初三数学几何动点专题.doc
- 格式:doc
- 大小:1.31 MB
- 文档页数:15
OECB DAα lO CBA(第3题图)动点问题一1、直线364y x =-+与坐标轴分别交于A B 、两点,动点P Q 、同时从O 点出发,同时到达A 点,运动停止.点Q 沿线段OA 运动,速度为每秒1个单位长度,点P 沿路线O →B →A 运动. (1)直接写出A B 、两点的坐标;(2)设点Q 的运动时间为t 秒,OPQ △的面积为S ,求出S 与t 之间的函数关系式; (3)当485S =时,求出点P 的坐标,并直接写出以点O P Q 、、为顶点的平行四边形的第四个顶点M 的坐标.2、如图,在梯形ABCD 中,3545AD BC AD DC AB B ====︒∥,,,.动点M 从B 点出发沿线段BC 以每秒2个单位长度的速度向终点C 运动;动点N 同时从C 点出发沿线段CD 以每秒1个单位长度的速度向终点D 运动.设运动的时间为t 秒. (1)求BC 的长.(2)当MN AB ∥时,求t 的值.(3)试探究:t 为何值时,MNC △为等腰三角形.C(第2题图)3、如上图,在Rt ABC △中,9060ACB B ∠=∠=°,°,2BC =.点O 是AC 的中点,过点O 的直线l 从与AC 重合的位置开始,绕点O 作逆时针旋转,交AB 边于点D .过点C 作CE AB ∥交直线l 于点E ,设直线l 的旋转角为α.(1)①当α= 度时,四边形EDBC 是等腰梯形,此时AD 的长为 ;②当α= 度时,四边形EDBC 是直角梯形,此时AD 的长为 ; (2)当90α=°时,判断四边形EDBC 是否为菱形,并说明理由.4、(09天津)已知一个直角三角形纸片OAB ,其中9024AOB OA OB ∠===°,,.如图,将该纸片放置在平面直角坐标系中,折叠该纸片,折痕与边OB 交于点C ,与边AB 交于点D .(Ⅰ)若折叠后使点B 与点A 重合,求点C 的坐标;(Ⅱ)若折叠后点B 落在边OA 上的点为B ',设OB x '=,OC y =,试写出y 关于 的函数解析式,并确定y 的取值范围;(Ⅲ)若折叠后点B 落在边OA 上的点为B ',且B D OB '∥,求此时点C 的坐标.5、如图1,在平面直角坐标系中,己知ΔAOB 是等边三角形,点A 的坐标是(0,4),点B 在第一象限,点P 是x 轴上的一个动点,连结AP ,并把ΔAOP 绕着点A 按逆时针方向旋转.使边AO 与AB 重合.得到ΔABD. (1)求直线AB 的解析式;(2)当点P 运动到点(3,0)时,求此时DP 的长及点D 的坐标;(3)是否存在点P ,使ΔOPD 的面积等于43,若存在,求出点P 坐标;若不存在说明理由.P。
2020年中考数学压轴题之动点产生的定值和最值专题Word版无答案中考数学压轴题专题动点产生的定值与最值问题中考数学压轴题——动点产生的定值与最值问题目录第1 讲角为定值的常规解法第2 讲角为定值的高级解法第3 讲边为定值的动点问题第4 讲线段的和或差为定值的动点问题第5 讲比值为定值的动点问题第6 讲乘积为定值的动点问题第7 讲面积为定值的动点问题第8 讲动点产生的几何最值问题【几何法证明角为定值】(1)三角形内角和定理(2)三角形外角定理第 1 讲 角为定值的常规解法(3)等腰三角形底角相等(4)直角三角形两锐角互余(5)平行线的同位角相等、内错角相等、同旁内角互补(6)平行四边形的对角相等、邻角互补(7)等腰梯形底角相等(8)圆所涉及的角的关系:圆心角、圆周角、弦切角定理等【例】如图,平面内两条互相垂直的直线相交于点 O,∠MON=90°,点 A 、B 分别在射线 OM 、 ON 上移动,AC 是△BAO 的角平分线,BD 为∠ABN 的角平分线,AC 与 BD 的反向延长线交于 点 P.试问:随着点 A 、B 位置的变化,∠APB 的大小是否会变化?若保持不变,请求出∠APB 的度数;若发生变化,求出变化范围。
、【例】如图所示,O 的直径 AB=4,点 P 是 AB 延长线上的一点,过 P 点作 O 的切线,切点为 C , 连接 AC.(1)若∠CPA=30°,求 PC 的长;(2)若点 P 在 AB 的延长线上运动,∠CPA 的平分线交 AC 于点 M ,你认为∠CMP 的大小是否发 生变化?若变化,请说明理由;若不变化,求出∠CMP 的大小。
【代数法求角为定值】一般在直角坐标系中,可以用坐标的方法表示出边或角,从而求解具体角为定值的问题。
【例】如图,在平面直角坐标系中,点P从原点O出发,沿x轴向右以毎秒1个单位长的速度运动t秒(t>0),抛物线y = ax2 + bx + c 经过点O和点P,已知矩形ABCD的三个顶点为A(1,0),B(1,−5),D(4,0).(1)求c,b (用含t的代数式表示):(2)当4<t<5时,设抛物线分别与线段AB,CD交于点M,N.①在点P的运动过程中,你认为∠AMP的大小是否会变化?若变化,说明理由;若不变,求出∠AMP 的值;②求△MPN的面积S与t的函数关系式,并求t为何值时,S=218;(3)在矩形ABCD的内部(不含边界),把横、纵坐标都是整数的点称为“好点”。
中考数学压轴题型研究(一)——动点几何问题例1:在△ABC 中,∠B=60°,BA=24CM,BC=16CM, (1)求△ABC 的面积;(2)现有动点P 从A 点出发,沿射线AB 向点B 方向运动,动点Q 从C 点出发,沿射线CB 也向点B 方向运动。
如果点P 的速度是4CM/秒,点Q 的速度是2CM/秒,它们同时出发,几秒钟后,△PBQ的面积是△ABC 的面积的一半?(3)在第(2)问题前提下,P ,Q 两点之间的距离是多少?例2: ()已知正方形ABCD 的边长是1,E 为CD 边的中点, P 为正方形ABCD 边上的一个动点,动点P 从A 点出发,沿A →B → C →E 运动,到达点E.若点P 经过的路程为自变量x ,△APE 的面积为函数y ,(1)写出y 与x 的关系式 (2)求当y =13时,x 的值等于多少?例3:如图1 ,在直角梯形ABCD 中,∠B=90°,DC ∥AB ,动点P 从B 点出发,沿梯形的边由B →C → D → A 运动,设点P 运动的路程为x ,△ABP 的面积为y , 如果关于x 的函数y 的图象如图2所示 ,那么△ABC 的面积为( )A .32B .18C .16D .10ACB By例4:直线364y x =-+与坐标轴分别交于A B 、两点,动点P Q 、同时从O 点出发,同时到达A 点,运动停止.点Q 沿线段OA 运动,速度为每秒1个单位长度,点P 沿路线O →B →A 运动.(1)直接写出A B 、两点的坐标;(2)设点Q 的运动时间为t 秒,OPQ △的面积为S ,求出S 与t 之间的函数关系式; (3)当485S =时,求出点P 的坐标,并直接写出以点O P Q 、、为顶点的平行四边形的第四个顶点M 的坐标.例5:已知:等边三角形ABC 的边长为4厘米,长为1厘米的线段MN 在ABC △的边AB 上沿AB 方向以1厘米/秒的速度向B 点运动(运动开始时,点M 与点A 重合,点N 到达点B 时运动终止),过点M N 、分别作AB 边的垂线,与ABC △的其它边交于P Q 、两点,线段MN 运动的时间为t 秒.(1)线段MN 在运动的过程中,t 为何值时,四边形MNQP 恰为矩形?并求出该矩形的面积; (2)线段MN 在运动的过程中,四边形MNQP 的面积为S ,运动的时间为t .求四边形MNQP 的面积S 随运动时间t 变化的函数关系式,并写出自变量t 的取值范围.例6:如图(3),在梯形ABCD 中,906DC AB A AD ∠==∥,°,厘米,4DC =厘米,BC 的坡度34i =∶,动点P 从A 出发以2厘米/秒的速度沿AB 方向向点B 运动,动点Q 从点B 出发以3厘米/秒的速度沿B C D →→方向向点D 运动,两个动点同时出发,当其中一个动点到达终点时,另一个动点也随之停止.设动点运动的时间为t秒.(1)求边BC 的长;(2)当t 为何值时,PC 与BQ 相互平分;图(3)BC PQBA MN(3)连结PQ ,设PBQ △的面积为y ,探求y 与t 的函数关系式,求t 为何值时,y 有最大值?最大值是多少?二、利用函数与方程的思想和方法将所解决图形的性质(或所求图形面积)直接转化为函数或方程。
