西南大学网络教育2020年春0088]《数学分析选讲》作业标准答案
- 格式:docx
- 大小:378.87 KB
- 文档页数:11
西南大学网络与继续教育学院课程考试试题卷
类别:网教2020年5月
课程名称:数学教育学(方法论)【0350】
A卷大作业满分:100 分
要答案:wangjiaofudao
一、简述题(共计30分)
1. 简述教学评价对数学教学的功能。
(10分)
2. 简述数学教学原则中的“渗透数学思想方法原则”(20分)
二、实践与综合运用题(共计70分)
(一)选择以下知识点之一(共计30分)
分数的概念(小学)
平方差公式(初中)
函数的单调性(高中)
(1)分析教材,指出该知识点渗透了哪些数学思想方法(10分)
(2)分析学生学习该知识点的思维障碍或者容易出现的典型错误及原因(10分)(提示:该知识点的“思维障碍”与“典型错误”可选择其中之一进行分析), (3)提出相应的教学策略(10分)
(没有固定评分标准,根据回答情况酌情给分)(二)根据所提出的教学策略,设计简要的教学过程(40分)
答题提示:教学过程设计具有整体性,各环节衔接自如,结构紧凑;在渗透数学思想方法、突破学生思维障碍或纠正典型错误上与上述(一)的回答有一定的联系。
(没有固定评分标准,根据回答情况酌情给分)。
高等数学选讲 第四次作业答案1. (1)04590851707114272021571171102021504270202171102021502021427071102021502021427071100251020214214==----=-----=----=----=(2)21412141312150620123212325625062-==2.11112305811-11240561-11051290⎛⎫⎛⎫⎛⎫ ⎪⎪ ⎪=--=- ⎪⎪ ⎪ ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭AB058111213223230562111217202901114292-⎛⎫⎛⎫⎛⎫⎪ ⎪ ⎪-=⨯--⨯-=-- ⎪ ⎪ ⎪ ⎪ ⎪ ⎪--⎝⎭⎝⎭⎝⎭AB A⎪⎪⎪⎭⎫ ⎝⎛-==092650850AB B A T3.11112222111312632251126310001000100010001200010002001100213000100130201012140001021410011000100010001000010000010000001000030100004100140101⎛⎫⎛⎫⎪⎪- ⎪ ⎪→ ⎪ ⎪- ⎪⎪-⎝⎭⎝⎭⎛⎫⎛⎫ ⎪ ⎪-- ⎪→→ ⎪---- ⎪---⎝⎭⎝⎭1122111263511182412410001000010000001000001⎪⎪⎪⎛⎫ ⎪- ⎪→ ⎪-- ⎪--⎝⎭ 所以⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-----=-4112124581316121212110000001A 4.714191921191971419192321019147186335421863018763000000010010000B -----⎛⎫⎛⎫⎛⎫⎪ ⎪⎪=-→-→- ⎪ ⎪ ⎪ ⎪ ⎪ ⎪-⎝⎭⎝⎭⎝⎭-⎛⎫⎪→- ⎪⎪⎝⎭基础解系为T T )1,0,197,191(,)0,1,1914,192(=--=βα 5.解:设样本空间为U ,则U 所含基本事件的总数为n =350C 。
西南⼤学数学分析作业答案三、计算题1.求极限 902070)15()58()63(lim --++∞→x x x x .解: 902070902070902070583155863lim)15()58()63(lim=?-??-?→x x x x x x x x 2.求极限 211lim ()2x x x x +→∞+-.解:211lim ()2x x x x +→∞+=-21111lim 2211xx x x x x →∞++ ? ??= ? ? ? ? --?211lim 21xx x x →∞?+= -2(4)21[(1)]lim2[(1)]x x x x x264e e e-==.3.求极限 1 111lim (1)23n n n→∞++++解:由于11 1111(1)23nn n n≤++++≤ ,⼜lim 1n →∞=,由迫敛性定理1111lim (1)123n n n→∞4.考察函数),(,lim)(+∞-∞∈+-=--∞→x nn n n x f xx x xn 的连续性.若有间断点指出其类型.解:当0x <时,有221()limlim11x x x xxxn n n n n f x n nn--→∞→∞--===-++;同理当0x >时,有()1f x =.⽽(0)0f =,所以1,0()sgn 0,01,0x f x x x x -===??>?。
