2014苏教版七年级数学全册知识点总结
- 格式:doc
- 大小:213.00 KB
- 文档页数:26
同学们,查字典数学网为您整理了2014苏教版初中七年级数学知识点,希望帮助您提供多想法。
一:有理数知识网络:概念、定义:1、大于0的数叫做正数(positive number)。
2、在正数前面加上负号-的数叫做负数(negative number)。
3、整数和分数统称为有理数(rational number)。
4、人们通常用一条直线上的点表示数,这条直线叫做数轴(number axis)。
5、在直线上任取一个点表示数0,这个点叫做原点(origin)。
6、一般的,数轴上表示数a的点与原点的距离叫做数a的绝对值(absolute value)。
7、由绝对值的定义可知:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0。
8、正数大于0,0大于负数,正数大于负数。
9、两个负数,绝对值大的反而小。
10、有理数加法法则(1)同号两数相加,取相同的符号,并把绝对值相加。
(2)绝对值不相等的异号两数相加,取绝对值较大的加数的负号,并用较大的绝对值减去较小的绝对值,互为相反数的两个数相加得0。
(3)一个数同0相加,仍得这个数。
11、有理数的加法中,两个数相加,交换交换加数的位置,和不变。
12、有理数的加法中,三个数相加,先把前两个数相加,或者先把后两个数相加,和不变。
13、有理数减法法则减去一个数,等于加上这个数的相反数。
14、有理数乘法法则两数相乘,同号得正,异号得负,并把绝对值向乘。
任何数同0相乘,都得0。
15、有理数中仍然有:乘积是1的两个数互为倒数。
16、一般的,有理数乘法中,两个数相乘,交换因数的位置,积相等。
17、三个数相乘,先把前两个数相乘,或者先把后两个数相乘,积相等。
18、一般地,一个数同两个数的和相乘,等于把这个数分别同这两个数相乘,再把积相加。
19、有理数除法法则除以一个不等于0的数,等于乘这个数的倒数。
20、两数相除,同号得正,异号得负,并把绝对值相除。
0除以任何一个不等于0的数,都得0。
苏教版七年级数学知识点总结一、整数1. 整数的概念:自然数、0和负整数的统称。
2. 整数的比较:可以利用数轴来比较两个整数的大小。
3. 整数的加法和减法:同号相加减,异号相加减,减法可转化为加法。
4. 整数的乘法:同号相乘为正,异号相乘为负。
5. 整数的除法:除数不为0时,同号相除为正,异号相除为负。
二、有理数1. 有理数的概念:包括整数和分数。
2. 有理数的加法和减法:同分母相加减,异分母先通分再加减。
3. 有理数的乘法和除法:同号相乘为正,异号相乘为负,除法可转化为乘法。
4. 有理数的绝对值:正数的绝对值等于自身,负数的绝对值等于其相反数。
5. 有理数的大小比较:可通过转化为相同分母的分数进行比较。
6. 有理数的数轴表示:可以利用数轴上的点对应有理数。
三、代数表达式和运算1. 代数式的概念:由字母(变量)和常数通过运算符号组成的式子。
2. 代数式的运算:可以进行加法、减法、乘法和除法运算。
3. 代数式的化简:合并同类项、利用分配率等化简代数式。
4. 代数式的值:将字母替换为具体的数值,求出代数式的值。
5. 代数式的应用:通过代数式解决实际问题。
四、平方根与立方根1. 平方根的概念:一个数的平方等于它的平方根。
2. 平方根的计算:通过开平方运算,求出一个数的平方根。
3. 平方根的性质:正数的平方根是正数,0的平方根是0,负数没有实数平方根。
4. 平方根的大小比较:对于正数,平方根越大,数越大。
5. 立方根的概念:一个数的立方等于它的立方根。
