光在大气中的传播
- 格式:ppt
- 大小:465.00 KB
- 文档页数:15
光沿空气传播的例子
光在空气中传播是一种常见的现象,而光的传播可以发生在许多情境中。
以下是一些光沿空气传播的例子:
1.阳光穿过大气层:白天,太阳的光线穿过大气层传播到地球表面。
太阳光是由太阳核心的核反应产生的,它在太空中通过空气传播到地球,照亮我们的环境。
2.手电筒的光束:当你打开手电筒时,光线从灯泡中传播到周围的空气中。
这是因为手电筒中的光源(通常是LED或灯泡)发出光线,而这些光线在空气中传播,照亮周围的区域。
3.激光器的激光束:激光器发射的激光是一束高度聚焦的光,它可以在空气中传播。
这种光在空气中传播的能力使激光技术在许多应用中得到了广泛的应用,包括通信、测量和医疗领域。
4.彩虹的形成:当阳光穿过空气中的水滴时,会发生折射和反射,形成彩虹。
彩虹是光在空气和水滴中传播、折射和反射的结果。
这些例子突显了在自然和日常生活中,光在空气中传播的普遍性。
光在空气中的传播是由电磁波理论解释的,光波在真空中的速度大致等于光速,而在空气中也有相似的传播特性。
光在大气中传播及应用大气激光通信、探测等技术应用通常以大气为信道。
光波在大气中传播时,大气气体分子及气溶胶的吸收和散射会引起的光束能量衰减,空气折射率不均匀会引起的光波振幅和相位起伏;当光波功率足够大、持续时间极短时,非线性效应也会影响光束的特性。
1.大气衰减激光辐射在大气中传播时,部分光辐射能量被吸收而转变为其他形式的能量(如热能等)部分能量被散射而偏离原来的传播方向(即辐射能量空间重新分配)。
吸收和散射的总效果使传输光辐射强度的衰减。
(1)大气分子吸收大气分子在光波电场的作用下产生极化,并以入射光的频率作受迫振动。
所以为了克服大气分子内部阻力要消耗能量,表现为大气分子的吸收。
分子的固有吸收频率由分子内部的运动形态决定。
极性分子的内部运动一般有分子内电子运动、组成分子的原子振动以及分子绕其质量中心的转动组成。
相应的共振吸收频率分别与光波的紫外和可见光、近红外和中红外以及远红外区相对应。
因此,分子的吸收特性强烈的依赖于光波的频率。
大气中N2、O2分子虽然含量最多(约90%),但它们在可见光和红外区几乎不表现吸收,对远红外和微波段才呈现出很大的吸收。
因此,在可见光和近红外区,一般不考虑其吸收作用。
大气中除包含上述分子外,还包含有He,Ar,Xe,O3,Ne等,这些分子在可见光和近红外有可观的吸收谱线,但因它们在大气中的含量甚微,一般也不考虑其吸收作用。
只是在高空处,其余衰减因素都已很弱,才考虑它们吸收作用。
H2O和CO2分子,特别是H2O分子在近红外区有宽广的振动-转动及纯振动结构,因此是可见光和近红外区最重要的吸收分子,是晴天大气光学衰减的主要因素,它们的一些主要吸收谱线的中心波长如表2-1所示。
表1中对某些特定的波长,大气呈现出极为强烈的吸收,光波几乎无法通过。
根据大气的这种选择吸收特性,一般把近红外区分成八个区段,将透过率较高的波段称为“大气窗口”。
在这些窗口之内,大气分子呈现弱吸收。
目前常用的激光波长都处于这些窗口之内。
大气中的光的传播与扩散在空气中,光可以自由传播。
但是,当光线遇到颗粒物或气体分子时,它就会发生散射,改变原本的方向。
这种现象就叫做大气散射,是大气中光线传播和扩散的重要原因之一。
太阳光是由不同波长的光线组成的,其中包括可见光、紫外线和红外线等。
当这些光线穿过大气时,它们的运动轨迹会受到大气的干扰,发生折射、反射和散射等现象。
因此,我们在日常生活中所看到的太阳光,并不是原本的“样子”。
大气散射的机制有两种。
一种是雷利散射,这是由于空气分子的大小与光的波长相当,在光的入射处会发生弱散射。
因此,在天空中看到的颜色大部分是由于空气分子造成的散射光。
当太阳光穿过大气层时,其短波长成分会受到大气的散射,只有红光可以穿透更深的大气层,因此在日落时会产生赤红色的景色。
