2020年新高考模拟数学试卷(含答案)2020年5月8日-2
- 格式:docx
- 大小:1.70 MB
- 文档页数:12
2020年山东省济南市高考数学模拟试卷(文科)(5月份)一、选择题(本大题共10小题,每小题5分,满分50分,每小题给出的四个选项中只有一项是符合题目要求的)1.设复数z=(i为虚数单位),则z=()A.iB.﹣iC.2iD.﹣2i2.设N是自然数集,P={x|y=,则集合P∩N中元素个数是()A.2B.3C.4D.53.如果log5a+log5b=2,则a+b的最小值是()A.25B.10C.5D.24.“a>2且b>2”是“ab>4”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件5.执行如图的程序框图,则输出的S等于()A.0B.﹣3C.﹣10D.﹣256.已知不等式组,表示的平面区域为D,若函数y=|x|+m的图象上存在区域D上的点,则实数m的最小值为()A.﹣6B.﹣4C.0D.47.在区间[0,]上随机取一个数x,则时间“sinx+cosx≥1”发生的概率为()A.B.C.D.8.已知△ABC中,边a,b,c的对角分别为A,B,C,且a=,c=,C=,则△ABC 的面积S等于()A.3B.C.D.9.已知函数f(x)为定义在R上的奇函数,且当x≥0时,f(x)=log3(x+1)+a,则f(﹣8)等于()A.﹣3﹣aB.3+aC.﹣2D.210.设F1,F2是双曲线﹣=1(a>0,b>0)的左、右焦点,若双曲线右支上存在一点P,使•=0,且|PF1|=|PF2|,则该双曲线的离心率为()A.B.C.D.+1二、填空题(本大共5小题,每小题5分,满分25分)11.商场为了了解毛衣的月销售量y(件)与月平均气温x(℃)之间的关系,随机统计了某4个月的月销售量与当月平均气温,其数据如表:月平均气温x(℃)17 13 8 2月销售量y(件)24 33 40 55由表中数据算出线性回归方程=﹣2x+a,气象部门预测下个月的平均气温约为24℃,据此估计该商场下个月毛衣销售量约为件.12.某几何体的三视图(单位:cm)如图所示,则该几何体的表面积是cm213.过点P(3,1)的直线l与圆C:(x﹣2)2+(y﹣2)2=4相交于A,B两点,当弦AB 的长取最小值时,直线l的倾斜角等于.14.已知△ABC中,AB=AC=1,且|+|=|﹣|,=3,若点P是BC边上的动点,则的取值范围是.15.若函数y=f(x)的定义域D中恰好存在n个值x1,x2,…,x n满足f(﹣x i)=f(x i)(i=1,2,…,n),则称函数y=f(x)为定义域D上的“n度局部偶函数”.已知函数g(x)=是定义域为(﹣∞,0)∪(0,+∞)上的“3度局部偶函数”,则a的取值范围是.三、解答题(共6小题,满分75分)16.2020年2月,国务院发布的《关于进一步加强城市规划建设管理工作的若干意见》中提到“原则上不再建设封闭住宅小区,已建成的住宅小区和单位大院要逐步打开”,济南某新闻媒体对某一小区100名不同年龄段的居民进行调查,如图是各年龄段支持以上做法的人数的频率分布直方图.(Ⅰ)求m的值;(Ⅱ)用分层抽样的方法抽取20人到演播大厅进行现场交流.(i)求年龄在35~55岁之间的人数;(ii)在55~75岁之间任意找两个人发言(不考虑先后顺序),至少一人再65~75岁之间的概率是多少?17.已知函数f(x)=sin2x+2sin2x.(Ⅰ)求函数f(x)的单调增区间;(Ⅱ)将函数f(x)的图象向左平移个单位,再向下平移1个单位后得到函数g(x)的图象,当x∈[﹣,]时,求函数g(x)的值域.18.如图,四棱锥P﹣ABCD中,△PAD为正三角形,四边形ABCD是边长为2的菱形,∠BAD=60°平面ABE与直线PA,PD分别交于点E,F.(Ⅰ)求证:AB∥EF;(Ⅱ)若平面PAD⊥平面ABCD,试求三棱锥A﹣PBD的体积.19.已知在等比数列{a n}中,a n+1>a n,对n∈N*恒成立,且a1a4=8,a2+a3=6.(Ⅰ)求数列{a n}的通项公式(Ⅱ)若数列{b n}满足+…+=n,(n∈N*),求数列{b n}的前n项和S n.20.在平面直角坐标系xOy中,椭圆C:+=1(a>b>0)的离心率为,直线y=x与椭圆C交于点E,F,直线y=﹣x与椭圆C交于点G,H,且四边形EHFG的面积为.(1)求椭圆C的方程;(2)过椭圆C的左顶点A作直线l1交椭圆C于另一点P,过点A作垂直于l1的直线l1,l2交椭圆C于另一点Q,当直线l1的斜率变化时,直线PQ是否过x轴上的一定点?若过定点,求出该定点的坐标,若不过定点,请说明理由.21.已知函数f(x)=lnx﹣e x+mx,其中m∈R,函数g(x)=f(x)+e x+1.(Ⅰ)当m=1时,求函数f(x)在x=1处的切线方程;(Ⅱ)当m=﹣e时,(i)求函数g(x)的最大值;(ii)记函数φ(x)=|g(x)|﹣﹣,证明:函数φ(x)没有零点.2020年山东省济南市高考数学模拟试卷(文科)(5月份)参考答案与试题解析一、选择题(本大题共10小题,每小题5分,满分50分,每小题给出的四个选项中只有一项是符合题目要求的)1.设复数z=(i为虚数单位),则z=()A.iB.﹣iC.2iD.﹣2i【考点】复数代数形式的乘除运算.【分析】直接利用复数的除法的运算法则化简复数为:a+bi的形式即可.【解答】解:复数z=(i为虚数单位),则z===﹣i.故选:B.2.设N是自然数集,P={x|y=,则集合P∩N中元素个数是()A.2B.3C.4D.5【考点】交集及其运算.【分析】求出P中x的范围确定出P,找出P与N的交集即可.【解答】解:由P中y=,得到3x﹣x2≥0,整理得:x(x﹣3)≤0,解得:0≤x≤3,即P=[0,3],∵N为自然数集,∴P∩N={0,1,2,3},则集合P∩N中元素个数是4,故选:C.3.如果log5a+log5b=2,则a+b的最小值是()A.25B.10C.5D.2【考点】基本不等式;对数的运算性质.【分析】利用对数的运算性质可得:ab=52,再利用基本不等式的性质即可得出.【解答】解:∵a,b>0,log5a+log5b=2=log5(ab),∴ab=52=25≤,解得a+b≥10,当且仅当a=b=5时取等号.则a+b的最小值是10.故选:B.4.“a>2且b>2”是“ab>4”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件【考点】必要条件、充分条件与充要条件的判断.【分析】依据充分性与必要性的定义,对两个条件之间的关系进行判断研究其因果规律,以确定两个条件的关系.【解答】解:若a>2且b>2,则ab>4成立,故充分性易证若ab>4,如a=8,b=1,此时ab>4成立,但不能得出a>2且b>2,故必要性不成立由上证明知“a>2且b>2”是“ab>4”的充分不必要条件,故选A5.执行如图的程序框图,则输出的S等于()A.0B.﹣3C.﹣10D.﹣25【考点】程序框图.【分析】模拟执行程序,依次写出每次循环得到的s,k的值,当k=5时,不满足条件k<5,退出循环,输出s的值为﹣10.【解答】解:模拟执行程序,可得k=1,s=1满足条件k<5,执行循环体,s=1,k=2满足条件k<5,执行循环体,s=0,k=3满足条件k<5,执行循环体,s=﹣3,k=4满足条件k<5,执行循环体,s=﹣10,k=5不满足条件k<5,退出循环,输出s的值为﹣10.故选:C.6.已知不等式组,表示的平面区域为D,若函数y=|x|+m的图象上存在区域D上的点,则实数m的最小值为()A.﹣6B.﹣4C.0D.4【考点】简单线性规划.【分析】由题意作平面区域,从而可得﹣3≤y≤5,0≤|x|≤3;化简y=|x|+m为m=y﹣|x|,从而确定最小值.【解答】解:由题意作平面区域如下,,结合图象可知,﹣3≤y≤5,0≤|x|≤3;∵y=|x|+m,∴m=y﹣|x|,故当y=﹣3,|x|=3,即过点A(﹣3,﹣3)时,m有最小值为﹣6;故选:A.7.在区间[0,]上随机取一个数x,则时间“sinx+cosx≥1”发生的概率为()A.B.C.D.【考点】几何概型.【分析】利用三角函数的辅助角公式求出sinx+cosx≤1的等价条件,利用几何概型的概率公式即可得到结论.【解答】解:由sinx+cosx≥1得sin(x+)≥1,即sin(x+)≥,∴2kπ+≤x+≤2kπ+,k∈Z即2kπ≤x≤2kπ+,k∈Z∵0≤x≤π,∴当k=0时,x的取值范围是0≤x≤,则“sinx+cosx≥1”发生的概率P==,故选:D.8.已知△ABC中,边a,b,c的对角分别为A,B,C,且a=,c=,C=,则△ABC的面积S等于()A.3B.C.D.【考点】正弦定理.【分析】由条件和正弦定理求出sinA,结合条件和内角的范围求出A,由内角和定理求出B,利用三角形面积公式求出△ABC的面积S.【解答】解:在△ABC中,∵a=,c=,C=,∴由正弦定理得,则sinA===,∵C是钝角,且0<A<π,∴A=,∴B=π﹣A﹣C=,∴△ABC的面积S===,故选:D.9.已知函数f(x)为定义在R上的奇函数,且当x≥0时,f(x)=log3(x+1)+a,则f(﹣8)等于()A.﹣3﹣aB.3+aC.﹣2D.2【考点】函数奇偶性的性质.【分析】根据奇函数的结论f(0)=0求出a,再由对数的运算得出结论.【解答】解:∵函数f(x)为奇函数,∴f(0)=a=0,f(﹣8)=﹣f(8)=﹣log3(8+1)=﹣2.故选:C.10.设F1,F2是双曲线﹣=1(a>0,b>0)的左、右焦点,若双曲线右支上存在一点P,使•=0,且|PF1|=|PF2|,则该双曲线的离心率为()A.B.C.D.+1【考点】双曲线的简单性质.【分析】根据双曲线的定义结合直角三角形的性质建立方程关系进行求解即可.【解答】解:∵双曲线右支上存在一点P,使•=0,∴⊥,∵|PF1|=|PF2|,∴|F1F2|=2|PF2|=4c,即|PF2|=2c∴|PF1|﹣|PF2|=|PF2|﹣|PF2|=(﹣1)|PF2|=2a,∵|PF2|=2c∴2(﹣1)c=2a,e==,故选:C二、填空题(本大共5小题,每小题5分,满分25分)11.