6. 立方根的计算:通过开立方运算,求出一个数的立方根。
五、代数方程与方程式1. 代数方程的概念:含有未知数的等式。
2. 代数方程的解:使方程成立的未知数的值。
3. 一元一次方程:只含有一个未知数的一次方程。
4. 一元一次方程的解的性质:有无穷多个解、只有一个解、无解。
5. 解一元一次方程的方法:逆向运算法、等式两边加减法、等式两边乘除法。
6. 方程的应用:通过方程解决实际问题。
苏教版七年级【数学】上册知识点归纳
- 单元一:数的基本概念
- 自然数
- 整数
- 有理数
- 实数
- 单元二:数的运算
- 加法
- 减法
- 乘法
- 除法
- 单元三:分数
- 分数的概念
- 真分数和假分数
- 分数的化简
- 分数的加减法
- 单元四:百分数
- 百分数的概念
- 百分数与分数的转化
- 百分数的加减法
- 百分数的乘除法
- 单元五:图形的认识
- 点、线、面的基本概念
- 直线、射线、线段
- 角度的认识
- 单元六:平面图形的性质
- 三角形的分类
- 正方形、长方形、平行四边形- 五边形、六边形
- 单元七:相似图形
- 相似图形的概念
- 相似图形的判定
- 相似图形的性质
- 单元八:比例
- 比例的概念
- 比例的性质
- 比例的简化与扩大
- 比例的应用
- 单元九:数的应用
- 实际问题的数学化
- 列方程解应用问题
- 一次函数关系
- 图表的读取和应用
以上是苏教版七年级【数学】上册的知识点归纳。
每个单元包含了数学的基本概念、运算方法以及相关应用。
通过学习这些知识点,同学们将建立起数学的基础,并能够应用于解决实际问题。
苏教版七年级数学知识点总结七年级数学知识点图形的初步认识一、立体图形与平面图形1、长方体、正方体、球、圆柱、圆锥等都是立体图形。
此外棱柱、棱锥也是常见的立体图形。
2、长方形、正方形、三角形、圆等都是平面图形。
3、许多立体图形是由一些平面图形围成的,将它们适当地剪开,就可以展开成平面图形。
二、点和线1、经过两点有一条直线,并且只有一条直线。
2、两点之间线段最短。
3、点C线段AB分成相等的两条线段AM与MB,点M叫做线段AB的中点。
类似的还有线段的三等分点、四等分点等。
4、把线段向一方无限延伸所形成的图形叫做射线。
三、角1、角是由两条有公共端点的射线组成的图形。
2、绕着端点旋转到角的终边和始边成一条直线,所成的角叫做平角。
3、绕着端点旋转到终边和始边再次重合,所成的角叫做周角。
4、度、分、秒是常用的角的度量单位。
把一个周角360等分,每一份就是一度的角,记作1°;把1度的角60等分,每份叫做1分的角,记作1′;把1分的角60等分,每份叫做1秒的角,记作1″。
四、角的比较从一个角的顶点出发,把这个角分成相等的两个角的射线,叫做这个角的平分线。
类似的,还有叫的三等分线。
初一数学复习方法考试与作业逻辑不同:我们的考试不同于作业,有些孩子作业写的还可以,准确率挺高的,但是考试成绩不理想。
比如学校上完课,回家就写当天的作业,但是考试不一样,它是阶段性的、综合性的;再比如写作业,可以看资料,不会的可以请教同学,但是考试就得靠自己;还有写作业时格式不一定规范,不一定符合标准,但是考试老师会要求很严格;另外有些孩子考试比较焦虑,考试之前,爸爸妈妈给孩子加油鼓劲,反倒孩子考不好,有些孩子甚至在考试前后一定要上厕所,排解压力,甚至影响到考试成绩。
那具体涉及到数学的复习,我以北师大版为例,可以分4个步骤:复习方法总结1回归书本,梳理章节概念公式、性质定理等就像盖房子,房子的地基是否扎实稳固。
比如我们在复习课中,要求孩子们默写公式等,记忆单项式、多项式、整式的概念,以及幂的运算、整式乘除的法则,而且一定要记住平方差和完全平方公式以及变形。