动点问题专题训练1、如图,已知ABC△中,10AB AC==厘米,8BC=厘米,点D为AB的中点.(1)如果点P在线段BC上以3厘米/秒的速度由B点向C点运动,同时,点Q在线段CA上由C点向A点运动.①若点Q的运动速度与点P的运动速度相等,经过1秒后,BPD△与CQP△是否全等,请说明理由;②若点Q的运动速度与点P的运动速度不相等,当点Q的运动速度为多少时,能够使BPD△与CQP△全等?(2)若点Q以②中的运动速度从点C出发,点P以原来的运动速度从点B同时出发,都逆时针沿ABC△三边运动,求经过多长时间点P与点Q第一次在ABC△的哪条边上相遇?2、直线364y x=-+与坐标轴分别交于A B、两点,动点P Q、同时从O点出发,同时到达A点,运动停止.点Q沿线段OA运动,速度为每秒1个单位长度,点P沿路线O→B→A运动.(1)直接写出A B、两点的坐标;(2)设点Q的运动时间为t秒,OPQ△的面积为S,求出S与t之间的函数关系式;(3)当485S=时,求出点P的坐标,并直接写出以点O P Q、、为顶点的平行四边形的第四个顶点M的坐标.3如图,在平面直角坐标系中,直线l:y=-2x-8分别与x轴,y轴相交于A,B两点,点P(0,k)是y轴的负半轴上的一个动点,以P为圆心,3为半径作⊙P.(1)连结PA,若PA=PB,试判断⊙P与x轴的位置关系,并说明理由;(2)当k为何值时,以⊙P与直线l的两个交点和圆心P为顶点的三角形是正三角形?4 如图1,在平面直角坐标系中,点O是坐标原点,四边形ABCO是菱形,点A的坐标为(-3,4),点C在x轴的正半轴上,直线AC交y轴于点M,AB边交y轴于点H.(1)求直线AC的解析式;(2)连接BM,如图2,动点P从点A出发,沿折线ABC方向以2个单位/秒的速度向终点C匀速运动,设△PMB的面积为S(S≠0),点P的运动时间为t秒,求S与t之间的函数关系式(要求写出自变量t的取值范围);(3)在(2)的条件下,当 t为何值时,∠MPB与∠BCO互为余角,并求此时直线OP与直线AC 所夹锐角的正切值.AQCDBPxAO QPBy5在Rt △ABC 中,∠C =90°,AC = 3,AB = 5.点P 从点C 出发沿CA 以每秒1个单位长的速度向点A 匀速运动,到达点A 后立刻以原来的速度沿AC 返回;点Q 从点A 出发沿AB 以每秒1个单位长的速度向点B 匀速运动.伴随着P 、Q 的运动,DE 保持垂直平分PQ ,且交PQ 于点D ,交折线QB -BC -CP 于点E .点P 、Q 同时出发,当点Q 到达点B 时停止运动,点P 也随之停止.设点P 、Q 运动的时间是t 秒(t >0).(1)当t = 2时,AP = ,点Q 到AC 的距离是 ; (2)在点P 从C 向A 运动的过程中,求△APQ 的面积S 与t 的函数关系式;(不必写出t 的取值范围)(3)在点E 从B 向C 运动的过程中,四边形QBED 能否成为直角梯形?若能,求t 的值.若不能,请说明理由; (4)当DE 经过点C 时,请直接..写出t 的值.6如图,在Rt ABC △中,9060ACB B ∠=∠=°,°,2BC =.点O 是AC 的中点,过点O 的直线l 从与AC 重合的位置开始,绕点O 作逆时针旋转,交AB 边于点D .过点C 作CE AB ∥交直线l 于点E ,设直线l 的旋转角为α.(1)①当α= 度时,四边形EDBC 是等腰梯形,此时AD 的长为 ;②当α= 度时,四边形EDBC 是直角梯形,此时AD 的长为 ; (2)当90α=°时,判断四边形EDBC 是否为菱形,并说明理由.α7如图,在梯形ABCD 中,354245AD BC AD DC AB B ====︒∥,,,,∠.动点M 从B 点出发沿线段BC 以每秒2个单位长度的速度向终点C 运动;动点N 同时从C 点出发沿线段CD 以每秒1个单位长度的速度向终点D 运动.设运动的时间为t 秒.(1)求BC 的长.(2)当MN AB ∥时,求t 的值.(3)试探究:t 为何值时,MNC △为等腰三角形.8如图1,在等腰梯形ABCD 中,AD BC ∥,E 是AB 的中点,过点E 作EF BC ∥交CD 于点F .46AB BC ==,,60B =︒∠. (1)求点E 到BC 的距离;(2)点P 为线段EF 上的一个动点,过P 作PM EF ⊥交BC 于点M ,过M 作MN AB ∥交折线ADC 于点N ,连结PN ,设EP x =.①当点N 在线段AD 上时(如图2),PMN △的形状是否发生改变?若不变,求出PMN △的周长;若改变,请说明理由;②当点N 在线段DC 上时(如图3),是否存在点P ,使PMN △为等腰三角形?若存在,请求出所有满足要求的x 的值;若不存在,请说明理由.A CB Q ED图16 OEC D Al O C A(备用图)A DC B N AD EB FC 图4(备用) ADE BF C 图5(备用) A D E B F C 图1 图2 A D E B F C P N M图3 A DE BF C P NM (第8题)9如图①,正方形ABCD中,点A、B的坐标分别为(0,10),(8,4),点C在第一象限.动点P在正方形ABCD 的边上,从点A出发沿A→B→C→D匀速运动,同时动点Q以相同速度在x轴正半轴上运动,当P点到达D点时,两点同时停止运动,设运动的时间为t秒.(1)当P点在边AB上运动时,点Q的横坐标x(长度单位)关于运动时间t(秒)的函数图象如图②所示,请写出点Q开始运动时的坐标及点P运动速度;(2)求正方形边长及顶点C的坐标;(3)在(1)中当t为何值时,△OPQ的面积最大,并求此时P点的坐标;(4)如果点P、Q保持原速度不变,当点P沿A→B→C→D匀速运动时,OP与PQ能否相等,若能,写出所有符合条件的t的值;若不能,请说明理由.10数学课上,张老师出示了问题:如图1,四边形ABCD是正方形,点E是边BC的中点.90AEF∠=o,且EF交正方形外角DCG∠的平行线CF于点F,求证:AE=EF.经过思考,小明展示了一种正确的解题思路:取AB的中点M,连接ME,则AM=EC,易证AME ECF△≌△,所以AE EF=.在此基础上,同学们作了进一步的研究:(1)小颖提出:如图2,如果把“点E是边BC的中点”改为“点E是边BC上(除B,C外)的任意一点”,其它条件不变,那么结论“AE=EF”仍然成立,你认为小颖的观点正确吗?如果正确,写出证明过程;如果不正确,请说明理由;(2)小华提出:如图3,点E是BC的延长线上(除C点外)的任意一点,其他条件不变,结论“AE=EF”仍然成立.你认为小华的观点正确吗?如果正确,写出证明过程;如果不正确,请说明理由.11已知一个直角三角形纸片OAB,其中9024AOB OA OB∠===°,,.如图,将该纸片放置在平面直角坐标系中,折叠该纸片,折痕与边OB交于点C,与边AB交于点D.(Ⅰ)若折叠后使点B与点A重合,求点C的坐标;(Ⅱ)若折叠后点B落在边OA上的点为B',设OB x'=,OC y=,试写出y关于x的函数解析式,并确定y的取值范围;(Ⅲ)若折叠后点B落在边OA上的点为B',且使B D OB'∥,求此时点C的坐标.A DFC G B图1 A DFC GB图2A DFC GB图3yBO AyBO AyBO A12问题解决如图(1),将正方形纸片ABCD 折叠,使点B 落在CD 边上一点E (不与点C ,D 重合),压平后得到折痕MN .当12CE CD =时,求AMBN 的值.类比归纳在图(1)中,若13CE CD =,则AM BN 的值等于 ;若14CE CD =,则AM BN 的值等于 ;若1CE CD n =(n 为整数),则AMBN的值等于 .(用含n 的式子表示)联系拓广 如图(2),将矩形纸片ABCD 折叠,使点B 落在CD 边上一点E (不与点C D ,重合),压平后得到折痕MN ,设()111AB CE m BC m CD n =>=,,则AM BN 的值等于 .(用含m n ,的式子表示)参考答案1.解:(1)①∵1t =秒, ∴313BP CQ ==⨯=厘米,∵10AB =厘米,点D 为AB 的中点, ∴5BD =厘米.又∵8PC BC BP BC =-=,厘米, ∴835PC =-=厘米, ∴PC BD =. 又∵AB AC =, ∴B C ∠=∠,∴BPD CQP △≌△. ·····················(4分) ②∵P Q v v ≠, ∴BP CQ ≠,又∵BPD CQP △≌△,B C ∠=∠,则45BP PC CQ BD ====,, ∴点P ,点Q 运动的时间433BP t ==秒, ∴515443Q CQ v t===厘米/秒.··················(7分) (2)设经过x 秒后点P 与点Q 第一次相遇, 由题意,得1532104x x =+⨯, 解得803x =秒. ∴点P 共运动了803803⨯=厘米.∵8022824=⨯+,∴点P 、点Q 在AB 边上相遇,∴经过803秒点P 与点Q 第一次在边AB 上相遇. ········· (12分) 2.解(1)A (8,0)B (0,6) · 1分 (2)86OA OB ==Q , 10AB ∴=Q 点Q 由O 到A 的时间是881=(秒)∴点P 的速度是61028+=(单位/秒)1分当P 在线段OB 上运动(或03t ≤≤)时,2OQ t OP t ==,方法指导: 为了求得AM BN 的值,可先求BN 、AM 的长,不妨设:AB =2 图(2) AB C D EF M 图(1) A B C DE F M N当P 在线段BA 上运动(或38t <≤)时,6102162OQ t AP t t ==+-=-,, 如图,作PD OA ⊥于点D ,由PD AP BO AB =,得4865tPD -=, ······· 1分 21324255S OQ PD t t ∴=⨯=-+···················· 1分 (自变量取值范围写对给1分,否则不给分.) (3)82455P ⎛⎫ ⎪⎝⎭, ·························· 1分12382412241224555555I M M 2⎛⎫⎛⎫⎛⎫-- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,,,,, ·············· 3分3.解:(1)⊙P 与x 轴相切.∵直线y =-2x -8与x 轴交于A (4,0),与y 轴交于B (0,-8), ∴OA =4,OB =8. 由题意,OP =-k , ∴PB =PA =8+k .在Rt △AOP 中,k 2+42=(8+k )2, ∴k =-3,∴OP 等于⊙P 的半径, ∴⊙P 与x 轴相切.