商场为了了解毛衣的月销售量y(件)与月平均气温x(℃)之间的关系,随机统计了某4个月的月销售量与当月平均气温,其数据如表:月平均气温x(℃)17 13 8 2月销售量y(件)24 33 40 55由表中数据算出线性回归方程=﹣2x+a,气象部门预测下个月的平均气温约为24℃,据此估计该商场下个月毛衣销售量约为2件.【考点】线性回归方程.【分析】分别求出,,再根据样本中心点一定在线性回归方程上,求出a的值,写出线性回归方程,将x=24代入线性回归方程求出对应的y的值,这是一个预报值.【解答】解:∵=(17+13+8+2)=10,=(24+33+40+55)=38,a=58∴=﹣2x+58,∴=﹣2×24+58=2,故答案为:2.12.某几何体的三视图(单位:cm)如图所示,则该几何体的表面积是12+4\sqrt{2}cm2【考点】由三视图求面积、体积.【分析】由三视图可知:该几何体是正方体沿对角面截取一半所得几何体,即可得出.【解答】解:由三视图可知:该几何体是正方体沿对角面截取一半所得几何体,∴该几何体的表面积=22×2++2×2=12+4cm2.故答案为:12+4.13.过点P(3,1)的直线l与圆C:(x﹣2)2+(y﹣2)2=4相交于A,B两点,当弦AB 的长取最小值时,直线l的倾斜角等于45°.【考点】直线与圆的位置关系.【分析】由题意结合图象可得当弦AB的长取最小值时,直线l过P且与PC垂直,由斜率公式和直线的垂直关系可得.【解答】解:∵(3﹣2)2+(1﹣2)2=2<4,∴点P在圆C内部,当弦AB的长取最小值时,直线l过P且与PC垂直,由斜率公式可得k PC==﹣1,故直线l的斜率为1,倾斜角为45°,故答案为:45°14.已知△ABC中,AB=AC=1,且|+|=|﹣|,=3,若点P是BC边上的动点,则的取值范围是[\frac{1}{4},\frac{3}{4}].【考点】平面向量数量积的运算.【分析】根据|+|=|﹣|得出•=0,⊥,建立平面直角坐标系,利用平面向量的坐标运算表示出•,根据坐标运算即可求出•的取值范围.【解答】解:△ABC中,AB=AC=1,|+|=|﹣|,∴•=0,∴⊥;以AC,AB为坐标轴建立平面直角坐标系,如图所示:则A(0,0),C(1,0),B(0,1),∵=3,∴E(,);直线BC方程为x+y=1,即x+y﹣1=0;设P(x,y),则0≤x≤1,则=(x,y),=(,),∴•=x+y=x+(1﹣x)=x+;∵0≤x≤1,∴≤x+≤;即•的取值范围是[,].故答案为:[,].15.若函数y=f(x)的定义域D中恰好存在n个值x1,x2,…,x n满足f(﹣x i)=f(x i)(i=1,2,…,n),则称函数y=f(x)为定义域D上的“n度局部偶函数”.已知函数g(x)=是定义域为(﹣∞,0)∪(0,+∞)上的“3度局部偶函数”,则a的取值范围是(\frac{1}{4},\frac{1}{2}.【考点】抽象函数及其应用.【分析】根据条件得到函数f(x)存在n个关于y轴对称的点,作出函数关于y轴对称的图象,根据对称性建立不等式关系进行求解即可.【解答】解:由“n度局部偶函数”的定义可知,函数存在关于y对称的点有n个,当x<0时,函数g(x)=|sin(x)|﹣1,关于y轴对称的函数为y=|sin(﹣x)|﹣1=|sin (x)|﹣1,x>0,作出函数函数g(x)g和函数y=h(x)=|sin x|﹣1,x>0的图象如图:若g(x)是定义域为(﹣∞,0)∪(0,+∞)上的“3度局部偶函数”,则等价为函数g(x)和函数y=|sin(x)|﹣1,x>0的图象有且只有3个交点,若a>1,则两个函数只有一个交点,不满足条件,当0<a<1时,则满足,即,则,即<a<,故答案为:(,)三、解答题(共6小题,满分75分)16.2020年2月,国务院发布的《关于进一步加强城市规划建设管理工作的若干意见》中提到“原则上不再建设封闭住宅小区,已建成的住宅小区和单位大院要逐步打开”,济南某新闻媒体对某一小区100名不同年龄段的居民进行调查,如图是各年龄段支持以上做法的人数的频率分布直方图.(Ⅰ)求m的值;(Ⅱ)用分层抽样的方法抽取20人到演播大厅进行现场交流.(i)求年龄在35~55岁之间的人数;(ii)在55~75岁之间任意找两个人发言(不考虑先后顺序),至少一人再65~75岁之间的概率是多少?【考点】列举法计算基本事件数及事件发生的概率;频率分布直方图.【分析】(Ⅰ)根据各组的频率和等于1,即可求出m的值,(Ⅱ)(i)根据各组的人数比,利用分层抽样即可求出龄在35~55岁之间的人数,(ii)年龄在55~65岁之间的人数为3人,记为A,B,C,年龄在65~75岁之间的人数为2人,记为D,E,一一列举所有的基本事件,再找到满足条件的基本事件,根据概率公式计算即可.【解答】解:(Ⅰ)因为各组的频率和等于1,m=0.1﹣(0.015+0.035+0.015+0.01)=0.025,(Ⅱ)依题意,各小组的人数为比0.015:0.035:0.025:0.015:0.010=3:7:5:3:2,(i)年龄在35~55岁之间的人数20×=12人,(ii)年龄在55~65岁之间的人数为20×=3人,记为A,B,C,年龄在65~75岁之间的人数为20×=2人,记为D,E,从55~75岁之间任意找两个人发言,有AB,AC,AD,AE,BC,BD,BE,CD,CE,DE共10种,其中少一人再65~75岁之间的有AD,AE,BD,BE,CD,CE,DE共7种,所以至少一人再65~75岁之间的概率为.17.已知函数f(x)=sin2x+2sin2x.(Ⅰ)求函数f(x)的单调增区间;(Ⅱ)将函数f(x)的图象向左平移个单位,再向下平移1个单位后得到函数g(x)的图象,当x∈[﹣,]时,求函数g(x)的值域.【考点】三角函数中的恒等变换应用;函数y=Asin(ωx+φ)的图象变换.【分析】利用倍角公式降幂后再由两角差的正弦化简.(Ⅰ)由相位在正弦函数的增区间内求得x的取值范围可得函数f(x)的单调增区间;(Ⅱ)由函数的伸缩和平移变换求得g(x)的解析式,结合x的范围求得相位的范围,进一步求得函数g(x)的值域.【解答】解:f (x )=sin2x+2sin 2x==. (Ⅰ)由,解得.∴函数f (x )的单调增区间为[],k ∈Z ;(Ⅱ)将函数f (x )的图象向左平移个单位,得y=2sin[2(x)﹣]+1=2sin2x+1.再向下平移1个单位后得到函数g (x )=2sin2x . 由x ∈[﹣,],得2x ∈[],∴sin2x ∈[﹣],则函数g (x )的值域为[﹣].18.如图,四棱锥P ﹣ABCD 中,△PAD 为正三角形,四边形ABCD 是边长为2的菱形, ∠BAD=60°平面ABE 与直线PA ,PD 分别交于点E ,F . (Ⅰ)求证:AB ∥EF ;(Ⅱ)若平面PAD ⊥平面ABCD ,试求三棱锥A ﹣PBD 的体积.【考点】棱柱、棱锥、棱台的体积;空间中直线与直线之间的位置关系. 【分析】(1)由AB ∥CD 得出AB ∥平面PCD ,利用线面平行的性质得出AB ∥EF ; (2)过P 作PG ⊥AD 于G ,由面面垂直的性质得出PG ⊥平面ABCD ,于是V A ﹣PBD =V P ﹣ABD =.【解答】证明:(1)∵四边形ABCD 是菱形, ∴AB ∥CD ,又AB ⊄平面PCD ,CD ⊂平面PCD , ∴AB ∥平面PCD ,又AB ⊂平面ABEF ,平面ABEF ∩平面PCD=EF , ∴AB ∥EF .(2)过P 作PG ⊥AD 于G ,∵平面PAD ⊥平面ABCD ,平面PAD ∩平面ABCD=AD ,PG ⊥AD ,PG ⊂平面PAD , ∴PG ⊥平面ABCD .∵△PAD 为正三角形,四边形ABCD 是边长为2的菱形,∠DAB=60°, ∴PG=,S △ABD ==.∴V A ﹣PBD =V P ﹣ABD ===1.19.已知在等比数列{a n }中,a n+1>a n ,对n ∈N *恒成立,且a 1a 4=8,a 2+a 3=6. (Ⅰ)求数列{a n }的通项公式( Ⅱ)若数列{b n }满足+…+=n ,(n ∈N *),求数列{b n }的前n 项和S n .【考点】数列的求和;等比数列的通项公式.【分析】(I )利用等比数列的通项公式及其性质即可得出. (II )利用等比数列的前n 项和公式、“错位相减法”即可得出.【解答】解:(I )设等比数列{a n }的公比为q ,a n+1>a n ,对n ∈N *恒成立,且a 1a 4=8,a 2+a 3=6. ∴a 2a 3=8,联立解得a 2=2,a 3=4. ∴q=2.∴a n =2×2n ﹣2=2n ﹣1. (II )∵数列{b n }满足+…+=n ,(n ∈N *),∴=1,解得b 1=1.n ≥2时, =n ﹣(n ﹣1)=1,∴b n =(2n ﹣1)•2n ﹣1.∴数列{b n }的前n 项和S n =1+3×2+5×22+…+(2n ﹣1)•2n ﹣1. 2S n =2+3×22+…+(2n ﹣3)•2n ﹣1+(2n ﹣1)•2n , ∴﹣S n =1+2(2+22+…+2n ﹣1)﹣(2n ﹣1)•2n =﹣1﹣(2n ﹣1)•2n =(3﹣2n )•2n﹣3,∴S n =(2n ﹣3)•2n +3.20.在平面直角坐标系xOy 中,椭圆C :+=1(a >b >0)的离心率为,直线y=x与椭圆C 交于点E ,F ,直线y=﹣x 与椭圆C 交于点G ,H ,且四边形EHFG 的面积为.(1)求椭圆C 的方程;(2)过椭圆C的左顶点A作直线l1交椭圆C于另一点P,过点A作垂直于l1的直线l1,l2交椭圆C于另一点Q,当直线l1的斜率变化时,直线PQ是否过x轴上的一定点?若过定点,求出该定点的坐标,若不过定点,请说明理由.【考点】椭圆的简单性质.【分析】(1)利用椭圆C:+=1(a>b>0)的离心率为,得出a=2b,直线y=x 代入椭圆C,可得+=1,x=b,利用四边形EHFG的面积为,求出b,可得a,即可求得椭圆的方程;(2)设直线l1的方程代入椭圆的方程,消去y,整理得一元二次方程,由韦达定理,可求得P的坐标,以﹣代入,可得Q(,﹣),从而可求PQ的直线方程,令y=0,即可得到结论.