苏教版七年级数学上册知识点总结第一章有理数1.1 正数和负数⒈正数和负数的概念负数:比0小的数正数:比0大的数0既不是正数,也不是负数注意:①字母a可以表示任意数,当a表示正数时,-a是负数;当a表示负数时,-a是正数;当a表示0时,-a仍是0。
(如果出判断题为:带正号的数是正数,带负号的数是负数,这种说法是错误的,例如+a,-a就不能做出简单判断)②正数有时也可以在前面加“+”,有时“+”省略不写。
所以省略“+”的正数的符号是正号。
2.具有相反意义的量若正数表示某种意义的量,则负数可以表示具有与该正数相反意义的量,比如:零上8℃表示为:+8℃;零下8℃表示为:-8℃3.0表示的意义⑴0表示“ 没有”,如教室里有0个人,就是说教室里没有人;⑵0是正数和负数的分界线,0既不是正数,也不是负数。
(3)0表示一个确切的量。
如:0℃以及有些题目中的基准,比如以海平面为基准,则0米就表示海平面。
1.2 有理数1.有理数的概念⑴正整数、0、负整数统称为整数(0和正整数统称为自然数)⑵正分数和负分数统称为分数⑶正整数,0,负整数,正分数,负分数都可以写成分数的形式,这样的数称为有理数。
理解:只有能化成分数的数才是有理数。
①π是无限不循环小数,不能写成分数形式,不是有理数。
②有限小数和无限循环小数都可化成分数,都是有理数。
3,整数也能化成分数,也是有理数注意:引入负数以后,奇数和偶数的范围也扩大了,像-2,-4,-6,-8…也是偶数,-1,-3,-5…也是奇数。
2.有理数的分类⑴按有理数的意义分类⑵按正、负来分正整数正整数整数0 正有理数负整数正分数有理数有理数0(0不能忽视)正分数负整数分数负有理数负分数负分数总结:①正整数、0统称为非负整数(也叫自然数)②负整数、0统称为非正整数③正有理数、0统称为非负有理数④负有理数、0统称为非正有理数3.数轴⒈数轴的概念规定了原点,正方向,单位长度的直线叫做数轴。
注意:⑴数轴是一条向两端无限延伸的直线;⑵原点、正方向、单位长度是数轴的三要素,三者缺一不可;⑶同一数轴上的单位长度要统一;⑷数轴的三要素都是根据实际需要规定的。
第二章有理数2.1正数和负数⒈正数和负数的概念负数:比0小的数正数:比0大的数 0既不是正数,也不是负数2.有理数定义:正整数、0、负整数统称为整数(0和正整数统称为自然数)分类:⑴按有理数的意义分类⑵按正、负来分正整数正整数整数 0 正有理数负整数正分数有理数有理数 0 (0不能忽视)正分数负整数分数负有理数负分数负分数2.2数轴1.定义:规定了原点,正方向,单位长度的直线叫做数轴。
2.数轴上特殊的最大(小)数⑴最小的自然数是0,无最大的自然数;⑵最小的正整数是1,无最大的正整数;⑶最大的负整数是-1,无最小的负整数2.3绝对值和相反数绝对值⒈绝对值的几何定义一般地,数轴上表示数a的点与原点的距离叫做a的绝对值,记作|a|。
2.绝对值的代数定义⑴一个正数的绝对值是它本身;⑵一个负数的绝对值是它的相反数;⑶0的绝对值是0.3.绝对值的化简①当a≥0时, |a|=a ;②当a≤0时, |a|=-a相反数1.相反数的几何意义在数轴上与原点距离相等的两点表示的两个数,是互为相反数;0的相反数对应原点;原点表示0的相反数。
说明:在数轴上,表示互为相反数的两个点关于原点对称。
2.相反数的代数定义:只有符号不同的两个数叫做互为相反数,其中一个是另一个的相反数,0的相反数是0。
3.相反数的性质与判定⑴任何数都有相反数,且只有一个;⑵0的相反数是0;⑶互为相反数的两数和为0,和为0的两数互为相反数,即a,b互为相反数,则a+b=04.相反数的表示方法⑴一般地,数a 的相反数是-a ,其中a是任意有理数,可以是正数、负数或0。
