高中数学 2.2.1 顺序结构与选择结构课件 北师大版必修3
- 格式:ppt
- 大小:1.70 MB
- 文档页数:33
1.2.2选择结构整体设计教材分析在一个算法中经常会遇到对一个条件进行判断,如果条件成立则执行某个操作,如果条件不成立则执行另一个操作.因此在算法的流程图中,根据条件是否成立有着不同的流向.像这种根据条件作出判断,再决定执行哪一种操作的结构称为选择结构(selection structure)(或称“分支结构")。
一个选择结构都包含一个判断框,当条件成立时执行标有“Y”或者“是”的分支,当条件不成立时执行标有“N”或者“否”的分支。
图1的虚线框内就是常见的几种选择结构,在(1)中,当条件“n>3”成立时执行A,否则执行B;在(2)中,当条件“n>3”成立时执行A,否则直接脱离选择结构;在(3)中,当条件“n〉3"成立时直接脱离选择结构,否则执行B。
图1对于选择结构要注意以下几点:(1)在选择结构中不论条件是否成立,只能执行A框或者B框之一,不能既执行A框,又执行B框,即“Y"和“N”两者之中只能选择一个,不能两者都选择;(2)在选择结构中不论条件是否成立,必须执行A框或者B框之一,不能既不执行A框,又不执行B框,即“Y”和“N”两者之中必须选择一个,不能两者都不选择;(3)A框和B框中可以有一个是空的,即可以不执行任何操作直接脱离选择结构,但是不能两个框都是空的;(4)无论走哪条路径,执行完A或者B之后都经过P,然后才脱离选择结构;(5)选择结构可以是嵌套的,即在选择结构之中还可以出现选择结构,这种结构主要是出现在有多个条件判断的算法中;(6)选择结构可以和其他结构嵌套,形成比较复杂的结构;(7)A框或者B框可以不止一个操作,A框本身就可以是一个独立的算法结构.三维目标1。
通过实例的训练,使学生理解选择结构的意义。
2.能用流程图表示选择结构以及能用选择结构的流程图表示简单问题的算法,养成良好的逻辑思维习惯,发展有条理的思考与表达能力,达到提升学生逻辑思维能力的目标.重点难点教学重点:用选择结构的流程图表示算法。
§2算法框图的基本结构及设计2.1顺序结构与选择结构[读教材·填要点]1.顺序结构(1)定义:按照步骤依次执行的一个算法,称为具有“顺序结构”的算法,或者称为算法的顺序结构.(2)算法框图:如图所示.2.选择结构(1)定义:在算法中,需要判断条件的真假,依据判断的结果决定后面的步骤,像这样的结构通常称为选择结构.(2)算法框图:如图所示.3.几个基本程序框、流程线和它们各自表示的功能图形符号名称功能终端框(起止框) 表示一个算法的起始和结束输入、输出框表示一个算法输入和输出的信息处理框(执行框) 赋值、计算判断框成立时标明“是”或“Y”;不成立时标明“否”或“N”流程线连接程序框连接点连接框图的两部分[小问题·大思维]1.顺序结构和选择结构有什么区别?提示:选择结构不同于顺序结构的地方是:它不是依次执行,而是依据条件作出逻辑判断,选择执行不同指令中的一个.2.什么问题适合用选择结构的框图进行设计?提示:(1)凡根据条件先作出判断,再决定进行哪一个步骤的问题,在画程序框图时,必须引入判断,应用条件结构.如分段函数求值、数据的大小比较及含“若……则……”字样等问题.(2)解决问题时的注意事项:常常先判断条件,再决定程序流向,菱形图有两个出口,但在最终执行程序时,选择的路线只能有一条.[研一题][例1]一次考试中,某同学的语文,数学,英语,物理,化学的成绩分别是a,b,c,d,e,设计一个计算该同学的总分和平均分的算法,并画出算法框图.[自主解答]算法步骤如下:1.输入该同学的语文,数学,英语,物理,化学的成绩:a,b,c,d,e.2.计算S=a+b+c+d+e.3.计算W=S 5.4.输出S和W.算法框图如图所示.[悟一法]顺序结构的执行顺序为从上到下依次进行.在画框图时要遵循以下原则: (1)特定的符号表示特定的含义,不能随意创造; (2)图形符号内的语言要精炼; (3)框图的方向是自上而下或自左向右.[通一类]1.已知一个三角形三条边的边长分别为a ,b ,c ,则三角形面积为S =p (p -a )(p -b )(p -c ),其中p =a +b +c2.请利用上述公式设计一个计算三角形面积的算法,并画出算法框图.解:1.输入三角形三条边的长a ,b ,c . 2.计算p =a +b +c2.3.计算S =p (p -a )(p -b )(p -c ). 4.输出S .