所以0是f 的跳跃间断点.四、证明题设a a n n =∞→lim ,b b n n =∞→lim ,且b a <. 证明:存在正整数N ,使得当N n >时,有n n b a <.证由b a <,有b b a a <+<2. 因为2lim ba a a n n +<=∞lim b a b b n n +>=∞→,所以,⼜存在02>N ,使得当2N n >时有2b a b n +>. 于是取},max{21N N N =,当N n >时,有n n b b a a <+<2《数学分析选讲》第⼆次主观题作业⼀、判断下列命题的正误1. 若函数在某点⽆定义,则在该点的极限可能存在.2. 若)(x f 在[,]a b 上连续,则)(x f 在[,]a b 上⼀致连续.3. 若()f x 在[,]a b 上有定义,且()()0f a f b <,则在(,)a b 内⾄少存在⼀点ξ,使得()0f ξ=.4. 初等函数在其定义区间上连续. 5.闭区间[,]a b 的全体聚点的集合是[,]a b 本⾝.⼆、选择题1.下⾯哪些叙述与数列极限A a n n =∞→lim 的定义等价()A )1,0(∈?ε,0>?N ,N n ≥?,ε≤-||A a n ;B 对⽆穷多个0>ε,0>?N ,N n >?,ε<-||A a n ;C 0>?ε,0>?N ,有⽆穷多个N n >,ε<-||A a n ;D 0>?ε,有}{n a 的⽆穷多项落在区间),(εε+-A A 之内2.任意给定0>M ,总存在0>X ,当X x -<时,M x f -<)(,则()A -∞=-∞→)(lim x f x ; B -∞=∞→)(lim x f x ; C ∞=-∞→)(lim x f x ; D ∞=+∞→)(lim x f x3.设a 为定数.若对任给的正数ε,总存在0>X ,当X x -<时,()f x a ε-<,则().A lim ()x f x a →+∞=; B lim ()x f x a →-∞=; C lim ()x f x a →∞=; D lim ()x f x →∞=∞A 2e ;B 2e - ;C 1e - ;D 1 5.21sin(1)lim1x x x →-=-()A 1 ;B 2 ;C 21 ; D 06.定义域为],[b a ,值域为),(∞+-∞的连续函数() A 存在; B 可能存在; C 不存在; D 存在且唯⼀7.设 =)(x f 1(12) , 0 , 0x x x k x ??-≠??=? 在0=x 处连续,则=k ()A 1 ;B e ;C 1- ;D 21e8.⽅程410x x --=⾄少有⼀个根的区间是()A 1(0,)2; B 1(,1)2; C (2,3) ; D (1,2) 三、计算题1.求极限 n nn 313131212122++++++∞→ 2.求极限lim n →∞+++3.求极限 )111)(110()110()13()12()1(lim2222--++++++++∞→x x x x x x x4.求极限 112sin lim-+→x x x四、证明题设,f g 在],[b a 上连续,且()(),()()f a g a f b g b ><. 证明:存在(,),a b ξ∈使得()()f g ξξ=.数学分析选讲作业系统1、若f,g 均为区间I 上的凸函数,则f+g 也为I 上的凸函数。
福师《数学分析选讲》在线作业一-0003试卷总分:100 得分:100一、单选题(共50 道试题,共100 分)1.{图}如题A.AB.BC.CD.D正确的答案是:B2.如图所示{图}{图}A.AB.BC.CD.D正确的答案是:C3.{图}如题A.AB.BC.CD.D正确的答案是:A4.{图}如题A.AB.BC.CD.D正确的答案是:D5.{图}如题A.AB.BC.CD.D正确的答案是:B6.{图}如题A.AB.BC.CD.D正确的答案是:B7.如图所示{图}{图}A.AB.BC.CD.D正确的答案是:D 8.{图}如题A.AB.BC.CD.D正确的答案是:A9.题面见图片{图}A.AB.BC.CD.D正确的答案是:C10.