当a>0时,-a<0(正数的相反数是负数)当a<0时,-a>0(负数的相反数是正数)当a=0时,-a=0,(0的相反数是0)2.5有理数的乘法与除法1.有理数的乘法运算律⑴乘法交换律:一般地,有理数乘法中,两个数相乘,交换因数的位置,积相等。
即ab=ba⑵乘法结合律:三个数相乘,先把前两个数相乘,或者先把后两个数相乘,积相等。
10、相反数:符号不同,绝对值相等的两个数互为相反数。
0的相反数是0.在数轴上互为相反数的两个数表示的点,分居在原点两侧,并且到原点的距离相等。
相反数等于本身的数只有0.在一个数前面添上“+”号还表示这个数,在一个数前面添上“—”号,就表示求这个数的相反数。
二、实数大小的比较11、在数轴上表示两个数,右边的数总比左边的数大。
12、正数大于0;负数小于0;正数大于一切负数;两个负数绝对值大的反而小。
三、实数的运算13、加法:(1)同号两数相加,取原来的符号,并把它们的绝对值相加;(2)异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值。
(3)任何数与0相加仍得这个数。
14、减法:减去一个数等于加上这个数的相反数。
15、加减法运算统一为加法后,可以省略加号。
也可以使用加法交换律和结合律,任意交换加数的位置,任意把两个数相加,不过移动位置时一定要连同加数的符号一起移动。
16、乘法:(1)两数相乘,同号得正,异号得负,并把绝对值相乘;任何数与0相乘都得0。
(2)n个实数相乘,有一个因数为0,积就为0;若n个非0的实数相乘,积的符号由负因数的个数决定,当负因数有偶数个时,积为正;当负因数为奇数个时,积为负。
(3)乘法可使用乘法交换律、乘法结合律、乘法分配律。
4、除法:(1)两数相除,同号得正,异号得负,并把绝对值相除。
0除以任何不等于0的数都等于0,(2)除以一个数等于乘以这个数的倒数。
(3)乘积为1的两个数互为倒数。
0没有倒数,倒数等于本身的数是±1.有的面是平面、有的面是曲面。
我们知道,面与面相交成线,在棱柱与棱锥中,面与面的交线叫做棱。
(edge)其中,相邻两个侧面的交线叫做侧棱棱柱的棱与棱的交点叫做棱柱的顶点(vertex)棱锥的各侧棱的公共点叫做棱锥的顶点。
棱柱的侧棱长相等,棱柱的上下底面是相同的多边形,直棱柱的侧面都是长方形。
棱锥的侧面都是三角形图形都是由点(point)、线(line)、面(plane)构成。
苏教版七年级数学知识点总结苏教版初一数学知识点二元一次方程组1、含有两个未知数,并且所含未知数的项的次数都是1的方程叫做二元一次方程2、含有两个未知数的两个一次方程所组成的方程组叫做二元一次方程组。
3、二元一次方程组中两个方程的公共解叫做二元一次方程组的解。
4、代入消元法:把二元一次方程中一个方程的一个未知数用含另一个未知数的式子表示出来,再带入另一个方程,实现消元,进而求得这个二元一次方程组的解。
这种方法叫做代入消元法,简称代入法。
5、加减消元法:当方程中两个方程的某一未知数的系数相等或互为相反数时,把这两个方程的两边相加或相减来消去这个未知数,从而将二元一次方程化为一元一次方程,最后求得方程组的解,这种解方程组的方法叫做加减消元法,简称加减法.6、二元一次方程组解应用题的一般步骤可概括为“审、找、列、解、答”五步,即:(1)审:通过审题,把实际问题抽象成数学问题,分析已知数和未知数,并用字母表示其中的两个未知数;(2)找:找出能够表示题意两个相等关系;(3)列:根据这两个相等关系列出必需的代数式,从而列出方程组;(4)解:解这个方程组,求出两个未知数的值;(5)答:在对求出的方程的解做出是否合理判断的基础上,写出答案.初一新生必看:数学学习方法指导1.做好预习:单元预习时粗读,了解近阶段的学习内容,课时预习时细读,注重知识的形成过程,对难以理解的概念、公式和法则等要做好记录,以便带着问题听课。
