式本身蕴含的信息以及函数图像的直观表示,解决有关的问题。
2. 能力目标:通过本节课的学习,进一步掌握数形结合的数学思想以及数形互检的方法。
3. 情感目标:通过小组讨论活动,培养学生的团队协作精神。
教学过程:数形结合思想就是将几何与代数有机地结合,用数的观念来解决形的问题;或者用形的方法解决数的问题,是中考数学中的一个重要的思想方法。
今天我们着重研究数形结合在二次函数中的应用。
一、数促形,让感性的形多一分理性思考:从图中获取信息:学生可能从以下几方面考虑:(1)a 、b 、c 的符号(2)24b ac -的符号(3)顶点位置例1 已知二次函数c bx ax y ++=2的图象如图所示,下列结论 ①0<++c b a ②0>+-c b a ③0>abc ④3c a >-中正确的个数是( )(A) 4 (B) 3 (C) 2 (D) 1分析:仔细观察抛物线的位置走向,关键点的位置坐标,以及解析式中各系数与图形性质的对应关系,再做出判断。
归纳:我们解题时会发现图形的特征常常体现着数的关系,运用“数”的规律,数值的计算,我们就可以寻找出处理“形”的方法,来达到“数促形”的目的。
图形问题可以转化为数量问题。
同样有时数量问题也可以转化为图形问题。
二、形帮数,让理性的数多一些感性。
x… -3 -2 -1 0 1 2 … y … 12 5 0 -3 -4 -3 …(1)该抛物线对称轴的直线方程是 。
(2)若抛物线与x 轴交于点A 、B ,与y 轴交于点C ,求S △ABC分析:此题若先求解析式,后求对称轴,计算较繁,通过“形”利用对称性简单明了。
练习1:抛物线开口向上,顶点在坐标原点,将该抛物线向下平移15个单位后,与x 轴相交的两交点间的距离是15,则平移后的抛物线解析式为 。
例谈二次函数背景下“数形结合”求点的坐标问题摘要:数学学习的主要目的是让学生能用数学的方法解决数学问题,从中积累数学思维活动和实践活动的经验,感悟数学的基本思想。
笔者整理了近三年上海16个区的一模、二模卷,以24题综合题为研究对象,谈谈如何运用数形结合思想解决二次函数中求点的坐标问题。
关键词:二次函数数形结合点的坐标恩格斯说:“数学是研究数量关系和空间形式的科学。
”数学的发展历史悠久,它的内涵随着时代的变化而变化,但始终是围绕着“数”与“形”两个基本概念的抽象、提炼而发展的。
“数形结合思想”是义务教育阶段数学教学的一个重要思想方法,借助数形结合的思想解决二次函数问题在现阶段教学中具有重要的价值意义。
一、“数形结合”与二次函数中求点的坐标问题初中数学知识分为“数与运算”“方程与代数”“图形与几何”“函数与分析”和“数据整理与概率统计”五大部分内容。
其中函数是“数形结合”的典型,二次函数作为初中数学和中考的重要考查内容之一,这部分内容的特点是知识点多、涉及面广、综合性强、难度大、占分多。
教学中需重点突出数学思想,注意各知识点间的内在联系,加强数形结合的观点看问题。
如解析式y=ax2+bx+c(其中a≠0)中a、b、c的不同取值决定着抛物线的开口方向、大小、对称轴的位置、与坐标轴的交点坐标、顶点坐标等等,这些都是“数”对“形”的影响;反之,由抛物线的位置形状我们也能判断出a、b、c的符号,这又是“形”与“数”的关联。
近3年来,上海市各区初三第一学期期末质量抽查考试(简称一模)与上海市各区中考考前质量抽查考试(简称二模)及上海市初中毕业生统一学业考试(简称中考)中24题绝大部分以二次函数为背景。
这些题目分值多,难度大,考验综合能力强。
笔者就2017年、2018年和2019年三年来上海16个区县的一模卷和二模卷的96份试卷进行统计,只有一份试卷的第24题不以二次函数为背景。
我对另外95份试卷中在第二问或第三问中直接涉及“求点的坐标问题”的试卷数量进行了统计,如下表:由此可见点的坐标的求解在“压轴题”中的地位,而我们对求“点的坐标”问题常常可采用定义法、代入法、交点法、设参法这几种基本方法。