题面见图片{图}A.AB.BC.CD.D正确的答案是:A11.如图所示{图}{图}A.AB.BD.D正确的答案是:D12.{图}如题A.AB.BC.CD.D正确的答案是:D 13.{图}如题A.AB.BC.CD.D正确的答案是:C14.题面见图片{图}A.AB.BC.CD.D正确的答案是:A 15.{图}如题A.AB.BC.CD.D正确的答案是:A 16.{图}如题A.AB.BC.C正确的答案是:B 17.{图}{图}{图}A.AB.BC.CD.D正确的答案是:B 18.{图}如题A.AB.BC.CD.D正确的答案是:C 19.{图}如题A.AB.BC.CD.D正确的答案是:D 20.{图}如题A.AB.BC.CD.D正确的答案是:D 21.{图}如题A.AB.BD.D正确的答案是:C22.{图}如题A.AB.BC.CD.D正确的答案是:B 23.{图}如题A.AB.BC.CD.d正确的答案是:D 24.{图}如题A.AB.BC.CD.D正确的答案是:B 25.{图}如题A.AB.BC.CD.D正确的答案是:B26.{图}A.AB.BC.C正确的答案是:C27.{图}如题A.AB.BC.CD.D正确的答案是:D 28.{图}如题A.AB.BC.CD.D正确的答案是:D 29.{图}如题A.AB.BC.CD.D正确的答案是:D30.题目如图{图}A.0B.1C.2D.3正确的答案是:C31.题目如图{图}{图}A.AB.BC.CD.D正确的答案是:C32.{图}如题A.AB.BC.CD.D正确的答案是:A33.{图}A.AB.BC.CD.D正确的答案是:A 34.{图}如题A.AB.BC.CD.D正确的答案是:C35.{图} {图}A.AB.BC.CD.D正确的答案是:B36.如图所示{图}{图}A.AB.BC.CD.D正确的答案是:D 37.{图}如题A.AB.BD.D正确的答案是:D38.{图}如题A.AB.BC.CD.D正确的答案是:D39.{图}A.AB.BC.CD.D正确的答案是:C 40.{图}如题A.AB.BC.CD.D正确的答案是:A 41.{图}如题A.AB.BC.CD.D正确的答案是:D 42.{图}如题A.AB.BC.C正确的答案是:D43.{图}如题A.AB.BC.CD.D正确的答案是:B44.{图}A.AB.BC.CD.D正确的答案是:C 45.{图}如题A.AB.BC.CD.D正确的答案是:D46.{图}A.AB.BC.CD.D正确的答案是:D 47.{图}如题A.AB.BC.CD.D正确的答案是:C48.如图所示{图}A.AB.BC.CD.D正确的答案是:D49.{图}如题A.AB.BC.CD.D正确的答案是:C50.{图}A.AB.BC.CD.D正确的答案是:D。
[0088]《数学分析选讲》 第一次作业[论述题]1346658460111.doc 《数学分析选讲》 第一次 主观题 作业一、判断下列命题的正误1. 若数集S 存在上、下确界,则inf su p S S ≤.2. 收敛数列必有界.3. 设数列{}n a 与{}n b 都发散,则数列{}n n a b +一定发散. 4.若S 为无上界的数集,则S 中存在一递增数列趋于正无穷.5.若一数列收敛,则该数列的任何子列都收敛. 二、选择题 1.设2,1()3,1x x f x x x -≤⎧=⎨->⎩, 则 [(1)]f f =( ) .A 3- ;B 1- ;C 0 ;D 22.“对任意给定的)1,0(∈ε,总存在正整数N ,当N n ≥时,恒有2||2n x a ε-≤”是数列}{n x 收敛于a 的( ).A 充分必要条件;B 充分条件但非必要条件;C 必要条件但非充分条件;D 既非充分又非必要条件 3.若数列}{n x 有极限a ,则在a 的(0)ε>邻域之外,数列中的点( ) A 必不存在 ; B 至多只有有限多个;C 必定有无穷多个 ;D 可以有有限个,也可以有无限多个 4.数列}{n x 收敛,数列}{n y 发散,则数列{}n n x y + ( ).A 收敛;B 发散;C 是无穷大;D 可能收敛也可能发散 5.设a x n n =∞→||lim ,则 ( )A 数列}{n x 收敛;B a x n n =∞→lim ;C 数列}{n x 可能收敛,也可能发散;D a x n n -=∞→lim ;6.若函数)(x f 在点0x 极限存在,则( ) A )(x f 在0x 的函数值必存在且等于极限值; B )(x f 在0x 的函数值必存在,但不一定等于极限值; C )(x f 在0x 的函数值可以不存在;D 如果)(0x f 存在的话必等于函数值7.