(2)设⊙P 与直线l 交于C ,D 两点,连结PC ,PD 当圆心P 在线段OB 上时,作PE⊥CD 于E .∵△PCD 为正三角形,∴DE =12CD =32,PD =3, ∴PE =33. ∵∠AOB =∠PEB =90°, ∠ABO =∠PBE , ∴△AOB ∽△PEB , ∴332,=45AO PE AB PB PB =即, ∴315,PB =∴3158PO BO PB =-=-, ∴315(0,8)P -, ∴3158k =-. 当圆心P 在线段OB 延长线上时,同理可得P (0,-315-8), ∴k =-315-8, ∴当k =315-8或k =-315-8时,以⊙P 与直线l 的两个交点和圆心P 为顶点的三角形是正三角形.4.5.解:(1)1,85;(2)作QF ⊥AC 于点F ,如图3, AQ = CP = t ,∴3AP t =-. 由△AQF ∽△ABC,4BC =,得45QF t =.∴45QF t =.∴14(3)25S t t =-⋅,即22655S t t =-+.(3)能.①当DE ∥QB 时,如图4.∵DE ⊥PQ ,∴PQ ⊥QB ,四边形QBED 是直角梯形. 此时∠AQP =90°. 由△APQ ∽△ABC ,得AQ APAC AB=, 即335t t -=. 解得98t =. ②如图5,当PQ ∥BC 时,DE ⊥BC ,四边形QBED 是直角梯形.此时∠APQ =90°. 由△AQP∽△ABC ,得 AQ APAB AC=, 即353t t -=. 解得158t =.(4)52t =或4514t =. ①点P 由C 向A 运动,DE 经过点C . 连接QC ,作QG ⊥BC 于点G ,如图6.PC t =,222QC QG CG =+2234[(5)][4(5)]55t t =-+--.由22PC QC =,得22234[(5)][4(5)]55t t t =-+--,解得52t =.②点P 由A 向C 运动,DE 经过点C ,如图7.22234(6)[(5)][4(5)]55t t t -=-+--,4514t =】6.解(1)①30,1;②60,1.5;分 (2)当∠α=900时,四边形EDBC 是菱形. ∵∠α=∠ACB=900,∴BC //ED .∵CE //AB , ∴四边形EDBC 是平行四边形. ……………………6分 在Rt △ABC 中,∠ACB =900,∠B =600,BC =2,∴∠A =300.∴AB =4,AC . ∴AO =12AC ……………………8分 在Rt △AOD 中,∠A =300,∴AD =2. ∴BD =2. ∴BD =BC .又∵四边形EDBC 是平行四边形,∴四边形EDBC 是菱形 ……………………10分7.解:(1)如图①,过A 、D 分别作AK BC ⊥于K ,DH BC ⊥于H ,则四边形ADHK 是矩形 ∴3KH AD ==. ·······················1分在Rt ABK △中,sin 4542AK AB =︒==g. cos 454BK AB =︒==g ················2分 在Rt CDH △中,由勾股定理得,3HC ==∴43310BC BK KH HC =++=++= ··············3分(2)如图②,过D 作DG AB ∥交BC 于G 点,则四边形ADGB 是平行四边形 ∵MN AB ∥ ∴MN DG ∥ ∴3BG AD ==∴1037GC =-= ·····················4分 由题意知,当M 、N 运动到t 秒时,102CN t CM t ==-,. ∵DG MN ∥∴NMC DGC =∠∠ 又C C =∠∠∴MNC GDC △∽△ ∴CN CMCD CG = ·······················5分 即10257t t -= P图4图5(图①) A D C B K H (图②) A D C B G M N解得,5017t =······················· 6分 (3)分三种情况讨论:①当NC MC =时,如图③,即102t t =-∴103t = ························· 7分②当MN NC =时,如图④,过N 作NE MC ⊥于E 解法一:由等腰三角形三线合一性质得()11102522EC MC t t ==-=-在Rt CEN △中,5cos EC tc NC t -==又在Rt DHC △中,3cos 5CH c CD ==∴535t t -=解得258t = ························ 8分解法二:∵90C C DHC NEC =∠=∠=︒∠∠, ∴NEC DHC △∽△ ∴NC EC DC HC = 即553t t -= ∴258t = ························· 8分③当MN MC =时,如图⑤,过M 作MF CN ⊥于F 点.1122FC NC t ==解法一:(方法同②中解法一)132cos 1025t FC C MC t ===-解得6017t =解法二:∵90C C MFC DHC =∠=∠=︒∠∠, ∴MFC DHC △∽△ ∴FC MCHC DC =即1102235tt -= ∴6017t =综上所述,当103t =、258t =或6017t =时,MNC △为等腰三角形 ··9分8.解(1)如图1,过点E 作EG BC ⊥于点G . ··· 1分∵E 为AB 的中点,∴122BE AB ==.在Rt EBG △中,60B =︒∠,∴30BEG =︒∠. ·· 2分∴112BG BE EG ====,即点E 到BC ········· 3分(2)①当点N 在线段AD 上运动时,PMN △的形状不发生改变.∵PM EF EG EF ⊥⊥,,∴PM EG ∥. ∵EF BC ∥,∴EP GM =,PM EG ==同理4MN AB ==. ·······················4分 如图2,过点P 作PH MN ⊥于H ,∵MN AB ∥, ∴6030NMC B PMH ==︒=︒∠∠,∠. ∴122PH PM == ∴3cos302MH PM =︒=g .则35422NH MN MH =-=-=.在Rt PNH △中,PN === ∴PMN △的周长=4PM PN MN ++=. ··········6分②当点N 在线段DC 上运动时,PMN △的形状发生改变,但MNC △恒为等边三角形. 当PM PN =时,如图3,作PR MN ⊥于R ,则MR NR =.类似①,32MR =.∴23MN MR ==. ·······················7分 ∵MNC △是等边三角形,∴3MC MN ==.此时,6132x EP GM BC BG MC ===--=--=. ·········8分A DC B M N (图③) (图④) AD C B M NH E (图⑤)A D CB H N MF 图1A DE BF C G图2ADEBF CPNMG H当MP MN =时,如图4,这时MC MN MP ===此时,615x EP GM ===-=当NP NM =时,如图5,30NPM PMN ==︒∠∠.则120PMN =︒∠,又60MNC =︒∠, ∴180PNM MNC +=︒∠∠.因此点P 与F 重合,PMC △为直角三角形. ∴tan301MC PM =︒=g .此时,6114x EP GM ===--=.综上所述,当2x =或4或(5时,PMN △为等腰三角形. ·· 10分 9解:(1)Q (1,0) ······················· 1分 点P 运动速度每秒钟1个单位长度. ················ 2分 (2) 过点B 作BF ⊥y 轴于点F ,BE ⊥x 轴于点E ,则BF =8,4OF BE ==. ∴1046AF =-=.在Rt △AFB中,10AB == 3分 过点C 作CG ⊥x 轴于点G ,与FB 的延长线交于点H . ∵90,ABC AB BC ∠=︒= ∴△ABF ≌△BCH .∴6,8BH AF CH BF ====.∴8614,8412OG FH CG ==+==+=.∴所求C 点的坐标为(14,12). 4分 (3) 过点P 作PM ⊥y 轴于点M ,PN ⊥x 轴于点N , 则△APM ∽△ABF .∴AP AM MP AB AF BF ==. 1068t AM MP∴==. ∴3455AM t PM t ==,. ∴3410,55PN OM t ON PM t ==-==. 设△OPQ 的面积为S (平方单位) ∴213473(10)(1)5251010S t t t t =⨯-+=+-(0≤t ≤10)············ 5分 说明:未注明自变量的取值范围不扣分.∵310a =-<0 ∴当474710362()10t =-=⨯-时, △OPQ 的面积最大. ·····6分 此时P 的坐标为(9415,5310) . ··················7分 (4) 当 53t =或29513t =时, OP 与PQ 相等. ············9分10.解:(1)正确. ··········· (1分)证明:在AB 上取一点M ,使AM EC =,连接ME .