浅析数形结合在初中数学二次函数教学中的应用对于九年级的孩子来说,数学学习的难度加大,二次函数作为一个需要动用学生综合思考能力的难题,一直是数学教学的重点。
实际上,进行函数学习,不仅是日后更深层次的数学学习基础,也对于学生数学思维的培养,具有程度的影响。
数与形是数学中的两个基本概念,不同的图形蕴含着不同的数值,而不同的数量关系,又能够通过数学图形展现出来,通过数形结合图像与竖直进行对照,能够更加简单的进行数学问题的解决,这也是二次函数教学过程当中的主要思想。
本文也是基于数形结合的思想,对初中数学二次函数教学的具体应用进行举例说明,希望能够提高函数教学的质量和学生学习的效率。
关键词:数形结合二次函数初中数学在数学学习的过程当中,数形结合的思想是教师教学的重点,它直接影响着学生思维能力的养成,也影响着学生的数学实际能力。
数形结合的题目大多是以二次函数相关知识来呈现的。
因此,在进行二次函数教学的过程当中,我们应该以数形结合思想为核心,将图像与数据有机结合起来,化抽象为具象,化繁为简,提高学生的解题能力。
数形结合的具体体现就是,在教学过程当中,由数据绘制图形,完成对数据的解题,由图形推断,数据完成对数据的具体计算,而在中考时,我们也要通过数形结合的思想,用数形相互对照完成高难度的函数题目解答。
1.由数定形,确定坐标由数定形的教学思想是通过数据的明确来对二次函数图像进行推断性落实,用代数的方法来解决关于二次函数图形的问题。
它是通过对未知二次函数的推断性数据代入,来完成对二次函数图像性质的描述。
在进行教学时,我们需要让学生意识到由数定形的思想可以运用在哪些方面。
在解决二次函数相关习题时,碰到系数未定的二次函数,我们首先需要抓住题目中给出的数据,将其对应图像在坐标系中进行展示,之后完成对整个函数图像的大致推断。
对于这类问题,我们首先需要确定的是题目中所给出的具体条件,并与坐标系上展示出来,观察分析他是否与已经学过的一些二次函数图像相似,作出二次函数系数正负值的推断,再去完成题目的解答。
运用数形结合思想探讨二次函数在初中数学中的相关应用发布时间:2022-08-11T18:15:02.792Z 来源:《中小学教育》2022年7月4期作者:鲍炜[导读]鲍炜安徽省芜湖市第二十九中学中图分类号:G652.2 文献标识码:A 文章编号:ISSN1001-2982 (2022)7-179-021引言数学是一种既古老又年轻的文化,也是自然科学的基础学科。
人类从远古时代的结绳计数,到如今可以宇宙航行,无时无刻不受到数学思想的影响。
最近几年,我国数学课程中关于数学学习的理念发生了深刻地变化,数学教学的主要目的和任务早已不是简单的知识和方法的传授,而是通过数学学习培养学生的数学能力。
二次函数是初高中教材中一个重要的内容。
二次函数是中考命题的重点,同时也是省示范高中自主招生考试的重要考点。
如何让学生对二次函数了解更加的深刻透彻,本论文运用数形结合思想对初中二次函数做了更深一步的研究。
我们通过以下几个方面的阐述让学生更加深入理解二次函数的知识,更加体会到数形结合思想的运用:利用二次函数图象讨论一元二不等式的解(自主招生考试考点)、利用二次函数图象讨论二次方程根的分布问题(中考难点)、巧用二次函数图象讨论含绝对值的二次函数问题自主招生考试考点)、巧用二次函数图象讨论二次函数与一次函数的交汇问题(中考重点)。
2 国内外研究现状查阅相关文献,众多数学教育者从不同角度和侧面探讨了数形结合在教学、解题及函数中的应用,也给出了自己独特的见解。
在所查阅到的国内外参考文献中,教育者们对数形结合在二次函数中只针对二次函数中的某一问题作了相应的介绍,并未给出较为深入系统的研究。
数形结合思想在初高中二次函数中的应用非常广泛,对数形结合在初高中二次函数中的综合应用进行深入研究,使之形成完整的体系,对今后利用数形结合思想在二次函数教学、解题及其在中考以及自主招生考试中的应用具有重要的意义。