坚持预习,找到疑点,变被动学习为主动学习,能大大提高学习效率噢,兴趣是的老师嘛。
2.认真听课:听课应包括听、思、记三个方面。
听,听知识形成的来龙去脉,听重点和难点(记住预习中的疑点了吗?更要听仔细了),听例题的解法和要求,听蕴含的数学思想和方法,听课堂小结。
思,一是要善于联想、类比和归纳,二是要敢于质疑,提出问题,大胆猜想。
记,当然是指课堂笔记了,不是记得多就是有效的知道吗?影响了听课可就不如不记了,记什么,什么时候记,可是有学问的哩,记方法,记技巧,记疑点,记要求,记注意点,记住课后一定要整理笔记。
第二章有理数2.1正数和负数⒈正数和负数的概念负数:比0小的数正数:比0大的数0既不是正数,也不是负数2.有理数定义:正整数、0、负整数统称为整数(0和正整数统称为自然数)分类:⑴按有理数的意义分类⑵按正、负来分正整数正整数整数 0 正有理数负整数正分数有理数有理数 0 (0正分数负整数分数负有理数负分数负分数2.2数轴1.定义:规定了原点,正方向,单位长度的直线叫做数轴。
2.数轴上特殊的最大(小)数⑴最小的自然数是0,无最大的自然数;⑵最小的正整数是1,无最大的正整数;⑶最大的负整数是-1,无最小的负整数2.3绝对值和相反数绝对值⒈绝对值的几何定义一般地,数轴上表示数a的点与原点的距离叫做a的绝对值,记作|a|。
2.绝对值的代数定义⑴一个正数的绝对值是它本身;⑵一个负数的绝对值是它的相反数;⑶0的绝对值是0.3.绝对值的化简①当a≥0时, |a|=a ;②当a≤0时, |a|=-a相反数1.相反数的几何意义在数轴上与原点距离相等的两点表示的两个数,是互为相反数;0的相反数对应原点;原点表示0的相反数。
说明:在数轴上,表示互为相反数的两个点关于原点对称。
2.相反数的代数定义:只有符号不同的两个数叫做互为相反数,其中一个是另一个的相反数,0的相反数是0。
3.相反数的性质与判定⑴任何数都有相反数,且只有一个;⑵0的相反数是0;⑶互为相反数的两数和为0,和为0的两数互为相反数,即a,b互为相反数,则a+b=04.相反数的表示方法⑴一般地,数a 的相反数是-a ,其中a是任意有理数,可以是正数、负数或0。
当a>0时,-a<0(正数的相反数是负数)当a<0时,-a>0(负数的相反数是正数)当a=0时,-a=0,(0的相反数是0)2.5有理数的乘法与除法1.有理数的乘法运算律⑴乘法交换律:一般地,有理数乘法中,两个数相乘,交换因数的位置,积相等。
即ab=ba⑵乘法结合律:三个数相乘,先把前两个数相乘,或者先把后两个数相乘,积相等。
即(ab)c=a(bc).⑶乘法分配律:一般地,一个数同两个数的和相乘,等于把这个数分别同这两个数相乘,在把积相加。
即a(b+c)=ab+ac2.有理数的除法法则(1)除以一个不等0的数,等于乘以这个数的倒数。
(2)两数相除,同号得正,异号得负,并把绝对值相除。
0除以任何一个不等于0的数,都得03.有理数的乘除混合运算(1)乘除混合运算往往先将除法化成乘法,然后确定积的符号,最后求出结果。
(2)有理数的加减乘除混合运算,如无括号指出先做什么运算,则按照‘先乘除,后加减’的顺序进行。
2.6有理数的乘方1.乘方的概念求n 个相同因数的积的运算,叫做乘方,乘方的结果叫做幂。
在n a中,a 叫做底数,n 叫做指数。
2.乘方的性质(1)负数的奇次幂是负数,负数的偶次幂的正数。
(2)正数的任何次幂都是正数,0的任何正整数次幂都是0。
2.7有理数的混合运算1.运算顺序:(1)先乘方,再乘除,最后加减;(2)同级运算,从左到右进行;(3)如有括号,先做括号内的运算,按小括号,中括号,大括号依次进行。