(2分)BM BE ∴=.45BME ∴∠=°,135AME ∴∠=°.CF Q 是外角平分线,45DCF ∴∠=°,135ECF ∴∠=°.AME ECF ∴∠=∠.90AEB BAE ∠+∠=Q °,90AEB CEF ∠+∠=°, ∴BAE CEF ∠=∠.AME BCF ∴△≌△(ASA ). ···················(5分) AE EF ∴=. ·························(6分) (2)正确. ············· (7分) 证明:在BA 的延长线上取一点N .使AN CE =,连接NE . ········ (8分) BN BE ∴=. 45N PCE ∴∠=∠=°.Q 四边形ABCD 是正方形, AD BE ∴∥.DAE BEA ∴∠=∠. NAE CEF ∴∠=∠.ANE ECF ∴△≌△(ASA ). ·················· (10分) AE EF ∴=. (11分)11.解(Ⅰ)如图①,折叠后点B 与点A 重合, 则ACD BCD △≌△.设点C 的坐标为()()00m m >,. 则4BC OB OC m =-=-. 于是4AC BC m ==-.在Rt AOC △中,由勾股定理,得222AC OC OA =+, 即()22242m m -=+,解得32m =. 图3A D E BFCPN M 图4A D EBF CPM N 图5A DEBF (P ) CMN GGRGA D F C GB M A D FC GB N∴点C 的坐标为302⎛⎫⎪⎝⎭,. ······················ 4分(Ⅱ)如图②,折叠后点B 落在OA 边上的点为B ', 则B CD BCD '△≌△. 由题设OB x OC y '==,, 则4B C BC OB OC y '==-=-,在Rt B OC '△中,由勾股定理,得222B C OC OB ''=+.()2224y y x ∴-=+,即2128y x =-+ ·························· 6分由点B '在边OA 上,有02x ≤≤,∴ 解析式2128y x =-+()02x ≤≤为所求.∴ Q 当02x ≤≤时,y 随x 的增大而减小,y ∴的取值范围为322y ≤≤. ··················7分 (Ⅲ)如图③,折叠后点B 落在OA 边上的点为B '',且B D OB ''∥. 则OCB CB D ''''∠=∠. 又CBD CB D OCB CBD ''''∠=∠∴∠=∠Q ,,有CB BA ''∥. Rt Rt COB BOA ''∴△∽△. 有OB OC OA OB''=,得2OC OB ''=. ·················· 9分 在Rt B OC ''△中,设()00OB x x ''=>,则02OC x =.由(Ⅱ)的结论,得2001228x x =-+,解得000808x x x =-±>∴=-+,∴点C的坐标为()016. ················· 10分12解:方法一:如图(1-1),连接BM EM BE ,,.由题设,得四边形ABNM 和四边形FENM 关于直线MN 对称. ∴MN 垂直平分BE .∴BM EM BN EN ==,. ········ 1分∵四边形ABCD 是正方形,∴902A D C AB BC CD DA ∠=∠=∠=====°,.∵112CE CE DE CD =∴==,.设BN x =,则NE x =,2NC x =-.在Rt CNE △中,222NE CN CE =+.∴()22221x x =-+.解得54x =,即54BN =. ·········· 3分 在Rt ABM △和在Rt DEM △中,222AM AB BM +=, 222DM DE EM +=,∴2222AM AB DM DE +=+. ················· 5分设AM y =,则2DM y =-,∴()2222221y y +=-+.解得14y =,即14AM =. ·················· 6分∴15AM BN =.······················· 7分 方法二:同方法一,54BN =. ················ 3分如图(1-2),过点N 做NG CD ∥,交AD 于点G ,连接BE .∵AD BC ∥,∴四边形GDCN 是平行四边形.∴NG CD BC ==.同理,四边形ABNG 也是平行四边形.∴54AG BN ==.∵90MN BE EBC BNM ⊥∴∠+∠=,°. 90NG BC MNG BNM EBC MNG ⊥∴∠+∠=∴∠=∠Q ,°,. 在BCE △与NGM △中90EBC MNG BC NG C NGM ∠=∠⎧⎪=⎨⎪∠=∠=⎩,,°.∴BCE NGM EC MG =△≌△,. ······ 5分∵114AM AG MG AM =--=5,=.4 ·············· 6分AEF M N 图(1-2)A B C DE FM G∴15AM BN =.······················ 7分 类比归纳25(或410);917; ()2211n n -+ ················· 10分 联系拓广2222211n m n n m -++ ························ 12分。
中考总复习—几何动点题专项练习1.如图,在Rt△ABC中,∠ACB=90°,BC=6,AC=8,D是边AB的中点.动点P从点B出发以每秒4个单位长度的速度向终点A运动,当点P与点D不重合时,以PD为边构造Rt△PDQ,使∠PDQ=∠A,∠DPQ=90°,且点Q与点C在直线AB同侧.设点P的运动时间为t秒.(1)求AB的长.(2)当点Q落在边AC上时,求t的值.(3)在不添加辅助线的情况下,当图中存在全等三角形时,求△PDQ与△ABC重叠部分图形的面积. (4)取边AC的中点E,连结EQ.当EQ//AB时,直接写出t的值、2。
如图,在△ABC中,AB=AC=5,BC=6.点D是边BC上的一点(点D不与点B、C重合),作射线AD,在射线AD上取点P,使AP=BD,以AP为边作正方形 APMN,使点M和点C在直线AD同侧.(1)当点D是边BC的中点时,求AD的长;(2)当BD=4时,点D到直线AC的距离为____________(3)连结PN,当PN⊥AC时,求正方形 APMN的边长;(4)若点N到直线AC的距离是点M到直线AC距离的3倍,则CD的长为____________(写出一个即可)3.如图,在△ABC中,AB=BC=10,tanB=4/3,AD⊥BC于点D,点M为AD的中点,点P从点A出发沿折线AB-BC以每秒5个单位的速度向终点C运动(点P不与△ABC的顶点重合),作点P关于点M的对称点P,取线段BP的中点Q,作△PP'Q.设点P的运动时间为t秒(1)当点P在AB上时,连结P'D,求证P'D//AB;(2)当点P在AB上,且点P落在边AC上时,求t的值;(3)当∠PQP'=90°时,求PQ的长;(4)作△P'DM和△AQM,当△P'DM与△AQM相似时,直接写出t的值4.如图,在矩形ABCD中,AD=6,AB=3,点P为边AD上的动点,点Q为折线BA-AD上的动点,且AP=BQ,当点P不与点A重合时,过点Q作QM⊥PQ,交边BC于点M,连结PM,将△PQM绕点P沿逆时针方向旋转得到△PQ'M',使点Q'落在线段PM上.(1)当点Q与点A重合时,线段PM的长为______________;(2)当点Q在边AB上时,求证:△PQM是等腰直角三角形;(3)当线段AQ长为2时,求△PQM的面积;(4)当点M'落在边BC上时,直接写出线段AP的长5.如图,△ABC为等边三角形,AB=4√3,AD⊥BC于点D.点P在线段AD上运动,当点P不与点A、D重合时,过点P作AB的垂线交折线AC-CB于点E,交边AB于点F,以EF、FB为边作矩形EFBH.设线段AP的长为2x.(1)线段AD的长为___________-(2)当点E在线段CD上时,用含x的代数式表示线段DE的长,并直接写出x的取值范围;(3)作点E关于直线AD的对称点E',作直线HE'①当点E在边AC上时,若HE'//AD,求线段HE'的长;②当直线HE'将矩形 EFBH分成两部分图形的面积比为1:3时,直接写出x的值.6.已知矩形纸片ABCD中,AB=6cm,BC=8cm,点E从点B出发,沿BC做匀速运动,点E运动的同时,将AB 沿AE所在直线折叠,得到△AFE.(1)如图①,点E运动到BC中点时,AF落在矩形 ABCD内,则tan∠EAF=_________(2)如图②,点E运动到C处时,EF与AD交于点G,求证:△AFG≌△EDG:(3)点E运动过程中,AF恰好落在AD边上时,EF与BD的交点为K,请在图③中画出△AFE的示意图.①直接写出线段DK的长.②延伸:若点E到达C点后继续匀速沿CD运动,直至到达点D停止,设点E的速度为1cm/s,则点E沿B-C-D运动的整个过程中,直接写出△AEF能覆盖点K的时长(含边界).(4)设BE=n,当0<n<6时,直接写出点下到BC的距离d(用含n的式子表示)。