3 提出问题数形结合不仅是一种重要的解题方法,而且是一种基本的数学思想,同时二次函数也是初高中比较重要的一个内容,为了促进学生对这种思想方法的掌握,我们初中老师在依据教材对标课程标准的前提下,要适当提高二次函数的教学难度,这样学生到了高中才能较好的掌握二次函数内容,能起到承上启下的作用。
数形结合思想在二次函数中的应用数与形是数学中的两个最古老,中学数学研究的对象可分为数和形两大部分,数与形是有联系的,这个联系称之为数形结合,或形数结合。
二次函数是初中数学教学的重要内容,集中体现了数形结合思想,本文结合二次函数的数学,探寻渗透数形结合思想的有效策略。
标签:数学结合;二次函数;应用著名数学家华罗庚先生在谈到数形结合的好处时曾作诗赞美:“数与形,本是相倚依,焉能分作两边飞。
数无形时少直觉,形少数时难入微。
数形结合百般好,隔离分家万事休。
切莫忘,几何代数流一体,永远联系莫分离。
”数形结合思想是指导学生数学学习的重要数学思想之一,掌握数形结合的方法,可以极大地提高学生的数学学习效果,训练学生的数学思维,让学生终身受益。
二次函数作为初中数学教学的重要内容,集中体现了数形结合思想,是训练数形结合方法的良好载体。
“数(代数)”与“形(几何)”是数学的两个基本研究对象,这两个内容既互相独立又互相联系,体现在数学解题过程中包括“以数解读形”和“以形分析数”两个方面。
数形结合思想就是把数和形有机组合,使数学问题得到转化,“形”让“数”更具体明了,“数”使“形”更形象灵活。
因此,数形结合思想在数学解题中有广泛的应用。
数形结合思想在二次函数中的应用比较广泛,借助数形结合思想可以方便快捷地解决二次函数问题,怎样利用数形结合思想解决二次函数问题呢?要在解题中有效实现“数形结合”,最好能够明确“数”与“形”常见的结合点,从“以数助形”角度来看,主要有以下两个结合点:第一,以数轴、坐标系为桥梁把函数图象几何化;第二,利用面积、距离、角度等几何量来解决二次函数问题。
一、二次函数中的形转数二次函数图象的顶点在原点0,经过点A(1,1);点F(0,1)在y轴上,直线y=1与y轴交于点H。
(1)求二次函数的解析式;(2)点P是(1)中图象上的点,过点P作x轴的垂线与直线=y-1交于点M,求证:FM平分∠OFP。
解析:二次函数的解析式可以顺利解决,对于(2)点P是(l)中图象上的点,过点P作X轴的垂线与直线=y-1交于点M,求证:FM平分∠OFP;我们要挖掘图象蕴含的信息,PM平行于y轴,可得∠OFM=∠PMF,接下来探究乙PMF是否等于∠PFM,因为P在二次函数的图象上,可以设出P点的坐标,那么由P向y 轴作垂线段PB,构造直角三角形,利用勾股定理表达出PF的长度,依据P的坐标可以表示PM的长度,那么可以证明PF=PM,于是可以得到∠PM=F乙PFM,所以∠OFM=∠PFM,结论得到证明。
例谈二次函数教学中“数形结合”思想的应用二次函数教学中的“数形结合”思想的应用二次函数作为高中数学中的重要内容之一,其教学一直备受学生和教师的关注。
在二次函数教学中,要求学生不仅要能够掌握相关的概念和定理,还要能够应用所学的知识解决实际问题。
“数形结合”思想在二次函数教学中的应用显得尤为重要。
本文将针对二次函数教学中的“数形结合”思想进行分析和探讨,以期能够更好地引导学生理解和掌握二次函数的相关知识。
一、探究二次函数图像的特点在二次函数教学中,学生首先需要了解二次函数的图像特点。
一般来说,二次函数的图像是一个抛物线,其开口方向由二次项系数的正负性决定,开口向上的抛物线代表二次项系数大于0,开口向下的抛物线代表二次项系数小于0。
二次函数的顶点坐标、对称轴方程、零点坐标等也是学生需要掌握的内容。
通过学习这些内容,学生可以初步认识二次函数图像的特点,从而为后续的学习打下基础。
在教学中,可以通过让学生观察二次函数图像的变化,来引导他们探究二次函数图像的特点。
可以让学生改变二次函数的系数,观察对图像的影响,从而深入理解二次函数的图像特点。