下列极限正确的是( ) A 01lim sin1x x x →=; B sin lim 1x x x →∞=; C 1lim sin 0x x x→∞=; D 01lim sin 1x x x →=8. 1121lim21xx x→-=+( )A 0;B 1 ;C 1- ;D 不存在三、计算题1.求极限 902070)15()58()63(lim --++∞→x x x x .2.求极限 211lim()2x x x x +→∞+-. 3.求极限2n n →∞+++ .4.考察函数),(,lim )(+∞-∞∈+-=--∞→x n n n n x f xxxx n 的连续性.若有间断点指出其类型. 四、证明题设a a n n =∞→lim ,b b n n =∞→lim ,且b a <. 证明:存在正整数N ,使得当N n >时,有n n b a <.参考答案:1346658460112.doc《数学分析选讲》第一次主观题作业答案一、判断题 1.(正确) 2.( 正确 ) 3.(错误 ) 4.( 正确 ) 5.( 正确) 二、 选择题1、A2、A3、B4、B5、C6、C7、D8、D 三、计算题解 1、902070902070902070583155863lim )15()58()63(lim⋅=⎪⎭⎫ ⎝⎛-⎪⎭⎫⎝⎛-⎪⎭⎫ ⎝⎛+=--++∞→+∞→x x x x x x x x2、211lim()2x x x x +→∞+=-21111lim 2211x x x x x x →∞⎛⎫⎛⎫++ ⎪ ⎪⋅= ⎪ ⎪ ⎪ ⎪--⎝⎭⎝⎭211lim 21xx x x →∞⎛⎫+ ⎪= ⎪ ⎪-⎝⎭2(4)21[(1)]lim 2[(1)]x x x x x→∞--+- 264e e e-==. 3、解:因2n ≤++≤+1n n==, 故 21n n →∞++=+。
0950 20201单项选择题1、选择题、填空题、解答题的考查功能都包括()。
1. D. 考查运算能力2. E. 考查应用意识3.考查基本概念4.考查推理能力2、数学教育的评价主体以学校和()为主。
1. F. 学生2.班主任3.家长4.教师3、确立()在数学教学课堂教学评价活动中的主体地位。
1. B. 学科2.学生3.知识4.教师4、考查采用()制度。
1. C. 百分数2.等级3.分数4.无分数5、诊断性评价是在(),对学生的认知、情感和技能进行评估。
1.课后2.课程和学习结束时3.课程和学习开始前4.课堂上6、数学教师评价的基本方法除了课堂观察,还有学生的数学学业成就、()、同行评价、教师的自我评价1.家长评价2.数学教师成长记录袋3.学生评价4.绩效考评7、再测信度的计算方法是()。
1. A. 求两半试题分数的相关系数2.科隆巴赫系数公式3.求两次测试分数的相关系数4.求两个复本分数的相关系数多项选择题8、数学教育评价的常见模式有()。
1.目标本位评价模式2.形成性评价模式3.回应性评价模式4.实验定向评价模式9、试卷设计必须符合()的基本原则。
1.导向性2.适应性3.科学性4.全面性10、国际中小学数学教育评价的共同趋势有()。
1.评价主体的多元性2.学生是评价的主体3.评价方式的多样性4.评价内容的多元化与开放性11、教育评价领域通常按照评价的模式分为()方法和()方法。
1.量化2.结果评价3.过程评价4.质性12、数学教育评价的基本功能有()。
1.甄别、选拔功能2.调控与教学功能3.激励、改进功能4.诊断功能13、数学知识包括()。
1.证明2.定理3.定义4.公式14、质性评价收集信息与资料的途径通常有()。
1.观察法2.谈话法3.调查法4.记录袋法15、数学教育发展性评价的目的在于促进发展,旨在建立()的评价新体系。
1.评价目标全面化2.评价方式多样化3.评价主体多元化4.评价标准分层化5.评价内容综合化16、数学学习评价,通常借助于()手段。
(0088)《数学分析选讲》网上作业题答案1:第一次作业2:第二次作业3:第三次作业4:第四次作业5:第五次作业1:[判断题]两个无穷小量的和一定是无穷小量参考答案:正确1、应注意写出要点;2、注意检查语法和拼写错误;3、文理通顺,中心突出。
2:[判断题]两个无穷大量的和一定是无穷大量参考答案:错误1、应注意写出要点;2、注意检查语法和拼写错误;3、文理通顺,中心突出。
3:[单选题]设f,g在(-a,a)上都是奇函数,则g(f(x))与f(g(x))A:都是奇函数B:都是偶函数C:一是奇函数,一是偶函数D:都是非奇、非偶函数参考答案:A社会实践是检验认识是否具有真理性的唯一标准,这是由真理的本性和实践的特点所决定的。