第三章用字母表示数3.2代数式1.代数式:用基本运算符号把数和字母连接而成的式子叫做代数式,如n,-1,2n+500,abc。
单独的一个数或一个字母也是代数式。
2.单项式:表示数与字母的乘积的代数式叫单项式。
单独的一个数或一个字母也是代数式。
单项式的系数:单项式中的数字因数单项式的次数:一个单项式中,所有字母的指数和3.多项式:几个单项式的和叫做多项式。
每个单项式叫做多项式的项,不含字母的项叫做常数项。
多项式里次数最高项的次数,叫做这个多项式的次数。
常数项的次数为0。
4.整式:单项式和多项式统称为整式。
注意:分母上含有字母的不是整式。
5.代数式书写规范:①数与字母、字母与字母中的乘号可以省略不写或用“²”表示,并把数字放到字母前;②出现除式时,用分数表示;③带分数与字母相乘时,带分数要化成假分数;④若运算结果为加减的式子,当后面有单位时,要用括号把整个式子括起来。
3.4合并同类项同类项:所含字母相同,并且相同字母的指数也相同的项叫做同类项。
合并同类项的法则:同类项的系数相加,所得的结果作为系数,字母和字母的指数不变。
合并同类项的步骤:(1)准确的找出同类项;(2)运用加法交换律,把同类项交换位置后结合在一起;(3)利用法则,把同类项的系数相加,字母和字母的指数不变;(4)写出合并后的结果。
3.5去括号法则(1)括号前面是“+”号,把括号和它前面的“+”号去掉,括号里各项的符号都不变;(2)括号前面是“—”号,把括号和它前面的“—”号去掉,括号里各项的符号都要改变。
整式的加减:进行整式的加减运算时,如果有括号先去括号,再合并同类项。
整式加减的步骤:(1)列出代数式;(2)去括号;(3)合并同类项。
第四章 一元一次方程一、一元一次方程的概念:只含有一个未知数(元)且未知数的指数是1(次)的方程叫做一元一次方程。
一般形式:ax+b=0(a ≠0)注意:未知数在分母中时,它的次数不能看成是1次。
如x x=+31,它不是一元一次方程。
二、解一元一次方程方程的解:能使方程左右两边相等的未知数的值叫做方程的解。
解方程:求方程的解的过程叫做解方程。
等式的性质:(1)等式两边都加上或减去同一个数或同一个整式,所得结果仍是等式;(2)等式两边都乘或除以同一个不等于0的数,所得结果仍是等式。
移项移项:方程中的某些项改变符号后,可以从方程的一边移到另一边,这样的变形叫做移项。
移项的依据:(1)移项实际上就是对方程两边进行同时加减,根据是等式的性质1;(2)系数化为1实际上就是对方程两边同时乘除,根据是等式的性质2。
移项的作用:移项时一般把含未知数的项向左移,常数项往右移,使左边对含未知数的项合并,右边对常数项合并。
注意:移项时要跨越“=”号,移过的项一定要变号。
解一元一次方程的一般步骤:去分母、去括号、移项、合并同类项、未知数的系数化为1。
注意:去分母时不可漏乘不含分母的项。
分数线有括号的作用,去掉分母后,若分子是多项式,要加括号。
用方程解决问题列一元一次方程解应用题的基本步骤:审清题意、设未知数(元)、列出方程、解方程、写出答案。
关键在于抓住问题中的有关数量的相等关系,列出方程。
解决问题的策略:利用表格和示意图帮助分析实际问题中的数量关系实际问题的常见类型:行程问题:路程=时间³速度,时间=速度路程,速度=时间路程(单位:路程——米、千米;时间——秒、分、时;速度——米/秒、米/分、千米/小时)工程问题:工作总量=工作时间³工作效率,工作总量=各部分工作量的和 利润问题:利润=售价-进价,利润率=进价利润,售价=标价³(1-折扣) 等积变形问题:长方体的体积=长³宽³高;圆柱的体积=底面积³高;锻造前的体积=锻造后的体积利息问题:本息和=本金+利息;利息=本金³利率第六章平面图形的认识(一)1、线段,射线,直线2、点、直线、射线和线段的表示在几何里,我们常用字母表示图形。