算法框图如图所示:[研一题][例2] 某居民区的物业管理部门每月向居民收取卫生费,计费方法是:3人和3人以下的住户,每户收取5元;超过3人的住户,每超出1人加收1.2元,设计一个算法,根据输入的人数,计算应收取的卫生费,画出算法框图.[自主解答] 设住户的人数为x ,收取的卫生费为y 元,依题意有y =⎩⎪⎨⎪⎧5 (x ≤3), 5+1.2(x -3) (x >3),这是一个分段函数求值问题,算法步骤如下: 1.输入x ;2.若x ≤3,则y =5;否则y =5+1.2(x -3); 3.输出y . 算法框图如图:[悟一法]1.设计算法框图时,首先设计算法步骤(自然语言),再将算法步骤转化为算法框图(图形语言).如果已经非常熟练掌握了画算法框图的方法,那么可以省略设计算法步骤而直接画出算法框图.对于算法中含有分类讨论的步骤,在设计算法框图时,通常用选择结构的算法框图.2.解决分段函数的求值问题,一般采用选择结构来设计算法.解决此类问题的关键是判断框中内容的填写,通常为分段函数的某一段自变量的范围.[通一类]2.任意给定3个正实数,设计一个算法,判断以这3个正实数为三条边边长的三角形是否存在,并画出这个算法框图.解:算法如下:1.输入3个正实数a ,b ,c ;2.判断a +b >c ,b +c >a ,c +a >b 是否同时成立,若是,则存在这样的三角形;否则,不存在这样的三角形.算法框图如图所示.[研一题][例3]如图所示是解决某个问题而绘制的算法框图,仔细分析各程序框内的内容及程序框之间的关系,回答下面的问题:(1)该算法框图解决的是怎样的一个问题?(2)若最终输出的结果y1=3,y2=-2,当x取5时输出的结果5a+b的值应该是多大?(3)在(2)的前提下,输入的x值越大,输出的ax+b是不是越大?为什么?(4)在(2)的前提下,当输入的x值为多大时,输出结果ax+b等于0?[自主解答](1)该框图解决的是求函数f(x)=ax+b的函数值的问题.其中输入的是自变量x的值,输出的是x对应的函数值.(2)y1=3,即2a+b=3 ①y2=-2,即-3a+b=-2 ②由①②得a=1,b=1.∴f(x)=x+1.∴当x取5时,5a+b=f(5)=5×1+1=6.(3)输入的x值越大,输出的函数值ax+b越大,因为f(x)=x+1是R上的增函数.(4)令f(x)=x+1=0,得x=-1,因而当输入的x值为-1时,输出的函数值为0.[悟一法]已知算法框图的函数问题,将框图所表示的算法翻译成自然语言,是由用自然语言表达的算法画出算法框图的逆向过程,对这两种语言的互译有助于熟练掌握算法的设计,而将算法框图翻译成自然语言相对而言比较陌生,是一个难点.[通一类]3.阅读算法框图,写出它表示的函数.解:y =错误!如图,给出了一个算法框图,其作用是输入x 的值,输出相应的y 的值.若要使输入的x 的值与输出的y 的值相等,则这样的x 的值有()A .1个B .2个C .3个D .4个[错解] 该算法框图的作用是求分段函数y =⎩⎪⎨⎪⎧x 2, x ≤1,2x -3, 1<x ≤3,f(1x, x >3,)的函数值.(1)当x ≤1时,令x 2=x ,得x =0或x =1. (2)当1<x ≤3时,令2x -3=x ,得x =3.(3)当x >3时,令1x =x ,得x =±1均不满足x >3,故舍去.综上,只有3个值符合.[错因] 忽视分段函数定义域,而导致出错. [正解] 该算法框图的作用是求分段函数y =⎩⎪⎨⎪⎧x 2, x ≤1,2x -3, 1<x <3,f(1x, x ≥3,)的函数值.(1)当x ≤1时,令x 2=x ,得x =0或x =1符合. (2)当1<x <3时,令2x -3=x ,得x =3,不符合,舍去. (3)当x ≥3时,令1x =x 得x =±1,均不满足x ≥3,故舍去.综上可知,有2个值符合题意. [答案]B1.下列关于选择结构的说法中正确的是( ) A .对应的算法框图有一个入口和两个出口 B .对应的算法框图有两个入口和一个出口 C .算法框图中的两个出口可以同时执行D .对于同一个算法来说,判断框中的条件是唯一的 答案:A2.如图所示的算法框图,当输入x =2时,输出的结果是( ) A .4 B .5 C .6D .13解析:该算法框图的执行过程是:x =2,y =2×2+1=5,b =3×5-2=13,输出b =13.答案:D3.如图所示的算法框图,其功能是()A .输入a ,b 的值,按从小到大的顺序输出它们的值B .