另一种散射是非弹性散射,这是由于大气颗粒物的存在而产生的。
这种散射会使原来直线传播的光线改变方向,并形成漫反射光。
这就是为什么当有光照射时,我们可以看到细小颗粒物,例如灰尘和烟雾等。
在气象、环境保护、大气污染监测等领域,大气散射的研究具有重要意义。
例如,在空气污染监测中,大气散射可以控制和量测光的传播,从而精准地测定空气中的污染物质。
此外,大气散射的机制也为天文学提供了一个非常重要的工具,可以通过观测太阳光的散射情况,研究大气的成分和结构。
在我们的日常生活中,大气散射也能带来美丽的景象。
例如,在日出和日落时,我们能看到一片片绚烂多彩的云彩,这是由于大气散射的作用,把太阳光反射、折射、散射形成五彩斑斓的云彩。
另一个例子是,当太阳落山,太阳的光辉会把大气散射成一个亮点,在天空中形成一个美丽的暮光珠。
总之,大气中光的传播和扩散是一个复杂的过程,涉及到多个自然现象和物理规律。
通过对大气散射的了解和研究,我们能够更好地理解和控制光的传播,同时也能欣赏到大自然带给我们的美丽景象。
大气层中的光的传播与散射机制在我们日常生活中,我们常常看到太阳的光线穿过大气层,照亮了整个地球。
然而,你是否曾想过光是如何在大气层中传播的呢?光的传播与散射机制是一个复杂而有趣的主题,它涉及到物理学、气象学和光学等多个领域。
本文将探讨大气层中光的传播与散射机制的一些基本原理和现象。
首先,我们需要了解光的传播是如何发生的。
光是一种电磁波,它可以在真空中以光速传播。
然而,在大气层中,光的传播受到大气分子的干扰。
大气分子会与光发生相互作用,导致光的传播方向改变。
这种现象被称为散射。
散射现象可以解释为何天空是蓝色的。
当太阳光穿过大气层时,它会与大气中的氮氧等分子发生散射。
这些分子对短波长的光(如蓝色和紫色)更敏感,因此它们会将这些颜色的光散射到各个方向。
而长波长的光(如红色和橙色)则相对较少被散射。
因此,当我们仰望蓝天时,我们看到的是被散射后的蓝色光。
除了散射,大气层中的光还会发生折射。
折射是光线在两种介质之间传播时改变方向的现象。
当光线从一种介质(例如空气)进入另一种介质(例如水或玻璃)时,它的传播速度会改变,从而导致光线的方向发生偏转。
这就是我们常见的折射现象。
折射现象在大气层中也起着重要的作用。
当太阳光穿过大气层时,它会在大气层中不同密度的区域中发生折射。
这种折射现象使得太阳看起来离我们的位置更高,即使它实际上并不是。
这就是为什么太阳在日落或日出时看起来更大的原因。
除了散射和折射,大气层中的光还会发生吸收。
大气层中的一些分子和颗粒物质能够吸收特定波长的光。
这意味着这些波长的光线会被大气层中的物质吸收,而不会到达地面。
这就是为什么一些特定波长的光线在日落时会呈现出红色或橙色的原因,因为这些波长的光线能够逃脱大气层的吸收。
总结一下,大气层中的光的传播与散射机制包括散射、折射和吸收等多种现象。
散射现象解释了天空为什么是蓝色的,折射现象使太阳看起来离我们更高,吸收现象使一些波长的光线被大气层吸收。
这些现象共同作用,使得我们能够看到美丽的日出、日落和蓝天。
大气光的效应
大气光的效应分为丁达尔效应和光柱现象。
1. 丁达尔效应:大气中存在微小颗粒,这些颗粒可以近似看作是一种气溶胶。
当光透过云隙或树叶的间隙在空气中传播时,会在空气中散射形成光路,这就是丁达尔效应。
这种现象通常在空中云量较多且存在云隙的条件下出现。
此外,当空气或水不纯净时,人们也能看到光的传播路径。
这是因为光在纯净的空气或水中传播时,其传播路径从侧面是看不见的,但一旦介质变得不纯净,例如存在大量气溶胶胶体(如云、雾、烟尘中的胶体),光线就会变得可视化,容易形成丁达尔效应。
2. 光柱现象:这是一种罕见而有趣的大气光学现象。