中考动点专题一、应用勾股定理建立函数解析式例1(2000年²上海)如图1,在半径为6,圆心角为90°的扇形OAB 的弧AB 上,有一个动点P,PH ⊥OA,垂足为H,△OPH 的重心为G.(1)当点P 在弧AB 上运动时,线段GO 、GP 、GH 中,有无长度保持不变的线段?如果有,请指出这样的线段,并求出相应的长度.(2)设PH x =,GP y =,求y 关于x 的函数解析式,并写出函数的定义域(即自变量x 的取值范围).(3)如果△PGH 是等腰三角形,试求出线段PH 的长.解:(1)当点P 在弧AB 上运动时,OP 保持不变,于是线段GO 、GP 、GH 中,有长度保持不变的线段,这条线段是GH=32NH=2132⋅OP=2. (2)在Rt △POH 中, 22236xPH OPOH -=-=, ∴2362121xOH MH -==.在Rt △MPH 中,.∴y =GP=32MP=233631x+ (0<x <6).(3)△PGH 是等腰三角形有三种可能情况: ①GP=PH 时,x x=+233631,解得6=x . 经检验, 6=x 是原方程的根,且符合题意.②GP=GH 时, 2336312=+x ,解得0=x . 经检验, 0=x 是原方程的根,但不符合题意.③PH=GH 时,2=x .综上所述,如果△PGH 是等腰三角形,那么线段PH 的长为6或2.二、应用比例式建立函数解析式例2(2006年²山东)如图2,在△ABC 中,AB=AC=1,点D,E 在直线BC 上运动.设BD=,x CE=y . (1)如果∠BAC=30°,∠DAE=105°,试确定y 与x 之间的函数解析式;(2)如果∠BAC 的度数为α,∠DAE 的度数为β,当α,β满足怎样的关系式时,(1)中y 与x 之间的函数解析式还成立?试说明理由.解:(1)在△ABC 中,∵AB=AC,∠BAC=30°,∴∠ABC=∠ACB=75°, ∴∠ABD=∠ACE=105°.∵∠BAC=30°,∠DAE=105°, ∴∠DAB+∠CAE=75°, 又∠DAB+∠ADB=∠ABC=75°, ∴∠CAE=∠ADB, ∴△ADB ∽△EAC, ∴ACBD CEAB =,2222233621419xxx MHPHMP +=-+=+=AED CB 图2HMNG POAB图1x y∴11x y=, ∴xy 1=.(2)由于∠DAB+∠CAE=αβ-,又∠DAB+∠ADB=∠ABC=290α-︒,且函数关系式成立,∴290α-︒=αβ-, 整理得=-2αβ︒90.当=-2αβ︒90时,函数解析式xy 1=成立.例3(2005年²上海)如图3(1),在△ABC 中,∠ABC=90°,AB=4,BC=3. 点O 是边AC 上的一个动点,以点O 为圆心作半圆,与边AB 相切于点D,交线段OC 于点E.作EP ⊥ED,交射线AB 于点P,交射线CB 于点F.(1)求证: △ADE ∽△AEP.(2)设OA=x ,AP=y ,求y 关于x 的函数解析式,并写出它的定义域.(3)当BF=1时,求线段AP 的长. 解:(1)连结OD.根据题意,得OD ⊥AB,∴∠ODA=90°,∠ODA=∠DEP.又由OD=OE,得∠ODE=∠OED.∴∠ADE=∠AEP, ∴△ADE ∽△AEP.(2)∵∠ABC=90°,AB=4,BC=3, ∴AC=5. ∵∠ABC=∠ADO=90°, ∴OD ∥BC, ∴53x OD =,54x AD =,∴OD=x 53,AD=x 54. ∴AE=x x 53+=x 58. ∵△ADE ∽△AEP, ∴AE ADAP AE =, ∴xxyx585458=. ∴x y 516=(8250≤<x ).(3)当BF=1时,①若EP 交线段CB 的延长线于点F,如图3(1),则CF=4.∵∠ADE=∠AEP, ∴∠PDE=∠PEC. ∵∠FBP=∠DEP=90°, ∠FPB=∠DPE, ∴∠F=∠PDE, ∴∠F=∠FEC, ∴CF=CE. ∴5-x 58=4,得85=x .可求得2=y ,即AP=2.②若EP 交线段CB 于点F,如图3(2), 则CF=2. 类似①,可得CF=CE. ∴5-x 58=2,得815=x .可求得6=y ,即AP=6.综上所述, 当BF=1时,线段AP 的长为2或6. 三、应用求图形面积的方法建立函数关系式A3(2)OA3(1)C例4(2004年²上海)如图,在△ABC 中,∠BAC=90°,AB=AC=22,⊙A 的半径为1.若点O 在BC 边上运动(与点B 、C 不重合),设BO=x ,△AOC 的面积为y .(1)求y 关于x 的函数解析式,并写出函数的定义域.(2)以点O 为圆心,BO 长为半径作圆O,求当⊙O 与⊙A 相切时, △AOC 的面积.解:(1)过点A 作AH ⊥BC,垂足为H. ∵∠BAC=90°,AB=AC=22, ∴BC=4,AH=21BC=2. ∴OC=4-x .∵AH OC S AOC ⋅=∆21, ∴4+-=x y (40<<x ).(2)①当⊙O 与⊙A 外切时,在Rt △AOH 中,OA=1+x ,OH=x -2, ∴222)2(2)1(x x -+=+. 解得67=x .此时,△AOC 的面积y =617674=-.②当⊙O 与⊙A 内切时,在Rt △AOH 中,OA=1-x ,OH=2-x , ∴222)2(2)1(-+=-x x . 解得27=x .此时,△AOC 的面积y =21274=-.综上所述,当⊙O 与⊙A 相切时,△AOC 的面积为617或21.一、以动态几何为主线的压轴题 (一)点动问题.1.(09年徐汇区)如图,ABC ∆中,10==AC AB ,12=BC ,点D 在边BC 上,且4=BD ,以点D 为顶点作B EDF ∠=∠,分别交边AB 于点E ,交射线CA 于点F . (1)当6=AE 时,求AF 的长;(2)当以点C 为圆心CF 长为半径的⊙C 和以点A 为圆心AE 长为半径的⊙A 相切时, 求BE 的长; (3)当以边AC 为直径的⊙O 与线段DE 相切时,求BE 的长. [题型背景和区分度测量点]本题改编自新教材九上《相似形》24.5(4)例六,典型的一线三角(三等角)问题,试题在原题的基础上改编出第一小题,当E 点在AB 边上运动时,渗透入圆与圆的位置关系(相切问题)的存在性的研究形成了第二小题,加入直线与圆的位置关系(相切问题)的存在性的研究形成了第三小题.区分度测量点在直线与圆的位置关系和圆与圆的位置关系,从而利用方程思想来求解.[区分度性小题处理手法]1.直线与圆的相切的存在性的处理方法:利用d=r 建立方程.2.圆与圆的位置关系的存在性(相切问题)的处理方法:利用d=R ±r(r R >)建立方程. 3.解题的关键是用含x 的代数式表示出相关的线段. [ 略解]ABCO 图8HABCDEOlA ′ABCDEO lF 解:(1) 证明CDF ∆∽EBD ∆∴BECD BDCF =,代入数据得8=CF ,∴AF=2(2) 设BE=x ,则,10==AC d ,10x AE -=利用(1)的方法xCF 32=,相切时分外切和内切两种情况考虑: 外切,xx 321010+-=,24=x ;内切,xx 321010--=,17210±=x .100<<x∴当⊙C 和⊙A 相切时,BE 的长为24或17210-. (3)当以边AC 为直径的⊙O 与线段DE 相切时,320=BE .类题 ⑴一个动点:09杨浦25题(四月、五月)、09静安25题、⑵两个动点:09闸北25题、09松江25题、09卢湾25题、09青浦25题. (二)线动问题2,在矩形ABCD 中,AB =3,点O 在对角线AC 上,直线l 过点O ,且与AC 垂直交AD 于点E.(1)若直线l 过点B ,把△ABE 沿直线l 翻折,点A 与矩形ABCD 的对称中心A '重合,求BC 的长; (2)若直线l 与AB 相交于点F ,且AO =41AC ,设AD 的长为x ,五边形BCDEF 的面积为S.①求S 关于x 的函数关系式,并指出x 的取值范围;②探索:是否存在这样的x ,以A 为圆心,以-x 43长为半径的圆与直线l 相切,若存在,请求出x 的值;若不存在,请说明理由. [题型背景和区分度测量点]本题以矩形为背景,结合轴对称、相似、三角等相关知识编制得到.第一小题考核了学生轴对称、矩形、勾股定理三小块知识内容;当直线l 沿AB 边向上平移时,探求面积函数解析式为区分测量点一、加入直线与圆的位置关系(相切问题)的存在性的研究形成了区分度测量点二.[区分度性小题处理手法]1.找面积关系的函数解析式,规则图形套用公式或用割补法,不规则图形用割补法.2.直线与圆的相切的存在性的处理方法:利用d=r 建立方程. 3.解题的关键是用含x 的代数式表示出相关的线段. [ 略解](1)∵A ’是矩形ABCD 的对称中心∴A ’B =AA ’=21AC∵AB =A ’B ,AB =3∴AC =6 33=BC (2)①92+=x AC ,9412+=x AO ,)9(1212+=x AF ,xx AE 492+=∴AF 21⋅=∆AE S AEF xx 96)9(22+=,xx x S 96)9(322+-=xx x S 968127024-+-=(333<<x )②若圆A 与直线l 相切,则941432+=-x x ,01=x (舍去),582=x ∵3582<=x ∴不存在这样的x ,使圆A 与直线l 相切.[类题]09虹口25题. (三)面动问题3.如图,在ABC ∆中,6,5===BC AC AB ,D 、E 分别是边AB 、AC 上的两个动点(D 不与A 、B 重合),且保持BC DE ∥,以DE 为边,在点A 的异侧作正方形DEFG .