【解答】解:(1)∵椭圆C:+=1(a>b>0)的离心率为,∴=,∴a=2b,直线y=x代入椭圆C,可得+=1,∴x=b,∵直线y=x与椭圆C交于点E,F,直线y=﹣x与椭圆C交于点G,H,且四边形EHFG的面积为,∴(b)2=,∴b=1,∴a=2,∴椭圆C的方程为=1;(2)设P(x1,y1),Q(x2,y2),直线斜率为k,则直线l1的方程为y=k(x+2)把它代入椭圆的方程,消去y,整理得:(1+4k2)x2+16k2x+(16k2﹣4)=0由韦达定理得﹣2+x1=﹣,∴x1=,∴y1=k(x1+2)=,∴P(,),以﹣代入,可得Q(,﹣),则k PQ=﹣∴PQ的直线方程为y﹣=﹣(x﹣),令y=0,则x=+=﹣.∴直线PQ过x轴上的一定点(﹣,0).21.已知函数f(x)=lnx﹣e x+mx,其中m∈R,函数g(x)=f(x)+e x+1.(Ⅰ)当m=1时,求函数f(x)在x=1处的切线方程;(Ⅱ)当m=﹣e时,(i)求函数g(x)的最大值;(ii)记函数φ(x)=|g(x)|﹣﹣,证明:函数φ(x)没有零点.【考点】利用导数求闭区间上函数的最值;利用导数研究曲线上某点切线方程.【分析】(Ⅰ)求出m=1的函数f(x)的解析式和导数,求得切线的斜率和切点,由点斜式方程可得切线的方程;(Ⅱ)(i)当m=﹣e时,求得g(x)的解析式和导数,以及单调区间,即可得到所求最大值;(ii)求得函数φ(x)的解析式,令φ(x)=0,可得|lnx﹣ex+1|=+,(*)由h(x)=+,求出导数,可得单调区间,可得h(x)的最大值,由|g(x)|的最小值为1,即可判断.【解答】解:(Ⅰ)当m=1时,函数f(x)=lnx﹣e x+x的导数为f′(x)=﹣e x+1,可得函数f(x)在x=1处的切线斜率为2﹣e,切点为(1,1﹣e),即有函数f(x)在x=1处的切线方程为y﹣(1﹣e)=(2﹣e)(x﹣1),即为y=(2﹣e)x﹣1;(Ⅱ)(i)当m=﹣e时,g(x)=f(x)+e x+1=lnx﹣ex+1,g′(x)=﹣e,当x>时,g′(x)<0,g(x)递减;当0<x<时,g′(x)<0,g(x)递增.可得g(x)在x=处取得极大值,且为最大值﹣1;(ii)证明:函数φ(x)=|g(x)|﹣﹣=|lnx﹣ex+1|﹣(+),令φ(x)=0,可得|lnx﹣ex+1|=+,(*)由h(x)=+的导数为h′(x)=,当x>e时,h′(x)<0,函数y递减;当0<x<e时,h′(x)>0,函数h(x)递增.即有函数h(x)=+的最大值为h(e)=+<1;由(i)可得g(x)≤﹣1,即有|g(x)|≥1,则方程(*)无解.即有函数φ(x)没有零点.2020年7月14日。
2020年新⾼考模拟数学试卷(含答案)2020年5⽉8⽇-200012020年新⾼考模拟数学试卷(含答案)2020年5⽉8⽇下午1.巳知全集U = 集今A = W + ■丹C V A =A.[0,1] (011) C*( —g,l] D. (—8,1)2.设复数富=⾈(其中i为虚数取位⽚则爱数⽦在复平⾯内对应的点所往的象限为上第⼀象限R第⼆魏駁C■第三酿限 D. ?四象隈3.加强体育锻炼⾧许少年⽜.活学习中⾮常議悪的组成梆分+某学冷做引体向上运动*处于如图所⽰的平衡状态时,若两只咯膊的夹谢为$0為毎⾙貉鱒的拉⼒⼤⼩均为400 N>Mm学⽣的体重(单位:kQ绡为(蠢考數据:取重⼒加遽厦⼤⼩为>f = 10 密壬1.732)A.63 B* 69C. 75 D* 814已划函数"I的部分图象如图,則的解析式可能星A* /B t /(x) = z+?in 2xG /(J)屯Jf—g&n 2jr5.⽅嵋医除的创设.在抗击卿冠肺炎疫悄中发挥了不可薔代的匿要作⽤?幕⽅枪医院医疗⼩级誓七名护⼟?悔名护⼠从周⼀到同⽇轮潦安排⼀个視5L若甲的夜廳⽐丙曖⼀天,丁的拽班⽐戊瞬期⼤,⼄的夜班⽐庚早三夭.⼰的救班在周四?且倚好在⼄和内的正中阖,则同五值厦班的护⼠为A.甲⽒丙 C.戊 D.庚6+已知抛物线贰=仏的焦点为F,直线IHF且与抛物线交于A初两点,过A作拋物线准线的垂线,垂⾜为M,/MAF的⾓平分线与抛物线的准线交于点P,线段AE的中点为Q. 若tAB|=8,((iJlPQ|-A. 2 B. 4 G6 D. 87?洛书,古称龟书?晁阴阳五⾏术数之源,蔽世界公认为组合数学的⿐祖*它是中华民姦对⼈类的伟⼤贡献之⼀*在古代传说中有神⿔出于浇⽔,其甲壳上有圏1严以五居中,五⽅⽩圈皆阳数,四隅鳩点为阴ST,这就是蛊早的三阶幻⽅.按麗上述说法,将1到9这九个数字*填在如图2所⽰的九官格⾥,九宫務的中间填5,四个⾓填偶数+基余位?i填奇数.则每⼀横⾏、每⼀竖列以及两条对⾓线上3久。
2020年高考数学(理科)全国2卷高考模拟试卷(3)一.选择题(共12小题,满分60分,每小题5分)1.(5分)设集合A ={x |x >0},B ={x |log 2(3x ﹣2)<2},则( ) A .A ∩B =(0,53] B .A ∩B =(0,13] C .A ∪B =(13,+∞)D .A ∪B =(0,+∞) 2.(5分)已知i 是虚数单位,复数z 满足1−2i z=1+i ,则|z |=( ) A .√52B .3√22C .√102D .√33.(5分)在△ABC 中,“AB →•AC →=BA →•BC →”是“|AC →|=|BC →|”( ) A .充分而不必要条件 B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件4.(5分)已知a ,b 是两条直线,α,β,γ是三个平面,则下列命题正确的是( ) A .若a ∥α,b ∥β,a ∥b ,则α∥β B .若α⊥β,a ⊥α,则a ∥βC .若α⊥β,α⊥γ,β∩γ=a ,则a ⊥αD .若α∥β,a ∥α,则a ∥β5.(5分)三棱锥P ﹣ABC 内接于半径为2的球中,P A ⊥平面ABC ,∠BAC =π2,BC =2√2,则三棱锥P ﹣ABC 的体积的最大值是( ) A .4√2B .2√2C .43√2 D .34√26.(5分)抛物线y 2=2px (p >0)的焦点为F ,准线为l ,A ,B 是抛物线上的两个动点,且满足∠AFB =2π3.设线段AB 的中点M 在l 上的投影为N ,则|MN||AB|的最大值是( )A .√3B .√32C .√33D .√347.(5分)函数f (x )=sin x +cos x +sin x •cos x 的值域为( ) A .[﹣1,1]B .[﹣1,√2+12]C .[﹣1,√2−12]D .[−1,√2]8.(5分)函数f (x )=ln (x 3+4)﹣e x﹣1的图象大致是( )A .B .C .D .9.(5分)如图是函数y =A sin (ωx +φ)(x ∈R ,A >0,ω>0,0<φ<π2)在区间[−π6,5π6]上的图象,为了得到这个函数的图象,只需将y =sin x (x ∈R )的图象上的所有的点( )A .向左平移π3个长度单位,再把所得各点的横坐标变为原来的12,纵坐标不变B .向左平移π3个长度单位,再把所得各点的横坐标变为原来的2倍,纵坐标不变C .向左平移π6个长度单位,再把所得各点的横坐标变为原来的12,纵坐标不变D .向左平移π6个长度单位,再把所得各点的横坐标变为原来的2倍,纵坐标不变10.(5分)欲测量河宽即河岸之间的距离(河的两岸可视为平行),受地理条件和测量工具的限制,采用如下办法:如图所示,在河的一岸边选取A ,B 两个观测点,观察对岸的点C ,测得∠CAB =75°,∠CBA =45°,AB =120米,由此可得河宽约为(精确到1米,参考数据√6≈2.45,sin75°≈0.97)( )A .170米B .110米C .95米D .80米11.(5分)下列叙述随机事件的频率与概率的关系中,说法正确的是( )A .频率就是概率B .频率是随机的,与试验次数无关C .概率是稳定的,与试验次数无关D .概率是随机的,与试验次数有关 12.(5分)已知双曲线x 2a 2−y 2b 2=1(a >0,b >0)的左、右焦点分别为F 1,F 2,过F 2且斜率为247的直线与双曲线在第一象限的交点为A ,若(F 2F 1→+F 2A →)⋅F 1A →=0,则此双曲线的标准方程可能为( )A .x 2−y 212=1B .x 23−y 24=1C .x 216−y 29=1 D .x 29−y 216=1二.填空题(共4小题,满分20分,每小题5分)13.(5分)设函数f (x )={x 2,0≤x <5f(x −5),x ≥5,那么f (18)的值 .14.(5分)为估计池塘中鱼的数量,负责人将50条带有标记的同品种鱼放入池塘,几天后,随机打捞40条鱼,其中带有标记的共5条.利用统计与概率知识可以估计池塘中原来有鱼 条.15.(5分)某公司租地建仓库,每月土地占用费y 1与仓库到车站的距离成反比,而每月库存货物的运费y 2与到车站的距离成正比,如果在距离车站10km 处建仓库,这两项费用y 1和y 2分别为2万元和8万元,要使这两项费用之和最小,仓库应建立在距离车站 km 处,最少费用为 万元.16.(5分)如图,圆形纸片的圆心为O 半径为4cm ,该纸片上的正方形ABCD 的中心为O ,E ,F ,G ,H 为圆O 上的点,△ABE 、△BCF 、△CDG 、△DAH 分别是以AB ,BC ,CD ,DA 为底边的等腰三角形,沿虚线剪开后,分别以AB ,BC ,CD ,DA 为折痕折起△ABE 、△BCF 、△CDG 、△DAH ,使得E ,F ,G ,H 重合,得到一个四棱锥,当四棱锥体积取得最大值,正方形ABCD 的边长为 cm .三.解答题(共5小题,满分60分,每小题12分)17.(12分)在①a2+a3=a5﹣b1,②a2•a3=2a7,③S3=15这三个条件中任选一个,补充在下面问题中,并解答.已知等差数列{a n}的公差d>0,前n项和为S n,若_______,数列{b n}满足b1=1,b2=1 3,a nb n+1=nb n﹣b n+1.(1)求{a n}的通项公式;(2)求{b n}的前n项和T n.注:如果选择多个条件分别解答,按第一个解答计分.18.(12分)某包子店每天早晨会提前做好若干笼包子,以保证当天及时供应,每卖出一笼包子的利润为40元,当天未卖出的包子作废料处理,每笼亏损20元.该包子店记录了60天包子的日需求量n(单位:笼,n∈N),整理得到如图所示的条形图,以这60天各需求量的频率代替相应的概率.(Ⅰ)设X为一天的包子需求量,求X的数学期望.(Ⅱ)若该包子店想保证80%以上的天数能够足量供应,则每天至少要做多少笼包子?