输入a ,b 的值,按从大到小的顺序输出它们的值C .求a ,b 中的最大值D .求a ,b 中的最小值解析:输入a =2,b =1,运行算法框图可得输出2,根据题意可知该算法框图的功能是输入a ,b 的值,输出它们中的最大值,即求a ,b 中的最大值.答案:C4.如图所示的框图,若a =5,则输出b =________.解析:这是一个分段函数b =⎩⎪⎨⎪⎧a 2+1,a ≤5,2a ,a >5,的求值问题.根据条件易知,b =52+1=26.答案:265.阅读如图所示的框图,若输入x 的值为2,则输出y 的值为________.解析:框图的实质是一个分段函数求值问题. 此分段函数为y =⎩⎪⎨⎪⎧x 2-4x +4,x >1,1, x =1,x , x <1.若输入x =2,则应代入第一个式子, 则有y =x 2-4x +4=4-8+4=0.答案:06.“特快专递”是目前人们经常使用的异地邮寄信函或托运物品的一种快捷方式,某快递公司规定甲、乙两地之间物品的托运费用根据下列方法计算:f =⎩⎪⎨⎪⎧0.53ω(ω≤50), 50×0.53+(ω-50)×0.85(ω>50). 其中f (单位:元)为托运费,ω为托运物品的重量(单位:千克),试画出计算费用f 的算法框图.解:一、选择题1.如图所示的选择结构,下列说法错误的是( )A .当条件为假时,执行步骤甲B .当条件为真时,执行步骤乙C .无论条件是真是假,只能执行步骤甲和步骤乙中的一个D .可能同时执行步骤甲和步骤乙 解析:步骤甲和乙不能同时执行. 答案:D2.已知函数y =⎩⎪⎨⎪⎧x -1,x <0, 0,0≤x ≤6,3x ,x >6,输入自变量x 的值,求对应的函数值,设计算法框图时所含有的基本逻辑结构是( )A .顺序结构B .选择结构C .顺序结构、选择结构D .以上都不是解析:任何算法框图中都有顺序结构,由于自变量在不同的范围内,有不同的对应法则,用选择结构.答案:C3.如图所示的算法框图,输入x =2,则输出的结果是( )A .1B .2C .3D .4解析:输入x =2;则x =2>1,∴y =2+2=2,输出y =2. 答案:B4.如图所示,算法框图运行的结果为s =( )A.25B.52 C .1D .2解析:由框图可知s =a b +b a =24+42=12+2=52.答案:B5.如图所示的算法框图中,当输入a 1=3时,输出的b =7,则a 2的值是( ) A .11B .17C .0.5D .12解析:b =a 1+a 22=3+a 22=7,∴a 2=11. 答案:A二、填空题6.如图所示的算法功能是_____________________________________________.答案:求两个实数a 、b 差的绝对值7.已知函数y =⎩⎪⎨⎪⎧ (x -1)2, x >0, 0, x =0,(x +1)2, x <0,如图是计算函数值y 的算法框图,则在空白的判断框中应填________.解析:由函数y =⎩⎪⎨⎪⎧ (x -1)2, x >0,0, x =0,(x +1)2, x <0,可知第一个判断框的否定条件为x ≤0,第二个判断框的肯定条件的结果为y =0,因此空白判断框内应填“x =0”.答案:x =08.阅读算法框图(如图所示),若a =50.6,b =0.65,c =log 0.65,则输出的数是________.解析:算法框图的功能是输出a ,b ,c 中最大的数,又因为a >1,0<b <1,c <0,所以输出的数为50.6.答案:50.6三、解答题9.已知函数y =⎩⎪⎨⎪⎧ -1 (x >0), 0 (x =0),1 (x <0),写出求函数值的算法并画出算法框图.解:算法如下:1.输入x ;2.如果x >0,那么y =-1;如果x =0,那么y =0;如果x <0,那么y =1;3.输出函数值y .算法框图如图所示:10.阅读如图所示的算法框图,根据该图和各问题的条件回答下面几个小题:(1)该算法框图解决一个什么问题?(2)若当输入的x 值为0和4时,输出的值相等.问当输入的x 值为3时,输出的值为多大?(3)依据(2)的条件,要想使输出的值最大,输入x的值为多大?解:(1)该算法框图是求二次函数y=-x2+mx的函数值.(2)当输入的x值为0和4时,输出的值相等,即f(0)=f(4),可得m=4.∴f(x)=-x2+4x.∴f(3)=3.(3)由(2),知f(x)=-x2+4x=-(x-2)2+4,∴当输入的x值为2时,函数输出最大值4.。