(1)试求ABC ∆的面积;(2)当边FG 与BC 重合时,求正方形DEFG 的边长;(3)设x AD =,ABC ∆与正方形DEFG 重叠部分的面积为y ,试求y 关于x 的函数关系式,并写出定义域;(4)当BDG ∆是等腰三角形时,请直接写出AD 的长. [题型背景和区分度测量点]本题改编自新教材九上《相似形》24.5(4)例七,典型的共角相似三角形问题,试题为了形成坡度,在原题的基础上改编出求等腰三角形面积的第一小题,当D 点在AB 边上运动时,正方形DEFG 整体动起来,GF 边落在BC 边上时,恰好和教材中的例题对应,可以说是相似三角形对应的小高比大高=对应的小边比大边,探寻正方形和三角形的重叠部分的面积与线段AD 的关系的函数解析式形成了第三小题,仍然属于面积类习题来设置区分测量点一,用等腰三角形的存在性来设置区分测量点二. [区分度性小题处理手法]图3-5图3-4图3-3图3-1C C C CC1.找到三角形与正方形的重叠部分是解决本题的关键,如上图3-1、3-2重叠部分分别为正方形和矩形包括两种情况.2.正确的抓住等腰三角形的腰与底的分类,如上图3-3、3-4、3-5用方程思想解决. 3.解题的关键是用含x 的代数式表示出相关的线段. [ 略解]解:(1)12=∆ABC S .(2)令此时正方形的边长为a ,则446a a -=,解得512=a .C(3)当20≤x 时, 22253656x x y =⎪⎭⎫⎝⎛=,当52 x 时, ()2252452455456x x x x y -=-⋅=.(4)720,1125,73125=AD . 解决动态几何问题的常见方法有:一、 特殊探路,一般推证例2:(2004年广州市中考题第11题)如图,⊙O1和⊙O2内切于A ,⊙O1的半径为3,⊙O2的半径为2,点P 为⊙O1上的任一点(与点A 不重合),直线PA 交⊙O2于点C ,PB 切⊙O2于点B ,则PC BP的值为(A )2 (B )3 (C )23(D )26分析:本题是一道选择题,给出四个答案有且只有一个是正确的,因此可以取一个特殊位置进行研究,当点P 满足PB ⊥AB 时,可以通过计算得出PB=221322=-BC ³AP=BP ³AB ,因此BC=62462288162822==+=+⨯BPABBPAB ,在三角形BPC 中,PC=36222=-BCBP,所以,PC BP=3选(B )当然,本题还可以根据三角形相似得BP APPCBP=,即可计算出结论。
动点问题专题训练1、如图,已知ABC△中,10AB AC==厘米,8BC=厘米,点D为AB的中点.(1)如果点P在线段BC上以3厘米/秒的速度由B点向C点运动,同时,点Q 在线段CA上由C点向A点运动.①若点Q的运动速度与点P的运动速度相等,经过1秒后,BPD△与CQP△是否全等,请说明理由;②若点Q的运动速度与点P的运动速度不相等,当点Q的运动速度为多少时,能够使BPD△与CQP△全等?(2)若点Q以②中的运动速度从点C出发,点P以原来的运动速度从点B同时出发,都逆时针沿ABC△三边运动,求经过多长时间点P与点Q第一次在ABC△的哪条边上相遇?2、直线364y x=-+与坐标轴分别交于A B、两点,动点P Q、同时从O点出发,同时到达A点,运动停止.点Q沿线段OA运动,速度为每秒1个单位长度,点P沿路线O→B→A运动.(1)直接写出A B、两点的坐标;(2)设点Q的运动时间为t秒,OPQ△的面积为S,求出S与t之间的函数关系式;(3)当485S=时,求出点P的坐标,并直接写出以点O P Q、、为顶点的平行四边形的第四个顶点M的坐标.3.如图1,在平面直角坐标系中,点O是坐标原点,四边形ABCO是菱形,点A的坐标为(-3,4),点C在x轴的正半轴上,直线AC交y轴于点M,AB边交y轴于点H.(1)求直线AC的解析式;(2)连接BM,如图2,动点P从点A出发,沿折线ABC方向以2个单位/秒的速度向终点C匀速运动,设△PMB的面积为S(S≠0),点P的运动时间为t秒,求S与t之间的函数关系式(要求写出自变量t的取值范围);(3)在(2)的条件下,当t为何值时,∠MPB与∠BCO互为余角,并求此时直线OP与直线AC所夹锐角的正切值.4.如图,在梯形ABCD中,3545 AD BC AD DC AB B====︒∥,,,.动点M从B点出发沿线段BC以每秒2个单位长度的速度向终点C运动;动点N同时从C点出发沿线段CD以每秒1个单位长度的速度向终点D运动.设运动的时间为t秒.(1)求BC的长.(2)当MN AB∥时,求t的值.(3)试探究:t为何值时,MNC△为等腰三角形.C M5.在Rt △ABC 中,∠C =90°,AC = 3,AB = 5.点P 从点C 出发沿CA 以每秒1个单位长的速度向点A 匀速运动,到达点A 后立刻以原来的速度沿AC 返回;点Q 从点A 出发沿AB 以每秒1个单位长的速度向点B 匀速运动.伴随着P 、Q 的运动,DE 保持垂直平分PQ ,且交PQ 于点D ,交折线QB -BC -CP 于点E .点P 、Q 同时出发,当点Q 到达点B 时停止运动,点P 也随之停止.设点P 、Q 运动的时间是t 秒(t >0).(1)当t = 2时,AP = ,点Q 到AC 的距离是 ;(2)在点P 从C 向A 运动的过程中,求△APQ的面积S 与t 的函数关系式;(不必写出t 的取值范围)(3)在点E 从B 向C 运动的过程中,四边形QBED 能否成为直角梯形?若能,求t 的值.若不能,请说明理由; (4)当DE 经过点C 时,请直接..写出t 的值.6.如图,在Rt ABC △中,9060ACB B ∠=∠=°,°,2BC =.点O 是AC 的中点,过点O 的直线l 从与AC 重合的位置开始,绕点O 作逆时针旋转,交AB 边于点D .过点C 作CE AB ∥交直线l 于点E ,设直线l 的旋转角为α.(1)①当α= 度时,四边形EDBC 是等腰梯形,此时AD 的长为 ;②当α= 度时,四边形E D B C 是直角梯形,此时AD 的长为 ;(2)当90α=°时,判断四边形EDBC 是否为菱形,并说明理由.图16(备用图)7.如图1,在等腰梯形ABCD 中,AD BC ∥,E 是AB 的中点,过点E 作EF BC ∥交CD 于点F .46AB BC ==,,60B =︒∠. (1)求点E 到BC 的距离;(2)点P 为线段EF 上的一个动点,过P 作PM EF ⊥交BC 于点M ,过M 作MN AB ∥交折线ADC 于点N ,连结PN ,设EP x =. ①当点N 在线段AD 上时(如图2),PMN △的形状是否发生改变?若不变,求出PMN △的周长;若改变,请说明理由; ②当点N 在线段DC 上时(如图3),是否存在点P ,使PMN △为等腰三角形?若存在,请求出所有满足要求的x 的值;若不存在,请说明理由.8.如图①,正方形 ABCD 中,点A 、B 的坐标分别为(0,10),(8,4),点C 在第一象限.动点P 在正方形 ABCD 的边上,从点A 出发沿A →B →C →D 匀速运动,同时动点Q 以相同速度在x 轴正半轴上运动,当P 点到达D 点时,两点同时停止运动,设运动的时间为t 秒.(1)当P 点在边AB 上运动时,点Q 的横坐标x (长度单位)关于运动时间t (秒)的函数图象如图②所示,请写出点Q 开始运动时的坐标及点P 运动速度;(2)求正方形边长及顶点C 的坐标;(3)在(1)中当t 为何值时,△OPQ 的面积最大,并求此时P 点的坐标; (4)如果点P 、Q 保持原速度不变,当点P 沿A →B →C →D 匀速运动时,OP 与PQ 能否相等,若能,写出所有符合条件的t 的值;若不能,请说明理由.A D EB FC 图4(备用) ADE BF C 图5(备用) A D E B F C 图1 图2 A DEB FC PN M图3 A D EB FCPN M (第25题)9.数学课上,张老师出示了问题:如图1,四边形ABCD是正方形,点E是边BC的中点.90AEF∠= ,且EF交正方形外角DCG∠的平行线CF于点F,求证:AE=EF.经过思考,小明展示了一种正确的解题思路:取AB的中点M,连接ME,则AM=EC,易证AME ECF△≌△,所以AE EF=.在此基础上,同学们作了进一步的研究:(1)小颖提出:如图2,如果把“点E是边BC的中点”改为“点E是边BC上(除B,C外)的任意一点”,其它条件不变,那么结论“AE=EF”仍然成立,你认为小颖的观点正确吗?如果正确,写出证明过程;如果不正确,请说明理由;(2)小华提出:如图3,点E是BC的延长线上(除C点外)的任意一点,其他条件不变,结论“AE=EF”仍然成立.你认为小华的观点正确吗?如果正确,写出证明过程;如果不正确,请说明理由.A DFC GEB图1 A DFC GEB图2A DFGB图3答案1.解:(1)①∵1t =秒, ∴313BP CQ ==⨯=厘米,∵10AB =厘米,点D 为AB 的中点, ∴5BD =厘米.又∵8PC BC BP BC =-=,厘米, ∴835PC =-=厘米, ∴PC BD =. 又∵AB AC =, ∴B C ∠=∠,∴BPD CQP △≌△. ································································································· (4分) ②∵P Q v v ≠, ∴BP CQ ≠,又∵BPD CQP △≌△,B C ∠=∠,则45BP PC CQ BD ====,, ∴点P ,点Q 运动的时间433BP t ==秒, ∴515443Q CQ v t ===厘米/秒. ··················································································· (7分) (2)设经过x 秒后点P 与点Q 第一次相遇, 由题意,得1532104x x =+⨯, 解得803x =秒. ∴点P 共运动了803803⨯=厘米.