(Ⅲ)为了减少浪费,该包子店一天只做18笼包子,设Y为当天的利润(单位:元),求Y的分布列和数学期望.19.(12分)如图所示,在四棱锥P﹣ABCD中,四边形ABCD为菱形,∠DAB=60°,AB =2,△P AD为等边三角形,平面P AD⊥平面ABCD.(1)求证AD ⊥PB .(2)在棱AB 上是否存在点F ,使DF 与平面PDC 所成角的正弦值为2√55?若存在,确定线段AF 的长度;若不存在,请说明理由.20.(12分)已知椭圆C :x 212+y 24=1,A 、B 分别是椭圆C 长轴的左、右端点,M 为椭圆上的动点.(1)求∠AMB 的最大值,并证明你的结论;(2)设直线AM 的斜率为k ,且k ∈(−12,−13),求直线BM 的斜率的取值范围. 21.(12分)已知函数f (x )=xlnx +λx 2,λ∈R .(Ⅰ)若λ=﹣1,求曲线f (x )在点(1,f (1)处的切线方程;(Ⅱ)若关于x 的不等式f (x )≤λ在[1,+∞)上恒成立,求实数λ的取值范围. 四.解答题(共1小题,满分10分,每小题10分)22.(10分)在直角坐标系xOy 中,参数方程{x =cosθy =sinθ(其中θ为参数)的曲线经过伸缩变换φ:{x′=2xy′=y 得到曲线C ,以原点O 为极点,x 轴正半轴为极轴建立极坐标系,曲线D 的极坐标方程为ρsin(θ+π4)=3√102. (Ⅰ)求曲线C 的普通方程及曲线D 的直角坐标方程;(Ⅱ)设M 、N 分别为曲线C 和曲线D 上的动点,求|MN |的最小值. 五.解答题(共1小题)23.已知函数f (x )=2|x |+|x ﹣2|. (1)解不等式f (x )≤4;(2)设函数f (x )的最小值为m ,若实数a 、b 满足a 2+b 2=m 2,求4a 2+1b 2+1最小值.2020年高考数学(理科)全国2卷高考模拟试卷(3)参考答案与试题解析一.选择题(共12小题,满分60分,每小题5分)1.(5分)设集合A ={x |x >0},B ={x |log 2(3x ﹣2)<2},则( ) A .A ∩B =(0,53] B .A ∩B =(0,13] C .A ∪B =(13,+∞)D .A ∪B =(0,+∞)【解答】解:∵集合A ={x |x >0},B ={x |log 2(3x ﹣2)<2}, ∴B ={x |23<x <2},则A ∪B =(0,+∞),A ∩B =(23,2),故选:D .2.(5分)已知i 是虚数单位,复数z 满足1−2i z=1+i ,则|z |=( ) A .√52B .3√22C .√102D .√3【解答】解:由1−2i z=1+i ,得z =1−2i1+i =(1−2i)(1−i)(1+i)(1−i)=−12−32i ,∴|z |=|z |=√(−12)2+(−32)2=√102.故选:C .3.(5分)在△ABC 中,“AB →•AC →=BA →•BC →”是“|AC →|=|BC →|”( ) A .充分而不必要条件 B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件【解答】解:因为在△ABC 中AB →•AC →=BA →•BC →等价于AB →•AC →−BA →•BC →=0等价于AB →•(AC →+BC →)=0,因为AC →+BC →的方向为AB 边上的中线的方向.即AB 与AB 边上的中线相互垂直,则△ABC 为等腰三角形,故AC =BC , 即|AC|→=|BC →|,所以为充分必要条件. 故选:C .4.(5分)已知a ,b 是两条直线,α,β,γ是三个平面,则下列命题正确的是( )A .若a ∥α,b ∥β,a ∥b ,则α∥βB .若α⊥β,a ⊥α,则a ∥βC .若α⊥β,α⊥γ,β∩γ=a ,则a ⊥αD .若α∥β,a ∥α,则a ∥β【解答】解:A .若a ∥α,b ∥β,a ∥b ,则α∥β,不正确,可能相交; B .若α⊥β,a ⊥α,则a ∥β或a ⊂β,因此不正确; C .若α⊥β,α⊥γ,β∩γ=a ,则a ⊥α,正确;证明:设α∩β=b ,α∩γ=c ,取P ∈α,过点P 分别作m ⊥b ,n ⊥c , 则m ⊥β,n ⊥γ,∴m ⊥a ,n ⊥a ,又m ∩n =P ,∴a ⊥α. D .若α∥β,a ∥α,则a ∥β或a ⊂β. 故选:C .5.(5分)三棱锥P ﹣ABC 内接于半径为2的球中,P A ⊥平面ABC ,∠BAC =π2,BC =2√2,则三棱锥P ﹣ABC 的体积的最大值是( ) A .4√2B .2√2C .43√2D .34√2【解答】解:由题意三棱锥P ﹣ABC 内接于半径为2的球中,P A ⊥平面ABC ,∠BAC =π2,BC =2√2,棱锥的高为P A ,可得16=8+P A 2,所以P A =2√2,所以三棱锥的体积为:13×12×AB ×AC ×PA =√23•AB •AC ≤√23⋅AB 2+AC 22=4√23,当且仅当AB =AC =2时,三棱锥的体积取得最大值. 故选:C .6.(5分)抛物线y 2=2px (p >0)的焦点为F ,准线为l ,A ,B 是抛物线上的两个动点,且满足∠AFB =2π3.设线段AB 的中点M 在l 上的投影为N ,则|MN||AB|的最大值是( )A .√3B .√32C .√33D .√34【解答】解:设|AF |=a ,|BF |=b ,A 、B 在准线上的射影点分别为Q 、P , 连接AQ 、BQ由抛物线定义,得|AF |=|AQ |且|BF |=|BP |,在梯形ABPQ 中根据中位线定理,得2|MN |=|AQ |+|BP |=a +b . 由余弦定理得|AB |2=a 2+b 2﹣2ab cos 2π3=a 2+b 2+ab ,配方得|AB |2=(a +b )2﹣ab , 又∵ab ≤(a+b 2) 2,∴(a +b )2﹣ab ≥(a +b )2﹣( a+b 2) 2=34(a +b )2得到|AB |≥√32(a +b ). 所以|MN||AB|≤a+b2√32(a+b)=√33, 即|MN||AB|的最大值为√33. 故选:C .7.(5分)函数f (x )=sin x +cos x +sin x •cos x 的值域为( ) A .[﹣1,1]B .[﹣1,√2+12]C .[﹣1,√2−12]D .[−1,√2]【解答】解:设sin x +cos x =t (−√2≤t ≤√2)所以:sinxcosx =t 2−12则:f (x )=sin x +cos x +sin x •cos x=t +t 2−12=12(t +1)2−1当t =√2时,函数取最大值:f(x)max =f(√2)=√2+12 当t =﹣1时,函数取最小值:f (x )min =f (﹣1)=﹣1 所以函数的值域为:[−1,√2+12] 故选:B .8.(5分)函数f (x )=ln (x 3+4)﹣e x﹣1的图象大致是( )A .B .C .D .【解答】解:∵x 3+4>0,∴x 3>﹣4,解得x >−√43,∴函数的定义域为{x |x >−√43}, 当x →−√43时,f (x )→﹣∞,∴排除选项A ; ∵f (x )=ln (x 3+4)﹣e x ﹣1,∴f ′(x)=3x 2x 3+4−e x−1, f (0)=ln (0+4)﹣e ﹣1=ln 4﹣e ﹣1>0,∴排除选项C ; ∵f (x )=ln (x 3+4)﹣e x ﹣1,∴f '(0)=﹣e ﹣1<0,即x =0在函数的单调递减区间内,∴排除选项D .故选:B .9.(5分)如图是函数y =A sin (ωx +φ)(x ∈R ,A >0,ω>0,0<φ<π2)在区间[−π6,5π6]上的图象,为了得到这个函数的图象,只需将y =sin x (x ∈R )的图象上的所有的点( )A .向左平移π3个长度单位,再把所得各点的横坐标变为原来的12,纵坐标不变B .向左平移π3个长度单位,再把所得各点的横坐标变为原来的2倍,纵坐标不变C .向左平移π6个长度单位,再把所得各点的横坐标变为原来的12,纵坐标不变D .向左平移π6个长度单位,再把所得各点的横坐标变为原来的2倍,纵坐标不变【解答】解:由图可知A =1,T =π, ∴ω=2,又−π6ω+φ=2k π(k ∈Z ),∴φ=2k π+π3(k ∈Z ),又0<ϕ<π2, ∴φ=π3,∴y =sin (2x +π3).∴为了得到这个函数的图象,只需将y =sin x (x ∈R )的图象上的所有向左平移π3个长度单位,得到y =sin (x +π3)的图象,再将y =sin (x +π3)的图象上各点的横坐标变为原来的12(纵坐标不变)即可.故选:A .10.(5分)欲测量河宽即河岸之间的距离(河的两岸可视为平行),受地理条件和测量工具的限制,采用如下办法:如图所示,在河的一岸边选取A ,B 两个观测点,观察对岸的点C ,测得∠CAB =75°,∠CBA =45°,AB =120米,由此可得河宽约为(精确到1米,参考数据√6≈2.45,sin75°≈0.97)( )A .170米B .110米C .95米D .80米【解答】解:在△ABC 中,∠ACB =180°﹣75°﹣45°=60°, 由正弦定理得:AB sin∠ACB=AC sin∠ABC,∴AC =AB⋅sin∠ABC sin∠ACB=120×√22√32=40√6,∴S △ABC =12AB •AC •sin ∠CAB =12×120×40√6×sin75°≈5703.6, ∴C 到AB 的距离d =2S △ABC AB=2×5703.6120≈95. 故选:C .11.(5分)下列叙述随机事件的频率与概率的关系中,说法正确的是( ) A .频率就是概率B .频率是随机的,与试验次数无关C .概率是稳定的,与试验次数无关D .概率是随机的,与试验次数有关【解答】解:频率是随机的,随实验而变化,但概率是唯一确定的一个值. 故选:C .12.