在非常寒冷的夜晚,当冰从高层落下形成平板状的冰晶时,这些冰晶会反射光并几乎完全是垂直的,从而产生光柱效应。
这种奇景多发生在寒冷地区的冬夜,其形成依赖于空气中大量冰晶(如雪花)的反射。
冰晶呈六边形,灯光通过这些冰晶如镜面般反射到空中,人眼看到的就是一个个被向上反射的光柱虚像。
此外,还有一种被称为“暖夜灯柱”的现象,它是由大气中的冰晶反射灯光后形成的。
光的三种传播方式
光的三种传播方式
光是一种电磁辐射现象,不同于声波等传播方式,光的传播是由电磁波的振荡引起的。
光的三种传播方式分别是直线传播、散射传播和折射传播。
一、直线传播
光在空气、真空等均匀介质中传播时呈直线传播。
直线传播是光最常见的传播方式,也是最容易理解的一种传播方式。
当光通过均匀介质时,它的速度和方向保持不变,因此可以直线传播。
二、散射传播
散射传播是指光在介质中碰到杂质或者是粗糙表面时,其传播方向会发生变化。
物体表面的粗糙程度和小物体的存在都可能导致散射现象。
散射传播方式也是很常见的一种传播方式,例如,我们看到的蓝天和黄昏时的红晕就是因为光在大气中发生了散射。
三、折射传播
折射传播是指当光线在不同密度的介质之间传播时,由于速度的改变,光线方向的改变也随之发生。
因此,折射传播也叫做折射。
这种传播方式可以由折射定律描述:当光线由一种介质进入另一种介质时,折射角度和入射角
度之间的关系为n1sinθ1=n2sinθ2,其中n1和n2分别代表两种介质的折射率,θ1为光线入射角度,θ2为光线折射角度。
举个例子,我们可以用一个玻璃棱镜来展示折射现象。
当光穿过玻璃棱镜时,由于其折射率高于空气,光线就会被弯曲,因此我们才能看到棱镜的不同颜色。
总结
光的传播方式是直线传播、散射传播和折射传播。
这些传播方式不仅是我们日常生活中常见的现象,而且在科学研究和工程应用中也具有重要意义。
通过深入理解这些传播方式,我们可以更好地了解和利用光这一重要物理现象。
2.1 大气折射率在光学频率范围内,对流层(高度<17km)中的地球大气的空气折射率表示如下:n=1+77.6(1+7.52×10-3λ-2)(p/T)×10-6 (2.1)式中,p是以mbar为单位的大气气压,T是热力学温度,λ是以μm为单位的光波波长,由于地面上温度对n1(r)的贡献<1%,故(2.1)式中忽略了与水汽压相关的项,当然这一项对水上传播光路是不可忽略的。
2. 2 大气湍流描述自然界中的流体运动存在着二种不同的形式:一种是层流,看上去平顺、清晰,没有掺混现象;另一种是湍流,看上去毫无规则,显得杂乱无章。
例如,如果流体以一定的速度流过一个管子,我们可以用带颜色的染料对它进行观察,在流体速度低的时候,流线光滑面清晰,流体处于层流状态;不断增加流体速度,当流速达到一定值时,流线就不再是光滑的了,整个流体开始作不规则的随机运动,流体处于湍流状态。
自从1883 年Reynolds 做了著名的湍流实验以来,以Monin-Obukhov 提出的相似理论、Deardorff 提出的大涡模拟、美国Kansas 州观测实验等为代表,大气湍流的研究已经取得了很大的进展和丰硕的成果,并在天气、气候研究和工程实际中获得成功地应用。
湍流对大气中声、光和其它电磁波的传播具有极为重要的影响,例如湍流风速、温度和湿度的脉动都会引起声音散射和减弱,大气小尺度光折射率的起伏(称为光学湍流),会严重影响光的传播和光学成像的质量等等。
长期以来,以Tatarskii 的工作为代表,声光电传播的湍流效应大都是按照Kolmogorov 的均匀、平稳和各向同性假设处理的,而实际的湍流经常不满足这些假设,要建立更加完善的波动传播模型就必须考虑湍流的各向异性、以及间歇性的影响。
2. 3 折射率湍流模型在湍流大气中,折射率在不同地点、不同时刻都是变化的。
一方面,我们还不可能对这些变化作出预测;另一方面,即使已知这些变化,要对所有时刻、所有地点的值作出描述实际上也是不可能的。