∵8022824=⨯+,∴点P 、点Q 在AB 边上相遇, ∴经过803秒点P 与点Q 第一次在边AB 上相遇. ···················································· (12分) 2.解(1)A (8,0)B (0,6) ·················· 1分 (2)86OA OB == , 10AB ∴=点Q 由O 到A 的时间是881=(秒)∴点P 的速度是61028+=(单位/秒) ··· 1分 当P 在线段OB 上运动(或03t ≤≤)时,2OQ t OP t ==,2S t = ······································································································································ 1分 当P 在线段BA 上运动(或38t <≤)时,6102162OQ t AP t t ==+-=-,, 如图,作PD OA ⊥于点D ,由PD AP BO AB =,得4865tPD -=, ······································ 1分 21324255S OQ PD t t ∴=⨯=-+ ························································································· 1分 (自变量取值范围写对给1分,否则不给分.)(3)82455P ⎛⎫ ⎪⎝⎭, ····················································································································· 1分12382412241224555555I M M 2⎛⎫⎛⎫⎛⎫-- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,,,,, ·································································· 3分5.解:(1)1,85;(2)作QF ⊥AC 于点F ,如图3, AQ = CP = t ,∴3AP t =-. 由△AQF ∽△ABC,4BC =, 得45QF t =.∴45QF t =. ∴14(3)25S t t =-⋅, 即22655S t t =-+.(3)能.①当DE ∥QB 时,如图4.∵DE ⊥PQ ,∴PQ ⊥QB ,四边形QBED 是直角梯形. 此时∠AQP =90°.由△APQ ∽△ABC ,得AQ AP AC AB=, 即335t t -=. 解得98t =. ②如图5,当PQ ∥BC 时,DE ⊥BC ,四边形QBED 是直角梯形.此时∠APQ =90°. 由△AQP ∽△ABC ,得AQ APAB AC=, 即353t t -=. 解得158t =.(4)52t =或4514t =. ①点P 由C 向A 运动,DE 经过点C .连接QC ,作QG ⊥BC 于点G ,如图6.PC t =,222QC QG CG =+2234[(5)][4(5)]55t t =-+--.由22PC QC =,得22234[(5)][4(5)]55t t t =-+--,解得52t =.②点P 由A 向C 运动,DE 经过点C ,如图7.22234(6)[(5)][4(5)]55t t t -=-+--,4514t =】6.解(1)①30,1;②60,1.5;(2)当∠α=900时,四边形EDBC 是菱形.图4图5∵∠α=∠ACB=900,∴BC //ED .∵CE //AB , ∴四边形EDBC 是平行四边形. ……………………6分 在Rt △ABC 中,∠ACB =900,∠B =600,BC =2,∴∠A =300.∴AB =4,AC. ∴AO =12AC……………………8分 在Rt △AOD 中,∠A =300,∴AD =2. ∴BD =2. ∴BD =BC .又∵四边形EDBC 是平行四边形,∴四边形EDBC 是菱形 ……………………10分7.解:(1)如图①,过A 、D 分别作AK BC ⊥于K ,DH BC ⊥于H ,则四边形ADHK 是矩形∴3KH AD ==. ······································································································ 1分在Rt ABK △中,sin 4542AK AB =︒==.cos 454BK AB =︒== ·········································································· 2分 在Rt CDH △中,由勾股定理得,3HC ==∴43310BC BK KH HC =++=++= ······························································ 3分(2)如图②,过D 作DG AB ∥交BC 于G 点,则四边形ADGB 是平行四边形∵MN AB ∥ ∴MN DG ∥ ∴3BG AD == ∴1037GC =-= ·································································································· 4分 由题意知,当M 、N 运动到t 秒时,102CN t CM t ==-,. ∵DG MN ∥(图①) A D C B K H (图②) A D C B G MN∴NMC DGC =∠∠ 又C C =∠∠∴MNC GDC △∽△∴CN CMCD CG =·········································································································· 5分 即10257t t -= 解得,5017t = ·········································································································· 6分(3)分三种情况讨论:①当NC MC =时,如图③,即102t t =- ∴103t =·················································································································· 7分②当MN NC =时,如图④,过N 作NE MC ⊥于E 解法一:由等腰三角形三线合一性质得()11102522EC MC t t ==-=- 在Rt CEN △中,5cos EC tc NC t -==又在Rt DHC △中,3cos 5CH c CD ==∴535t t -=解得258t = ·············································································································· 8分解法二:∵90C C DHC NEC =∠=∠=︒∠∠, ∴NEC DHC △∽△∴NC ECDC HC =即553t t -= ∴258t = ·················································································································· 8分③当MN MC =时,如图⑤,过M 作MF CN ⊥于F 点.1122FC NC t ==解法一:(方法同②中解法一)A DCB M N (图③) (图④) A D CB M NH E132cos 1025tFC C MC t ===- 解得6017t =解法二:∵90C C MFC DHC =∠=∠=︒∠∠, ∴MFC DHC △∽△ ∴FC MCHC DC =即1102235tt-=∴6017t =综上所述,当103t =、258t =或6017t =时,MNC △为等腰三角形 ···················· 9分8.解(1)如图1,过点E 作EG BC ⊥于点G . ························· 1分∵E 为AB 的中点,∴122BE AB ==.在Rt EBG △中,60B =︒∠,∴30BEG =︒∠. ·············· 2分∴112BG BE EG ====, 即点E 到BC··············································· 3分 (2)①当点N 在线段AD 上运动时,PMN △的形状不发生改变.