(5分)已知双曲线x 2a 2−y 2b 2=1(a >0,b >0)的左、右焦点分别为F 1,F 2,过F 2且斜率为247的直线与双曲线在第一象限的交点为A ,若(F 2F 1→+F 2A →)⋅F 1A →=0,则此双曲线的标准方程可能为( )A .x 2−y 212=1B .x 23−y 24=1C .x 216−y 29=1D .x 29−y 216=1【解答】解:若(F 2F 1→+F 2A →)•F 1A →=0,即为若(F 2F 1→+F 2A →)•(−F 2F 1→+F 2A →)=0, 可得AF 2→2=F 2F 1→2,即有|AF 2|=|F 2F 1|=2c , 由双曲线的定义可得|AF 1|=2a +2c ,在等腰三角形AF 1F 2中,tan ∠AF 2F 1=−247,cos ∠AF 2F 1=−725=4c 2+4c 2−(2a+2c)22⋅2c⋅2c,化为3c =5a , 即a =35c ,b =45c ,可得a :b =3:4,a 2:b 2=9:16. 故选:D .二.填空题(共4小题,满分20分,每小题5分)13.(5分)设函数f (x )={x 2,0≤x <5f(x −5),x ≥5,那么f (18)的值 9 .【解答】解:∵函数f (x )={x 2,0≤x <5f(x −5),x ≥5,∴f (18)=f (3×5+3)=f (3)=32=9. 故答案为:9.14.(5分)为估计池塘中鱼的数量,负责人将50条带有标记的同品种鱼放入池塘,几天后,随机打捞40条鱼,其中带有标记的共5条.利用统计与概率知识可以估计池塘中原来有鱼 400 条.【解答】解:为估计池塘中鱼的数量,负责人将50条带有标记的同品种鱼放入池塘, 几天后,随机打捞40条鱼,其中带有标记的共5条. 设池塘中原来有鱼n 条,则540=50n,解得n =400. 故答案为:400.15.(5分)某公司租地建仓库,每月土地占用费y 1与仓库到车站的距离成反比,而每月库存货物的运费y 2与到车站的距离成正比,如果在距离车站10km 处建仓库,这两项费用y 1和y 2分别为2万元和8万元,要使这两项费用之和最小,仓库应建立在距离车站 5 km 处,最少费用为 8 万元.【解答】解:设x 为仓库与车站距离,由题意可设y 1=k 1x,y 2=k 2x , 把x =10,y 1=2与x =10,y 2=8分别代入上式得k 1=20,k 2=0.8, ∴y 1=20x ,y 2=0.8x费用之和y =y 1+y 2=0.8x +20x ≥2√20x ×0.8x =2×4=8, 当且仅当0.8x =20x ,即x =5时等号成立.当仓库建在离车站5km 处两项费用之和最小.最少费用为8万元. 故答案为:5,8.16.(5分)如图,圆形纸片的圆心为O 半径为4cm ,该纸片上的正方形ABCD 的中心为O ,E ,F ,G ,H 为圆O 上的点,△ABE 、△BCF 、△CDG 、△DAH 分别是以AB ,BC ,CD ,DA 为底边的等腰三角形,沿虚线剪开后,分别以AB ,BC ,CD ,DA 为折痕折起△ABE 、△BCF 、△CDG 、△DAH ,使得E ,F ,G ,H 重合,得到一个四棱锥,当四棱锥体积取得最大值,正方形ABCD 的边长为165cm .【解答】解:连接OG 交CD 于点M ,则OG ⊥DC ,点M 为CD 的中点,连接OC , △OCM 为直角三角形,设正方形的边长为2x ,则OM =x ,由圆的半径 为4,则MG =4﹣x ,设额E ,F ,G ,H 重合于点P ,则PM =MG =4﹣x >x 则0x <2,高PO =√(4−x)2−x 2=√16−8x , V =13(2x)2√16−8x =8√23√2x 4−x 5, 设y =2x 4﹣x 5,y ′=8x 3﹣5x 4=x 3(8﹣5x ),当0<x <85时,y ′>0,y =2x 4﹣x 5单调递增;当85<x <2时,y ′<0,y =2x 4﹣x 5单调递减,所以当x =85时,V 取得最大值,此时,2x =165. 即正方形ABCD 的边长为165时,四棱锥体积取得最大值.三.解答题(共5小题,满分60分,每小题12分)17.(12分)在①a 2+a 3=a 5﹣b 1,②a 2•a 3=2a 7,③S 3=15这三个条件中任选一个,补充在下面问题中,并解答.已知等差数列{a n }的公差d >0,前n 项和为S n ,若 _______,数列{b n }满足b 1=1,b 2=13,a n b n +1=nb n ﹣b n +1. (1)求{a n }的通项公式; (2)求{b n }的前n 项和T n .注:如果选择多个条件分别解答,按第一个解答计分. 【解答】解:若选①:(1)∵a n b n +1=nb n ﹣b n +1,∴当n =1时,a 1b 2=b 1﹣b 2,∵b 1=1,b 2=13,∴a 1=2. 又∵a 2+a 3=a 5﹣b 1,∴d =3, ∴a n =3n ﹣1;(2)由(1)知:(3n ﹣1)b n +1=nb n ﹣b n +1,即3nb n +1=nb n ,∴b n+1=13b n .又b 1=1,所以数列{b n }是以1为首项,以13为公比的等比数列,∴bn=(13)n−1,T n =1−(13)n1−13=32(1−3−n). 若选②:(1)∵a n b n +1=nb n ﹣b n +1,∴当n =1时,a 1b 2=b 1﹣b 2,∵b 1=1,b 2=13,∴a 1=2. 又∵a 2•a 3=2a 7,∴(2+d )(2+2d )=2(2+6d ),∵d >0,∴d =3, ∴a n =3n ﹣1;(2)由(1)知:(3n ﹣1)b n +1=nb n ﹣b n +1,即3nb n +1=nb n ,∴b n+1=13b n .又b 1=1,所以数列{b n }是以1为首项,以13为公比的等比数列,∴bn=(13)n−1,T n =1−(13)n1−13=32(1−3−n ). 若选③:(1)∵a n b n +1=nb n ﹣b n +1,∴当n =1时,a 1b 2=b 1﹣b 2,∵b 1=1,b 2=13,∴a 1=2. 又∵S 3=15,∴d =3, ∴a n =3n ﹣1;(2)由(1)知:(3n ﹣1)b n +1=nb n ﹣b n +1,即3nb n +1=nb n ,∴b n+1=13b n .又b 1=1,所以数列{b n }是以1为首项,以13为公比的等比数列,∴bn=(13)n−1,T n =1−(13)n1−13=32(1−3−n ). 18.(12分)某包子店每天早晨会提前做好若干笼包子,以保证当天及时供应,每卖出一笼包子的利润为40元,当天未卖出的包子作废料处理,每笼亏损20元.该包子店记录了60天包子的日需求量n (单位:笼,n ∈N ),整理得到如图所示的条形图,以这60天各需求量的频率代替相应的概率.(Ⅰ)设X 为一天的包子需求量,求X 的数学期望.(Ⅱ)若该包子店想保证80%以上的天数能够足量供应,则每天至少要做多少笼包子? (Ⅲ)为了减少浪费,该包子店一天只做18笼包子,设Y 为当天的利润(单位:元),求Y 的分布列和数学期望.【解答】解:(Ⅰ)由题意得,X 的数学期望为E(X)=16×1060+17×1560+18×2060+19×1060+20×560=17.75. (Ⅱ)因为P(n ≤18)=34<0.8,P(n ≤19)=1112>0.8, 所以包子店每天至少要做19笼包子.(Ⅲ)当n =16时,Y =16×40﹣2×20=600; 当n =17时,Y =17×40﹣20=660; 当n ≥18时,Y =18×40=720. 所以Y 的可能取值为600,660,720,P(Y =600)=16,P(Y =660)=14,P(Y =720)=1−16−14=712. 所以Y 的分布列为Y 600660720P1614712所以Y 的数学期望为E(Y)=600×16+660×14+720×712=685.19.(12分)如图所示,在四棱锥P ﹣ABCD 中,四边形ABCD 为菱形,∠DAB =60°,AB =2,△P AD 为等边三角形,平面P AD ⊥平面ABCD . (1)求证AD ⊥PB .(2)在棱AB 上是否存在点F ,使DF 与平面PDC 所成角的正弦值为2√55?若存在,确定线段AF 的长度;若不存在,请说明理由.【解答】(1)证明:取AD 中点O ,连接PO ,OB ,因为平面P AD ⊥平面ABCD ,△P AD 为等边三角形,O 为AD 的中点, 所以PO ⊥平面ABCD ,PO ⊥AD因为四边形ABCD 为菱形,且∠DAB =60°,O 为AD 中点, 所以BO ⊥AD因为PO ∩BO =O ,所以AD ⊥面PBO ,所以AD ⊥PB ;(2)解:在△OCD 中,OC =√1+4−2×1×2×(−12)=√7,∴PC =√10, ∴S △PCD =12×√10×√62=√152设A 到平面PCD 的距离为h ,则13×12×2×2×sin120°×√3=13×√152h ,∴h =2√155, ∵DF 与平面PDC 所成角的正弦值为2√55, ∴2√155DF=2√55,∴DF =√3,∴F 是AB 的中点,AF =1.20.(12分)已知椭圆C :x 212+y 24=1,A 、B 分别是椭圆C 长轴的左、右端点,M 为椭圆上的动点.(1)求∠AMB 的最大值,并证明你的结论;(2)设直线AM 的斜率为k ,且k ∈(−12,−13),求直线BM 的斜率的取值范围. 【解答】解:(1)根据椭圆的对称性,不妨设M (x 0,y 0),(﹣2√3<x 0<2√3,0<y 0≤2),过点M 作MH ⊥x 轴,垂足为H ,则H (x 0,0)(0<y 0≤2), 于是又tan ∠AMH =|AH||MH|=x 0+2√3y 0,tan ∠BMH =|BH||MH|=2√3−x 0y 0, ∴tan ∠AMB =tan (∠AMH +∠BMH )=tan∠AMH+tan∠BMH1−tan∠AMHtan∠BMH =4√3y 0x 02+y 02−12,因为点M (x 0,y 0)在椭圆C 上,所以x 0212+y 024=1,所以x 02=12﹣3y 02, 所以tan ∠AMB =−2√3y 0,而0<y 0≤2, 所以tan ∠AMB =−2√3y 0≤−√3,因为0<∠AMB <π, 所以∠AMB 的最大值为2π3,此时y 0=2,即M 为椭圆的上顶点,由椭圆的对称性,当M 为椭圆的短轴的顶点时,∠AMB 取最大值,且最大值为2π3;(2)设直线BM 的斜率为k '.M (x 0,y 0),则k =0x 0+2√3,k '=0x 0−2√3,所以kk '=y 02x 02−12,又x 0212+y 024=1,所以x 02=12﹣3y 02,所以kk '=−13.