老师还可以通过实例演示的方式,引导学生进一步理解二次函数图像的特点,激发学生的学习兴趣,提高他们对二次函数图像特点的理解能力。
二、数形结合的实际应用在学生掌握了二次函数的图像特点后,就可以引入“数形结合”思想,让学生将数学知识与实际问题相结合,进行实际应用。
可以通过实际问题来引导学生分析和解决问题,从而培养学生的数学建模能力和解决问题的能力。
通过实际问题的应用,还可以让学生更加直观地理解二次函数的意义和应用价值,提高他们对数学知识的兴趣和学习积极性。
在教学中,老师可以鼓励学生提出问题、进行实验和观察,从而引导他们进行自主探究。
通过这样的方式,学生可以更加深入地理解二次函数的相关知识,同时也可以培养其独立思考和问题解决的能力。
在探究性学习的过程中,老师要给予适当的指导和帮助,促进学生的学习成果,从而提高他们的学习效果。
核心素养系列(八)数形结合思想在二次函数中的应用研究二次函数的性质,可以结合图象进行.对于含参数的二次函数问题,要明确参数对图象的影响,还要进行分类讨论.【典例1】[典例] 设函数f (x )=x 2-2x +2,x ∈[t ,t +1],t ∈R ,求函数f (x )的最小值.【素养指导】根据题意做出图像,分别讨论区间落到不同位置上.【解析】f (x )=x 2-2x +2=(x -1)2+1,x ∈[t ,t +1],t ∈R ,函数图象的对称轴为x =1.当t +1≤1,即t ≤0时,函数图象如图(1)所示,函数f (x )在区间[t ,t +1]上为减函数,所以最小值为f (t +1)=t 2+1;当t <1<t +1,即0<t <1时,函数图象如图(2)所示,在对称轴x =1处取得最小值,最小值为f (1)=1;当t ≥1时,函数图象如图(3)所示,函数f (x )在区间[t ,t +1]上为增函数,所以最小值为f (t )=t 2-2t + 2.综上可知,f (x )min =221,0,1,01,22,1t t t t t t ⎧+≤⎪<<⎨⎪-+≥⎩【素养点评】解二次函数定区间问题的两点关注(1)抛物线的开口,对称轴位置,定义区间三者相互制约,要注意分类讨论.(2)要注意数形结合思想的应用,尤其是给定区间上的二次函数最值问题,先“定性”(作草图),再“定量”(看图求解).【素养专练】若函数g (x )=x 2+2mx -m 2在[1,2)上存在最小值2,求实数m 的值.【解析】g (x )=x 2+2mx -m 2=(x +m )2-2m 2,此二次函数图象的对称轴为直线x =-m .(ⅰ)当-m ≥2,即m ≤-2时,如图①g (x )在[1,2)上单调递减,不存在最小值;(ⅱ)当1<-m <2,即-2<m <-1时,如图②g (x )在[1,-m )上单调递减,在(-m ,2)上单调递增,此时g (x )min =g (-m )=-2m 2≠2;(ⅲ)当-m ≤1,即m ≥-1时,如图③g (x )在[1,2)上单调递增,此时g (x )min =g (1)=1+2m -m 2,令1+2m-m2=2,解得m=1.综上,m=1.。
“数形结合”在二次函数中的应用
数形结合是通过“数”与“形”的相互转化,使复杂问题简单化、抽象问题具体化;数形结合是初中数学基本思想之一,是用来解决数学问题的重要思想,近几年来各地中考对考生数形结合能力的考查越来越大,本文通过实例浅谈“数形结合”在二次函数中的应用。
1、“以形解数”
例1:已知:点(-1 ,1y ) (-3 ,2y ) (2,3y )在y=3x 2+6x+2
的图象上,
则:1y 、2y 、3y 的大小关系为(
A. 1y >2y >3y
B. 2y >1y >3y
C. 2y >3y >1y
D. 3y >2y >1y 分析:由y=3x 2+6x+2
=3(x+1)2- 1画出图象1抛物线的对称轴为直线x=-1 图1
即:x=-1 时,y 有最小值, 故排除A 、B ,由图象可以看出:x=2时 y 3的值,比x=-3时y 2的值大,故选c.