∵PM EF EG EF ⊥⊥,,∴PM EG ∥. ∵EF BC ∥,∴EP GM =,PM EG ==同理4MN AB ==. ······································································································· 4分 如图2,过点P 作PH MN ⊥于H ,∵MN AB ∥, ∴6030NMC B PMH ==︒=︒∠∠,∠.∴12PH PM == ∴3cos302MH PM =︒= .则35422NH MN MH =-=-=.在Rt PNH △中,PN === ∴PMN △的周长=4PM PN MN ++=. ················································· 6分 ②当点N 在线段DC 上运动时,PMN △的形状发生改变,但MNC △恒为等边三角(图⑤)A DCBH N MF图1A DE BF C G图2A D EBF CPNG H形.当PM PN =时,如图3,作PR MN ⊥于R ,则MR NR =.类似①,32MR =. ∴23MN MR ==.········································································································· 7分 ∵MNC △是等边三角形,∴3MC MN ==.此时,6132x EP GM BC BG MC ===--=--=. ············································· 8分当MP MN =时,如图4,这时MC MN MP ===此时,615x EP GM ===-=当NP NM =时,如图5,30NPM PMN ==︒∠∠.则120PMN =︒∠,又60MNC =︒∠, ∴180PNM MNC +=︒∠∠.因此点P 与F 重合,PMC △为直角三角形. ∴tan301MC PM =︒= .此时,6114x EP GM ===--=.综上所述,当2x =或4或(5-时,PMN △为等腰三角形. ·························· 10分 9解:(1)Q (1,0) ············································································································ 1分 点P 运动速度每秒钟1个单位长度. ·················································································· 2分 (2) 过点B 作BF ⊥y 轴于点F ,BE ⊥x 轴于点E ,则BF =8,4OF BE ==. ∴1046AF =-=.在Rt △AFB中,10AB 3分 过点C 作CG ⊥x 轴于点G ,与FB 的延长线交于点H . ∵90,ABC AB BC ∠=︒= ∴△ABF ≌△BCH . ∴6,8BH AF CH BF ====. ∴8614,8412OG FH CG ==+==+=.∴所求C 点的坐标为(14,12). 4分 (3) 过点P 作PM ⊥y 轴于点M ,PN ⊥x 轴于点N , 则△APM ∽△ABF . ∴AP AM MP AB AF BF==. 1068t A M M P∴==. ∴3455AM t PM t ==,. ∴3410,55PN OM t ON PM t ==-==. 设△OPQ 的面积为S (平方单位)图3A D E BFCPN M图4A D EBF CP MN 图5A D EBF (P )CMN GGRG∴213473(10)(1)5251010S t t t t =⨯-+=+-(0≤t ≤10)······························································ 5分 说明:未注明自变量的取值范围不扣分.∵310a =-<0 ∴当474710362()10t =-=⨯-时, △OPQ 的面积最大. ································ 6分 此时P 的坐标为(9415,5310) . ························································································ 7分 (4) 当 53t =或29513t =时, OP 与PQ 相等. ······························································ 9分10.解:(1)正确.······························································ (1分) 证明:在AB 上取一点M ,使AM EC =,连接ME . (2分)BM BE ∴=.45BME ∴∠=°,135AME ∴∠=°.CF 是外角平分线,45DCF ∴∠=°,135ECF ∴∠=°.AME ECF ∴∠=∠.90AEB BAE ∠+∠= °,90AEB CEF ∠+∠=°, ∴BAE CEF ∠=∠.AME BCF ∴△≌△(ASA ). ···················································································· (5分) AE EF ∴=. ················································································································ (6分) (2)正确. ··································································· (7分) 证明:在BA 的延长线上取一点N . 使AN CE =,连接NE . ············································ (8分) BN BE ∴=. 45N PCE ∴∠=∠=°. 四边形ABCD 是正方形, AD BE ∴∥.DAE BEA ∴∠=∠.NAE CEF ∴∠=∠.ANE ECF ∴△≌△(ASA ). ··················································································· (10分) AE EF ∴=. (11分)11.解(Ⅰ)如图①,折叠后点B 与点A 重合, 则ACD BCD △≌△.设点C 的坐标为()()00m m >,. 则4BC OB OC m =-=-. 于是4AC BC m ==-.在Rt AOC △中,由勾股定理,得222AC OC OA =+,AD F G B M A D F C G B N即()22242m m -=+,解得32m =. ∴点C 的坐标为302⎛⎫⎪⎝⎭,. ········································································································· 4分 (Ⅱ)如图②,折叠后点B 落在OA 边上的点为B ',则B CD BCD '△≌△. 由题设OB x OC y '==,, 则4B C BC OB OC y '==-=-,在Rt B OC '△中,由勾股定理,得222B C OC OB ''=+.()2224y y x ∴-=+,即2128y x =-+ ···················································································································· 6分 由点B '在边OA 上,有02x ≤≤,∴ 解析式2128y x =-+()02x ≤≤为所求.∴ 当02x ≤≤时,y 随x 的增大而减小,y ∴的取值范围为322y ≤≤. ······················································································· 7分 (Ⅲ)如图③,折叠后点B 落在OA 边上的点为B '',且B D OB ''∥. 则OCB CB D ''''∠=∠. 又CBD CB D OCB CBD ''''∠=∠∴∠=∠ ,,有CB BA ''∥. Rt Rt COB BOA ''∴△∽△. 有OB OC OA OB''=,得2OC OB ''=. ···················································································· 9分 在Rt B OC ''△中,设()00OB x x ''=>,则02OC x =. 由(Ⅱ)的结论,得2001228x x =-+,解得000808x x x =-±>∴=-+,∴点C 的坐标为()016. ····················································································· 10分。