因为−12<k <−13,所以k '∈(23,1)所以直线BM 的斜率的取值范围.(23,1).21.(12分)已知函数f (x )=xlnx +λx 2,λ∈R .(Ⅰ)若λ=﹣1,求曲线f (x )在点(1,f (1)处的切线方程;(Ⅱ)若关于x 的不等式f (x )≤λ在[1,+∞)上恒成立,求实数λ的取值范围. 【解答】解:(Ⅰ)当λ=﹣1时,f (x )=xlnx +λx 2,则f ′(x )=lnx +1﹣2x . 故f ′(1)=﹣1,又f (1)=﹣1.故所求期限的方程为y ﹣(﹣1)=﹣1•(x ﹣1),即x +y =0; (Ⅱ)由题意得,xlnx +λx 2≤λ在[1,+∞)上恒成立, 设函数g (x )=xlnx +λ(x 2﹣1). 则g ′(x )=lnx +1+2λx .故对任意x ∈[1,+∞),不等式g (x )≤0=g (1)恒成立, ①当g ′(x )≤0,即lnx+1x≤−2λ恒成立时,函数g (x )在[1,+∞)上单调递减,设r (x )=lnx+1x ,则r ′(x )=−lnxx2≤0, ∴r (x )max =r (1),即1≤﹣2λ,解得λ≤−12,符合题意;②当λ≥0时,g ′(x )≥0恒成立,此时函数g (x )在[1,+∞)上单调递增, 则不等式g (x )≥g (1)=0对任意x ∈[1,+∞)恒成立,不符合题意; ③当−12<λ<0时,设q (x )=g ′(x )=lnx +1+2λx ,则q ′(x )=1x +2λ, 令q (x )=0,解得x =−12λ>1, 故当x ∈(1,−12λ)时,函数g (x )单调递增, ∴当x ∈(1,−12λ)时,g (x )>0成立,不符合题意, 综上所述,实数λ的取值范围为(﹣∞,−12]. 四.解答题(共1小题,满分10分,每小题10分)22.(10分)在直角坐标系xOy 中,参数方程{x =cosθy =sinθ(其中θ为参数)的曲线经过伸缩变换φ:{x′=2xy′=y 得到曲线C ,以原点O 为极点,x 轴正半轴为极轴建立极坐标系,曲线D 的极坐标方程为ρsin(θ+π4)=3√102. (Ⅰ)求曲线C 的普通方程及曲线D 的直角坐标方程;(Ⅱ)设M 、N 分别为曲线C 和曲线D 上的动点,求|MN |的最小值.【解答】解:(Ⅰ)参数方程{x =cosθy =sinθ(其中θ为参数)的曲线经过伸缩变换φ:{x′=2xy′=y 得到曲线C :x 24+y 2=1;曲线D 的极坐标方程为ρsin(θ+π4)=3√102.转化为直角坐标方程为:x +y −3√5=0; (Ⅱ)设点P (2cos θ,sin θ)到直线x +y ﹣3√5=0的距离d =√5|√2=√5sin(θ+α)−3√5|√2,当sin (θ+α)=1时,d min =√10. 五.解答题(共1小题)23.已知函数f (x )=2|x |+|x ﹣2|. (1)解不等式f (x )≤4;(2)设函数f (x )的最小值为m ,若实数a 、b 满足a 2+b 2=m 2,求4a 2+1b 2+1最小值.【解答】解:(1)当x <0时,则f (x )=﹣3x +2≤4,解得:−23≤x <0, 当0≤x ≤2时,则f (x )=x +2≤4,解得:0≤x ≤2, 当x >2时,则f (x )=3x ﹣2≤4,此时无解, 综上,不等式的解集是{x |−23≤x ≤2};(2)由(1)知,当x <0时,f (x )=﹣3x +2>2, 当0≤x ≤2时,则f (x )=x +2≥2, 当x >2时,则f (x )=3x ﹣2>4, 故函数f (x )的最小值是2, 故m =2,即a 2+b 2=4, 则4a 2+1b 2+1=15(a 2+b 2+1)(4a 2+1b 2+1)第21页(共21页)=15[5+4(b 2+1)a 2+a 2b 2+1] ≥15(5+2√4(b 2+1)a 2⋅a 2b 2+1)≥95, 当且仅当4(b 2+1)a 2=a 2b 2+1且a 2+b 2=4, 即a 2=103,b 2=23取“=”, 故4a 2+1b 2+1的最小值是95.。
【精品】2020年全国高考数学最新模拟检测试卷含答案(理 科)注意事项:1、本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。
答题前,考生务必将自己的姓名、考生号填写在答题卡上。
2、回答第Ⅰ卷时,选出每小题的答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号。
写在试卷上无效。
3、回答第Ⅱ卷时,将答案填写在答题卡上,写在试卷上无效。
4、考试结束,将本试卷和答题卡一并交回。
第Ⅰ卷一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.[2020·江淮十校]()120x x ⋅->的解集为( ) A .()1,00,2⎛⎫-∞ ⎪⎝⎭UB .1,2⎛⎫-∞ ⎪⎝⎭C .1,2⎛⎫+∞ ⎪⎝⎭D .10,2⎛⎫⎪⎝⎭2.[2020·榆林模拟]已知复数满足()()31i 1i z -=+,则复数z =( ) A .2B .2-C .2iD .2i -3.[2020·四川质检]国家统计局统计了我国近10年(2009年2018-年)的GDP(GDP 是国民经济核算的核心指标,也是衡量一个国家或地区总体经济状况的重要指标)增速的情况,并绘制了下面的折线统计图.根据该折线统计图,下面说法错误的是( ) A .这10年中有3年的GDP 增速在9.00%以上 B .从2010年开始GDP 的增速逐年下滑 C .这10年GDP 仍保持6.5%以上的中高速增长D .2013年2018-年GDP 的增速相对于2009年2012-年,波动性较小4.[2020·榆林模拟]已知抛物线()220y px p =>上的点M 到其焦点F 的距离比点M 到y 轴的距离大12,则抛物线的标准方程为( ) A .2y x = B .22y x = C .24y x = D .28y x =5.[2020·宣城调研]已知平面向量a ,b ,满足2=a ,1=b ,a 与b 的夹角为60︒,若()λ+⊥a b b ,则实数λ的值为( ) A .1-B .0C .1D .26.[2020·齐齐哈尔模拟]随着计算机的出现,图标被赋予了新的含义,又有了新的用武之地.在计算机应用领域,图标成了具有明确指代含义的计算机图形.如图所示的图标是一种被称之为“黑白太阳”的图标,该图标共分为3部分.第一部分为外部的八个全等的矩形,每一个矩形的长为3、宽为1;第二部分为圆环部分,大圆半径为3,小圆半径为2;第三部分为圆环内部的白色区域.在整个“黑白太阳”图标中随机取一点,此点取自图标第三部分的概率为( )A .π24+9πB .4π249π+C .π18+9πD .4π189π+7.[2020·石家庄二中]若实数x ,y 满足不等式组1010240x y x y x y +-≥⎧⎪-+≥⎨⎪+-≤⎩,则目标函数24x y z x -+=-的最大值是( ) A .7-B .13-C .14-D .148.[2020·长郡中学]已知在等比数列{}n a 中,0n a >,2221549002a a a a +=-,539a a =,则2019a 的个位数字是( ) A .6B .7C .8D .99.[2020·闽鄂赣联考]一个几何体的三视图如图所示,则该几何体的外接球的表面积为( )A .20πB .16πC.122πD .82π10.[2020·衡水联考]设定义在R 上的偶函数()f x 满足:()()4f x f x =-,且当[]0,2x ∈时,()e 1x f x x =-+,若()2018a f =,()2019b f =,()2020c f =,则a ,b ,c 的大小关系为( )A .c b a <<B .a b c <<C .c a b <<D .b a c <<11.[2020·东北模拟]双曲线()2222:10,0x y C a b a b-=>>,1F ,2F 分别为其左,右焦点,其渐近线上一点G 满足12GF GF ⊥,线段1GF 与另一条渐近线的交点为H ,H 恰好为线段1GF 的中点,则双曲线C 的离心率为( ) A .2B .2C .3D .412.[2020·山东模拟]已知函数()()ln ,024,24x x f x f x x ⎧<≤⎪=⎨-<<⎪⎩,若方程()f x m =有四个不等实根1x ,2x ,3x ,()41234x x x x x <<<时,不等式22341211kx x x x k ++≥+恒成立,则实数k 的最小值为( ) A .98B .2516C .32-D .132-第Ⅱ卷二、填空题:本大题共4小题,每小题5分. 13.[2020·南通模拟]函数()22log 2y x x=-的单调递增区间为________.14.[2020·福建模拟]已知直线y n =与函数()3sin cos f x m x x =+的图象相邻两个交点的横坐标分别为1π6x =-,25π6x =,则m =__________.15.[2020·马鞍山二中]如图所示,在长方体''''ABCD ABCD -中,'2CD CC ==,1BC =,E 为线段AB 上一点,若'DD 与平面'DEC 所成角的正切值为12,则'DEC △的面积为__.16.[2020·南阳中学]任意实数a ,b ,定义,0,0ab ab a b aab b≥⎧⎪⊗=⎨<⎪⎩,设函数()()2log f x x x =⊗,数列{}n a 是公比大于0的等比数列,且61a =,()()()()()12391012f a f a f a f a f a a +++++=L ,则1a =____.三、解答题:本大题共6个大题,共70分,解答应写出文字说明、证明过程或演算步骤. 17.(12分)[2020·西城一模]在ABC △中,已知222a c b mac +-=,其中m ∈R . (1)判断m 能否等于3,并说明理由;(2)若1m =-,27b =4c =,求sin A .18.