例2: 已知抛物线y=2x 2+x-2m+1与x 轴的两个交点,在原点的两 侧,则m 的取值范围是( )
A m >1
2
B m <12
C m >-12
D m >7
16
分析:按常规,此题要用判别式、根与系数的关系列出不等式组解之,若用数形结合的方法, 先画出抛物线y=2x 2+x-2m+1 的草图,易知当x=0时,y <0, 因此,只要解不等式-2m+1<0即
可,即m >12
,故选A
例3:二次函数 y=ax 2+bx+c 象限,则此抛物线开口向 ,c 的取值范围 ,b 的取值范围 ,b 2-4ac 的取值范围 。
解:由题意画出图象,如图: 从而判断:a >0, c ≥0 ∴对称轴:x=-2b
a
<0 ∴b >0 图象与x 轴有两个交点:∴ ∆>0
即b 2
-4ac >0
注:以上各题是“以形助数”即 图3将数量关系借于图形及其性质,使其直观化,形象化,从而使问题得以解决。
2、“以数助形”
例4:已知:二次函数m x m x y ----=1)1(22的图像与x 轴交于
A (1x ,0)、
B (2x ,0),210x x <<,与y 轴交于点
C ,且满足
CO
BO AO 2
11=
- 求:这个二次函数的解析式;
解: ∵210x x <<
∴AO=-x 1 OB= x 2
∵a=1>0 ∴CO= m+1>0 ∴m >-1
∵CO
BO
AO
211=-
∴CO(OB-OA)=2AO ⋅OB
即(m+1)(x 1+x 2)=-2 x 1x 2
∵x 1+x 2=2(m-1),x 1x 2=-(1+ m ) 图4 ∴(m+1)2(m-1)=2(1+ m ) 解得m=-1(舍去),m=2 ∴二次函数的解析式y=x 2-2x-3
注:本题是“以数助形”即将线段长度关系CO
BO
AO
211=- 转
化为点的坐标,通过解方程求出m 的值,从而使问题轻易而举得
以解决。
3、“以数助形”“以形解数”
例5:如图5,已知二次函数y=ax 2+bx+c (a ≠0)的图象过点 C (0,
5
3
),与x 轴交于两点A ()1,0x 、B ()()221,0x x x 〉,且12124,5x x x x +==-.
求(1)A 、B 两点的坐标;
(2)求二次函数的解析式和顶点P 的坐标;
(3)若一次函数y=kx+m 的图象的顶点P ,把 ∆PAB 分成两个部分,其中一部分的面积不大于∆PAB 面积的13
,求m 的取值范围。
解:(1)∵
{
12124
5x x x x +=⋅=-12x x 〈且
∴15x =,21x =-.
∴A 、B 两点的坐标是 A (5,0),B (-1,0) (2)由A (5,0),B (-1,0),
C (0,5
3
),
求得y=-13
∴顶点P 的坐标为(2,3);
(3)由图象可知,当直线过点P (2,3)且过点M (1,0)或N (3,0)时,就把∆PAB 分成两部分,其中一个三角形的面积是∆PAB 的面积的1
3
.
①过N (3,0),P (2,3)的一次函数解析式为y=-3x+9;
过点A (5,0),P (2,3)的一次函数解析式为y=-x+5.又一次函数y=kx+m ,当x=0时,y=m ,此一次函数图象与y 轴的交点的纵坐标为m ,观察图形变化,可得m 的取值范围是5<m ≤9.
②过B (-1,0),P (2,3)的一次函数解析式为y=x+1;过
点M (1,0),P (2,3)一次函数解析式为y=3x-3,观察图形变化,得m 的取值范围是-3≤m <1.
∴m 的取值范围是-3≤m <1或5<m ≤9.
注:本题先由数到形,后由形到数,用运动变化的观点去进行观察分析和化归,巧妙地运用了图形特征来观察图形的变化规律,解答十分巧妙,充分体现了“数”、“形”结合的解题思想。
通过以上例子可以看出,正确地利用“数形结合”可以使二次函数问题简单化、具体化,使复杂问题轻易举得以解决。