第一,真理的本性是主观同客观相符合。
要判明认识是否具有真理性的标准,只能通过一种能够把主观同客观联系、沟通起来的桥梁,这就是人们的社会实践,舍此别无它路。
它成为“实践是检验真理的唯一标准”的内在根据。
第二,实践的过程是一个主体能动地使自己的目的物化或对象化的过程,因而它具有直接现实性。
因此实践可以使主观与客观相对照,从而直接检验出主观认识是否与客观相符合以及符合的程度。
4:[判断题]闭区间上的连续函数是一致连续的参考答案:正确1、应注意写出要点;2、注意检查语法和拼写错误;3、文理通顺,中心突出。
5:[单选题]设数列{An}收敛,数列{Bn}发散,则数列{AnBn}A:收敛B:发散C:是无穷大D:可能收敛也可能发散参考答案:D马克思主义认为,劳动创造了人本身,同时也就创造了人类社会。
因此,只有实践,才是社会生活的真正本质。
说实践是社会的本质,主要理由是:首先,实践是社会关系的发祥地。
其次,实践构成了社会生活的基本领域。
最后,实践构成了社会发展的动力。
6:[判断题]最大值若存在必是上确界参考答案:正确1、应注意写出要点;2、注意检查语法和拼写错误;3、文理通顺,中心突出。
7:[判断题]若f,g在区间I上一致连续,则fg在I上也一致连续。
《数学分析选讲》作业参考答案一.填空1. 点0P 的任一邻域内都有点集E 的无穷多个点。
2.}1:),{(22≤+y x y x 3.),(),(0d c b a E ⨯=4. }1)2()1(:),{(22≥++-y x y x ;5. 点0P 为点集E 的界点是指:点0P 的任一邻域中既有E 的点又有E 的余集的点; 6. φ,2R .7. 存在0P 的一个邻域完全包含在点集E 之中 8. 曲顶柱体的体积 9. 22)()()(d b c a E d -+-=10.)()(lim 00P f P f P P =→11. (2,1); 12. 连通 二.判断题1. 对; 2. 对; 3. 对; 4. 对; 5. 错; 6. 错; 7. 对; 8. 对; 9. 对; 10. 错; 11. 对; 12.对;. 13. 对; 14. 对; 15. 对; 16. 错; 17. 对; 18. 对; 19. 对; 20. 对; 21.错 22. 对; 23. 对; 24. 对 三.计算题1. 解 视y 为x 的函数,对原方程两边关于x 求导得:022='--'+y ax ay y y x解出y '得:axy x ay y --='222. 令22),(αα+=x x f ,则函数f 在]1,1[]1,1[-⨯-上连续.从而,由定理19.1知:函数x x I d )(1122⎰-+=αα在]1,1[-上连续,特别在0=α处连续.于是1d ||)0()(lim d lim 1111220====+⎰⎰-→-→x x I I x x αααα.3. 由于}0,22:),{(2px px y px y x D ≤≤≤≤-=为x -型闭区域,所以由定理2知:002/0222/0===⎰⎰⎰⎰⎰-dx x ydy xdx xydxdy p px pxp D.4. 解 由公式计算知:().310d )12353210(d )1(4)1)1(2()1)1(2(d )(d 21231222=-+-=--+-++-=-+⎰⎰⎰x x x x x x x x x x yx y x xy L5. 解 由定理19.4知:()().d e y 22d e y -2d )(223535223522xy -2xy -2⎰⎰⎰--=-+=-+∂∂='-------x xx x x x x xx x x xxy y exee xey e x e y e xx F6. 由定义知.0 00lim )0,0()0,0(lim)0,0(00=-=-+=→→xx f x f f x x x同理可得0)0,0(=y f .7. 解 视y 为常数,关于x 求导数得:)cos(23y x xy z x ++=. 视x 为常数,关于求导数得: )cos(3322y x y x z y ++=.8. 先求f 在点)3,1(关于x 的偏导数,为此,令3=y ,得到以x 为自变量的一元函 数276)3,(23-+=x x x f ,求它在1=x 的导数,得15)123()3,(d d)3,1(121=+====x x x x x x f x f .