(12分)[2020·永州模拟]某机器生产商,对一次性购买两台机器的客户推出两种超过质保期后两年内的延保维修方案:方案一:交纳延保金6000元,在延保的两年内可免费维修2次,超过2次每次收取维修费1500元; 方案二:交纳延保金7740元,在延保的两年内可免费维修4次,超过4次每次收取维修费a 元. 某工厂准备一次性购买两台这种机器,现需决策在购买机器时应购买哪种延保方案,为此搜集并整理了100台这种机器超过质保期后延保两年内维修的次数,统计得下表:维修次数 0 1 2 3 机器台数20104030以上100台机器维修次数的频率代替一台机器维修次数发生的概率,记X 表示这两台机器超过质保期后延保两年内共需维修的次数. (1)求X 的分布列;(2)以所需延保金与维修费用之和的期望值为决策依据,该工厂选择哪种延保方案更合算?19.(12分)[2020·永州模拟]在三棱柱111ABC A B C -中,侧面11ABB A ⊥底面ABC ,90ABC ∠=︒,且侧面11ABB A 为菱形. (1)证明:1A B ⊥平面11AB C ;(2)若160A AB ∠=︒,2AB =,直线1AC 与底面ABC 所成角的正弦值为5,求二面角111A AC B --的余弦值.20.(12分)[2020·河南质检]已知椭圆()2222:10x y O a b a b+=>>的左、右顶点分别为A ,B ,点P在椭圆O 上运动,若PAB △面积的最大值为3O 的离心率为12.(1)求椭圆O 的标准方程;(2)过B 点作圆E :()2222x y r +-=,()02r <<的两条切线,分别与椭圆O 交于两点C ,D (异于点B ),当r 变化时,直线CD 是否恒过某定点?若是,求出该定点坐标,若不是,请说明理由.21.(12分)[2020·辽师附中]已知()ln f x x x =. (1)求函数()f x 在定义域上的最小值; (2)求函数()f x 在[](),20t t t +>上的最小值; (3)证明:对一切()0,x ∈+∞,都有12ln e exx x >-成立.请考生在22、23两题中任选一题作答,如果多做,则按所做的第一题记分.22.(10分)【选修4-4:坐标系与参数方程】[2020·天一大联考]在平面直角坐标系xOy 中,直线l 的参数方程为1cos 1sin x t y t αα=-+⎧⎨=-+⎩(t 为参数,0πa ≤<),以坐标原点O 为极点,x 轴的正半轴为极轴建立极坐标系,曲线C 的极坐标方程为2cos ρθ=.(1)若π4α=,求直线l 的普通方程及曲线C 的直角坐标方程; (2)若直线l 与曲线C 有两个不同的交点,求sin α的取值范围.23.(10分)【选修4-5:不等式选讲】[2020·成都诊断]已知函数()2f x x m x m =--+的最大值为3,其中0m >. (1)求m 的值;(2)若a ,b ∈R ,0ab >,222a b m +=,求证:331a b b a+≥.绝密 ★ 启用前数学答案一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的. 1.【答案】A【解析】很明显0x ≠,则不等式等价于1200x x ->⎧⎨≠⎩,解不等式组可得实数x 的取值范围是()1,00,2⎛⎫-∞ ⎪⎝⎭U .故选A .2.【答案】B 【解析】()()()()()3221i 2i 1i 2i 1i 2i 21i1i1i 1i z +++=====----+,故选B .3.【答案】B【解析】由图可知,这10年中有3年GDP 的增速在9.00%以上,则选项A 正确; 2017年相比于2016年GDP 的增速上升,则选项B 错误; 这10年GDP 增速均超过6.5%,则选项C 正确;显然D 正确.故选B . 4.【答案】B【解析】由抛物线()220y px p =>上的点M 到其焦点F 的距离比点M 到y 轴的距离大12,根据抛物线的定义可得122p =,∴1p =,∴抛物线的标准方程为22y x =.故选B . 5.【答案】A【解析】∵2=a ,1=b ,a 与b 的夹角为60︒, ∴cos601⋅=⋅⋅︒=a b a b ,且满足()λ+⊥a b b ,∴()0λ⋅+=b a b ,∴20λ⋅+⋅=b a b ,即10λ+=,解得1λ=-,故选A . 6.【答案】B【解析】图标第一部分的面积为83124⨯⨯=, 图标第二部分的面积和第三部分的面积为2π39π⨯=, 图标第三部分的面积为2π24π⨯=, 故此点取自图标第三部分的概率为4π249π+,故选B .7.【答案】C【解析】绘制不等式组表示的平面区域如图所示,目标函数即:26144x y y z x x -+-==---, 其中64y x --表示可行域内的点与()4,6连线的斜率值, 据此结合目标函数的几何意义可知64y x --在点()0,1A 处取得最小值, 此时目标函数24x y z x -+=-的最大值为max 0121044z -+==--.故选C . 8.【答案】D【解析】设等比数列{}n a 的公比为q ,首项为1a ,由2221549002a a a a +=-,得2224242900a a a a +=+. 解得2430a a +=,即31130qa q a +=,由539a a =得3q =,∴11a =,∴1113n n n a a q --==,∴0131a ==,1233a ==,2339a ==,34327a ==,45381a ==,563243a ==,L , 由此可得n a 的个位数是以4为周期重复出现的.∴2019a 的个位数字是3a 的个位数字,即2019a 的个位数字是9.故选D . 9.【答案】A【解析】根据几何体的三视图,可知该几何体是一个四棱锥如图:该四棱锥的外接球是所对应长方体的外接球且长方体的长宽高分别为32,2,故几何体的外接球半径R 满足24441220R =++=,解得5R =,故20πS =,故选A . 10.【答案】B【解析】∵()f x 为R 上的偶函数,∴()()f x f x -=, ∴()()()4f x f x f x -==-,∴函数()f x 是周期为4的函数,∴()()20182a f f ==,()()()()20193431b f f f f ===-=,()()20200c f f ==. 又当[]0,2x ∈时,()e 1x f x x =-+,∴()1e 0x f x '=-<,∴当[]0,2x ∈时,()f x 单调递减,∴()()()210f f f <<,即a b c <<.故选B . 11.【答案】B【解析】由题意得双曲线()2222:10,0x y C a b a b-=>>的渐近线方程为by x a =±,()1,0F c -,()2,0F c ;不妨令G 在渐近线b y x a =上,则H 在by x a=-上,设,b G x x a ⎛⎫⎪⎝⎭,由12GF GF ⊥得121GF GF k k =-,即1b b x x a a x c x c⋅=-+-,解得x a =,∴(),G a b , 又H 恰好为线段1GF 的中点,∴,22a c b H -⎛⎫⎪⎝⎭,因H 在b y x a =-上,∴22b b a ca -=-⨯,因此2c a =,故离心率为2.故选B . 12.【答案】C【解析】函数()()ln ,024,24x x f x f x x ⎧<≤⎪=⎨-<<⎪⎩的图象如下图所示:当方程()f x m =有四个不等实根1x ,2x ,3x ,()41234x x x x x <<<时,12ln ln x x =,即121x x ⋅=,12122x x x x >+=,()()34ln 4ln 4x x -=-,即()()34441x x -⋅-=,且12348x x x x ++=+,若不等式22341211kx x x x k ++≥+恒成立,则()221234111x x k x x -+≥⋅-恒成立,由()()()()()22221212121234341211112131416164x x x x x x x x x x x x x x -+-++-+==⋅-+--+()()121213348244x x x x ⎡⎤=+-++≤-⎢⎥+-⎢⎥⎣⎦故32k ≥,故实数k 的最小值为32,故选C .第Ⅱ卷二、填空题:本大题共4小题,每小题5分. 13.【答案】(]0,1【解析】由题意可知函数定义域为()2200,2x x x ->⇒∈, 将()22log 2y x x =-拆分为2log y t =和22t x x =-, 可知(]0,1x ∈时,t 单调递增;又2log y t =单调递增,可得()22log 2y x x =-的单调递增区间为(]0,1.本题正确结果(]0,1. 14.【答案】1【解析】依题意()()231sin f x m x ϕ=++,由已知12π23x x x +==为函数()3sin cos f x m x x =+的图象的一条对称轴,函数取得最大值或最小值,将π3x =代入函数解析式,得2313122m m ±+=+,解得1m =. 15.5【解析】'1112'2123323D CDE CDE V S DD -=⋅=⨯⨯⨯⨯=△,设'DD 与平面'DEC 所成角为α,则1tan 2α=,∴5sin α,∴D 到平面'DEC 的距离25'sin h DD α==. ∴''1233D DCE DCE V S h -=⋅=△,∴'5D CE S =△5. 16.【答案】4【解析】由题()()222log ,1log log ,01x x x f x x x xx x ≥⎧⎪=⊗=⎨<<⎪⎩,∵数列{}n a 是公比大于0的等比数列,且61a =,①1q <时,1a ,2a ,⋯,()50,1a ∈,7a ,8a ,9a ,()101,a ∈+∞,511a q =.∴151a q =, 分别为:51q ,41q,⋯,1q ,1,q ,⋯,4q .∵()()()()()12391012f a f a f a f a f a a +++++=L∴252122727101210125log log log 0log 2log a a a a a a a a a a a +++++++=L L ,∴5444222225451111log log log log log 2q q q q q q q q q q q++++++=⨯L L ,∴525511log 2q q q=⨯,左边小于0,右边大于0,不成立,舍去.