一个点可以用一个大写字母表示,如点A一条直线可以用一个小写字母表示或用直线上两个点的大写字母表示,如直线l,或者直线AB一条射线可以用一个小写字母表示或用端点和射线上另一点来表示(端点字母写在前面),如射线l,射线AB一条线段可以用一个小写字母表示或用它的端点的两个大写字母来表示,如线段l,线段AB3、点和直线的位置关系有两种:①点在直线上,或者说直线经过这个点。
②点在直线外,或者说直线不经过这个点。
4、线段的性质(1)线段公理:两点之间的所有连线中,线段最短。
(2)两点之间的距离:两点之间线段的长度,叫做这两点之间的距离。
(3)线段的中点到两端点的距离相等。
(4)线段的大小关系和它们的长度的大小关系是一致的。
(5)线段的比较:1.目测法 2.叠合法 3.度量法 5、线段的中点:点M 把线段AB 分成相等的两条相等的线段AM 与BM ,点M 叫做线段AB 的中点。
M 是线段AB 的中点AM=BM=21AB (或者AB=2AM=2BM ) 6、直线的性质(1)直线公理:经过两个点有且只有一条直线。
(2)过一点的直线有无数条。
(3)直线是是向两方面无限延伸的,无端点,不可度量,不能比较大小。
(4)直线上有无穷多个点。
(5)两条不同的直线至多有一个公共点。
7、角:有公共端点的两条射线组成的图形叫做角,两条射线的公共端点叫做这个角的顶点,这两条射线叫做这个角的边。
或:角也可以看成是一条射线绕着它的端点旋转而成的。
8、平角和周角:一条射线绕着它的端点旋转,当终边和始边成一条直线时,所形成的角叫做平角。
终边继续旋转,当它又和始边重合时,所形成的角叫做周角。
9、角的表示:MB①用数字表示单独的角,如∠1,∠2,∠3等。
②用小写的希腊字母表示单独的一个角,如∠α,∠β,∠γ,∠θ等。
③用一个大写英文字母表示一个独立(在一个顶点处只有一个角)的角,如∠B ,∠C 等。
④用三个大写英文字母表示任一个角,如∠BAD ,∠BAE ,∠CAE 等。
注意:用三个大写英文字母表示角时,一定要把顶点字母写在中间,边上的字母写在两侧。
11、角的度量角的度量有如下规定:把一个平角180等分,每一份就是1度的角,单位是度,用“°”表示,1度记作“1°”,n 度记作“n °”。
把1°的角60等分,每一份叫做1分的角,1分记作“1’”。
把1’ 的角60等分,每一份叫做1秒的角,1秒记作“1””。
12、角的性质(1)角的大小与边的长短无关,只与构成角的两条射线的幅度大小有关。
(2)角的大小可以度量,可以比较 (3)角可以参与运算。
13、角的平分线从一个角的顶点引出的一条射线,把这个角分成两个相等的角,这条射线叫做这个角的平分线。
OB 平分∠AOC ∠AOB=∠BOC=21∠AOC (或者∠AOC=2∠AOB=2∠BOC ) 14、余角和补角①如果两个角的和是一个直角,这两个角叫做互为余角,简称互余,其中一个角是另一个角的余角。
用数学语言表示为如果∠α+∠β=90°,那么∠α与∠β1°=60’,1’=60”互余;反过来,如果∠α与∠β互余,那么∠α+∠β=90°②如果两个角的和是一个平角,这两个角叫做互为补角,简称互补,其中一个角是另一个角的补角。
用数学语言表示为如果∠α+∠β=180°,那么∠α与∠β互补;反过来如果∠α与∠β互补,那么∠α+∠β=180° ③同角(或等角)的余角相等;同角(或等角)的补角相等。
15、对顶角① 一对角,如果它们的顶点重合,两条边互为反向延长线,我们把这样的两个角叫做互为对顶角,其中一个角叫做另一个角的对顶角。