再求f 在)3,1(关于y 的偏导数,先令1=x ,得到以y 为自变量的一元函数321),1(y y y f -+=,求它在3=y 的导数,得.25)32(),1(d d)3,(323-=-====y y y y y f y x f9. 令22),(by ax y x f +=,则ax y x f x 2),(=,by y x f y 2),(=在整个平面上连续,从而由定理17.2知:f 在),(000y x P =处可微.因此,由定理17.4知该曲面在),,(000z y x M =点有不平行于z 轴的切平面且其方程为)(2)(200000y y by x x ax z z -+-=-.再由(4.2)式知,法线方程为12200000--=-=-z z by y y ax x x .10.令x x x f ααcos ),(2=,则函数f 在]2,0[]1,1[⨯-上连续.从而,则定理19.1知:函数x x x I d cos )(202⎰=αα在]1,1[-上连续,特别在0=α处连续.于是38d )0()(lim d cos lim 22022====⎰⎰→→x x I I x x x αααα; 11.0,0;12. 由定理知:.2012)13(41)13(213)d y y 3()d xy y ()(24422231323133+=-+-=+=+∂∂='⎰⎰x x y x y x x x I13.解 由公式知πθθππ)]0()([)]([)()(2200221022022f R f d r f rdr r f d dxdy y x f R RD-=='=+'⎰⎰⎰⎰⎰14.解 由于直线段→--AB 的方程为)10(21,1≤≤+=+=t t y t x ,所以由公式(1)知: .625d )251(d ]2)21)(1[(d )(d 1021=++=+++=-+⎰⎰⎰t t t tt t t y x y x xy L四.证明题1.证明 因为),(,0+∞-∞∈≥∀y x 有22111cos xx xy +≤+ 且反常积分⎰∞++02d 11x x 收敛,所以由M-判别法知含参量积分⎰∞++02d 1cos x x xy 在区间),(+∞-∞上一致收敛.2. 由推广的链式法则知:.cos )sin (cos cos )sin (d d d d d d d d t t t e tt u ve tt t z t v v z t u u z t z t t +-=+-+=∂∂+∂∂+∂∂= 3. 证明 应用不等式:(1)000(,)||||n n n P P x x y y ρ≤-+-;(2) 0000||(,), ||(,) (1,2,)n n n n x x P P y y P P n ρρ-≤-≤=可知。
《数学分析选讲》作业西南大学网教2020年春
2、下列结论中正确的是()
22、定义域为[1,2],值域为(-1,1)的连续函数()
24、若数列{an} 有极限a,则在a 的r(r>0) 邻域之外,数列中的点()
27、若函数在[a,b]上可积,则该函数在[a,b]上有界.
29、若实数A是非空数集S的下确界,则A一定是S的下界.
31、任一实系数奇次方程至少有一个实根.
32、有上界的非空数集必有上确界;有下界的非空数集必有下确界.
33、若函数在某点处连续,则函数在该点处可导.
34、若f在区间I上不连续,则f在I上一定不存在原函数。
35、若函数发f在[a,b]上连续,则f在[a,b]上存在原函数.
37、初等函数在其定义区间上连续.
38、若实数a是非空数集S的上确界,则a一定是S的上界.
43、若数列{an} 收敛,则数列{an}有界.
45、若函数在[a,b]上有无限多个间断点,则该函数在[a,b]上一定不可积.
46、基本初等函数在其定义域内是连续的.
48、若f、g在[a,b]上的可积,则fg在[a,b]上也可积
49、若f在区间I上连续,则f在I上存在原函数。
50、若函数f在数集D上的导函数处处为零,则f在数集D上恒为常数。
51、实轴上的任一有界无限点集至少有一个聚点
52、可导的偶函数,其导函数必是奇函数
53、若函数在某点可导,则在该点的左右导数都存在
54、区间上的连续函数必有最大值
55、若函数在某点可导,则在该点连续
56、若f(x)在c处连续,则f(x)在c处一定可导.
57、若两个函数在区间I上的导数处处相等,则这两个函数必相等
58、函数f(x)=3sinx-cosx 既不是奇函数,也不是偶函数.
59、若f(x)在[a,b]上有界,则f(x)在[]a,b上可积.
62、若非空数集S没有上确界,则S无界。