②01q <<时,511a q =,∴151a q=, 分别为51q ,41q ,⋯,1q ,1,q,⋯,4q ,1a ,2a ,⋯,()51,a ∈+∞,7a ,8a ,9a ,()100,1a ∈,∵()()()()()12391012f a f a f a f a f a a +++++=L , ∴5444222225451111log log log log log 2q q q q q q q q q q q ++++++=⨯L L , ∴525511log 2q q q =⨯,∴514q =,∴14a =.③1q =时,11601a a a ====L L ,不满足()()()()()12391012f a f a f a f a f a a +++++=L 舍去. 综上可得14a =.故答案为4.三、解答题:本大题共6个大题,共70分,解答应写出文字说明、证明过程或演算步骤. 17.【答案】(1)见解析;(2)21.【解析】(1)当3m =时,由题可知2223a c b ac +-=, 由余弦定理2222cos b a c ac B =+-,得2223cos 22a cb B ac +-==.这与[]cos 1,1B ∈-矛盾,∴m 不可能等于3. (2)由(1),得1cos 22m B ==-,∴2π3B =. ∵27b =,4c =,222a cb ac +-=-,∴216284a a +-=-,解得6a =-(舍)或2a =.在ABC △中,由正弦定理sin sin a bA B =,得sin 321sin 21427a B Ab ==⨯=. 18.【答案】(1)见解析;(2)见解析.【解析】(1)X 所有可能的取值为0,1,2,3,4,5,6, ()11105525P X ==⨯=,()1111210525P X ==⨯⨯=, ()11121722101055100P X ==⨯+⨯⨯=,()121313221055105P X ==⨯⨯+⨯⨯=, ()2231114255101050P X ==⨯+⨯⨯=,()2365251025P X ==⨯⨯=,()33961010100P X ==⨯=, X ∴的分布列为X 0 1 2 3 4 5 6 P125125171001511506259100(2)选择延保方案一,所需费用1Y 元的分布列为:()111116960007500900010500120008580455025100E Y =⨯+⨯+⨯+⨯+⨯= (元)选择延保方案二,所需费用2Y 元的分布列为:2Y7740 7740a + 77402a +P67100 625 9100()()()2676921774077407740277401002510050aE Y a a =⨯+⨯++⨯+=+(元) ()()122184050aE Y E Y ∴-=-, 当()()1221840050aE Y E Y -=->,即02000a <<时,选择方案二, 当()()1221840050aE Y E Y -=-=,即2000a =时,选择方案一,方案二均可, 当()()1221840050aE Y E Y -=-<,即2000a >时,选择方案一. 19.【答案】(1)见证明;(26. 【解析】(1)证明:连接1AB ,∵四边形11ABB A 是菱形,则11A B AB ⊥, ∵平面11ABB A ⊥平面ABC ,且AB 为交线,BC AB ⊥,BC ∴⊥平面11ABB A ,1BC A B ∴⊥, 11BC B C Q ∥,111A B B C ∴⊥,又1111AB B C B =I ,1A B ∴⊥平面11AB C .(2)取11A B 的中点M ,连接BM ,易证BM ⊥面ABC ,且AB BC ⊥,以BA 为x 轴,BC 为y 轴,BM 为z 轴,建立如图所示的空间直角坐标系,设BC t =,则()2,0,0A,(1A ,()0,,0C t ,∵11A ACC四边形为平行四边形,则(111113,AC AA A C AA AC t =+=+=-u u u u r u u u u r u u u u r u u u u r u u u r,易知ABC 的一个法向量为()0,0,1=n ,111cos ,AC AC AC ⋅∴===u u u u r u u u u r u u u u r n n,解得t =(11,0,A A =u u u u Q r,(1AC =-u u u u r,设平面11AA C 的法向量()1111,,x y z =n ,111111111030A A x AC x ⎧⋅==⎪∴⎨⋅=-+=⎪⎩u u u u ru u u u r n n ,令11z =,则)1=n ,由(1)可得面11AB C的法向量(1BA =u u u r,111111,cos BA BA BA ⋅∴==u u u ru u u r u u u r n n n ,∴二面角111A AC B --. 20.【答案】(1)22143x y+=;(2)直线CD 恒过定点()14,0. 【解析】(1)由题可知当点P 在椭圆O 的上顶点时,PAB S △最大,此时122PABS ab ab =⨯==△222122ab c a a a b c ⎧=⎪⎪=⇒=⎨⎪⎪-=⎩,b =,1c =, ∴椭圆O 的标准方程为22143x y +=.(2)设过点()2,0B 与圆E 相切的直线方程为()2y k x =-,即20kx y k --=, ∵直线与圆E :()2222x y r +-=相切,∴d r ==,即得()2224840r k k r -++-=.设两切线的斜率分别为1k ,()212k k k ≠,则121k k =,设()11,C x y ,()22,D x y ,由()()12222221112341616120143y k x k x k x k x y =-⎧⎪⇒+-+-=⎨+=⎪⎩, ∴211211612234k x k -=+,即211218634k x k -=+,∴11211234k y k -=+;同理:22212222186863443k k x k k --==++,212222112123443k k y k k --==++;∴()112221111222211112211121243348686414334CD k k y y k k k K x x k k k k k ----++===---+-++, ∴直线CD 的方程为()21112221111286343441k k k y x k k k ⎛⎫-+=- ⎪ ⎪+++⎝⎭. 整理得()()()()111222111714412141k k k y x x k k k =-=-+++,∴直线CD 恒过定点()14,0.21.【答案】(1)1e-;(2)()min11,0e e1ln ,et f x t t t ⎧-<<⎪⎪=⎨⎪≥⎪⎩;(3)见解析.【解析】(1)由()ln f x x x =,0x >得()ln 1f x x '=+, 令()0f x '=,得1ex =. 当10,e x ⎛⎫∈ ⎪⎝⎭时,()0f x '<,()f x 单调递减;当1,e x ⎛⎫∈+∞ ⎪⎝⎭时,()0f x '>,()f x 单调递增.可得最小值为11e e f ⎛⎫=- ⎪⎝⎭.(2)当102e t t <<<+,即10e t <<时,()min 11e e f x f ⎛⎫==- ⎪⎝⎭,当12e t t ≤<+,即1et ≥时,()f x 在[],2t t +上单调递增,此时()()min ln f x f t t t ==,∴()min11,0e e1ln ,et f x t t t ⎧-<<⎪⎪=⎨⎪≥⎪⎩.(3)问题等价于证明()()2ln 0,e ex x x x x >-∈+∞.由(1)知()ln f x x x =,0x >的最小值是1e-,当且仅当1e x =时取到,设()()()20,e ex x m x x =-∈+∞,则()1ex x m x ='-,易知()()max 11e m x m ==-,当且仅当1x =时取到.从而对一切()0,x ∈+∞,都有12ln e ex x x >-成立.请考生在22、23两题中任选一题作答,如果多做,则按所做的第一题记分.22.【答案】(1)l 的普通方程为y x =.曲线C 的直角坐标方程为222x y x +=;(2)40,5⎛⎫⎪⎝⎭.【解析】(1)当π4α=时,直线的l参数方程为11x y ⎧=-+⎪⎪⎨⎪=-+⎪⎩,∴其普通方程为y x =. 对于曲线C ,由2cos ρθ=,得22cos ρρθ=,∴其直角坐标方程为222x y x +=.(2)由题意得,直线l 过定点()1,1P --,α为其倾斜角,曲线()22:11C x y -+=,表示以()1,0C 为圆心,以1为半径的圆. 当π2α=时,直线l 为1x =-,此时直线l 与圆C 不相交. 当π2α≠时,设tan k α=表示直线的斜率,则:10l kx y k -+-=. 设圆心C 到直线l的距离为d =当直线l 与圆C 相切时,令1d =,解得0k =或43k =. 则当直线l 与圆C 有两个不同的交点时,403k <<. ∵()0,πα∈,由40tan 3α<<,可得40sin 5α<<,即sin α的取值范围为40,5⎛⎫ ⎪⎝⎭. 23.【答案】(1)1m =;(2)见解析.【解析】(1)∵0m >,∴()3,22,23,2m x m f x x m x m x m m x m m x m -≥⎧⎪=--+=---<<⎨⎪≤-⎩.∴当2x m ≤-时,()f x 取得最大值3m .∴1m =.(2)由(1),得221a b +=,()222223344212a b a b a b a bab b a ababab+-++===-. ∵2212a b ab +=≥,当且仅当a b =时等号成立,∴102ab <≤. 令()12h t t t =-,102t <≤,则()h t 在10,2⎛⎤⎥⎝⎦上单调递减.∴()112h t h ⎛⎫≥= ⎪⎝⎭,∴当102ab <≤时,121ab ab -≥,∴331a b b a +≥.【精品】2020年高三数学总复习冲刺模拟试卷(理 科 )注意事项:1、本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。