光在湍流大气中的传播综述
- 格式:ppt
- 大小:775.00 KB
- 文档页数:7
光在大气中传播及应用大气激光通信、探测等技术应用通常以大气为信道。
光波在大气中传播时,大气气体分子及气溶胶的吸收和散射会引起的光束能量衰减,空气折射率不均匀会引起的光波振幅和相位起伏;当光波功率足够大、持续时间极短时,非线性效应也会影响光束的特性。
1.大气衰减激光辐射在大气中传播时,部分光辐射能量被吸收而转变为其他形式的能量(如热能等)部分能量被散射而偏离原来的传播方向(即辐射能量空间重新分配)。
吸收和散射的总效果使传输光辐射强度的衰减。
(1)大气分子吸收大气分子在光波电场的作用下产生极化,并以入射光的频率作受迫振动。
所以为了克服大气分子内部阻力要消耗能量,表现为大气分子的吸收。
分子的固有吸收频率由分子内部的运动形态决定。
极性分子的内部运动一般有分子内电子运动、组成分子的原子振动以及分子绕其质量中心的转动组成。
相应的共振吸收频率分别与光波的紫外和可见光、近红外和中红外以及远红外区相对应。
因此,分子的吸收特性强烈的依赖于光波的频率。
大气中N2、O2分子虽然含量最多(约90%),但它们在可见光和红外区几乎不表现吸收,对远红外和微波段才呈现出很大的吸收。
因此,在可见光和近红外区,一般不考虑其吸收作用。
大气中除包含上述分子外,还包含有He,Ar,Xe,O3,Ne等,这些分子在可见光和近红外有可观的吸收谱线,但因它们在大气中的含量甚微,一般也不考虑其吸收作用。
只是在高空处,其余衰减因素都已很弱,才考虑它们吸收作用。
H2O和CO2分子,特别是H2O分子在近红外区有宽广的振动-转动及纯振动结构,因此是可见光和近红外区最重要的吸收分子,是晴天大气光学衰减的主要因素,它们的一些主要吸收谱线的中心波长如表2-1所示。
表1中对某些特定的波长,大气呈现出极为强烈的吸收,光波几乎无法通过。
根据大气的这种选择吸收特性,一般把近红外区分成八个区段,将透过率较高的波段称为“大气窗口”。
在这些窗口之内,大气分子呈现弱吸收。
目前常用的激光波长都处于这些窗口之内。
大气湍流对光束传播的影响嘿,朋友们,咱们今天来聊聊一个可能听起来有点复杂,但其实特别有趣的话题,那就是大气湍流对光束传播的影响。
想象一下,咱们在晚上仰望星空,看到的那些闪烁的星星,有时亮,有时又暗,那可不是它们在调皮,而是大气在捣乱。
大气就像一条翻腾的河流,时不时地给光线加点“特效”,让光束在空中打了个旋儿。
是不是很有意思?大气湍流就像是一锅炖得正好的汤,表面上看起来平静无波,但底下可是一阵阵的翻滚。
风在吹,温度在变,这些都能影响光的传播。
咱们说的光,指的可不只是阳光哦,还有激光、灯光等等。
想想激光笔,那小小的点点,有时候打在墙上明晃晃的,有时候却像藏了起来,真让人郁闷。
实际上,这全都是因为大气的捣蛋。
想象一下,一束光从一个地方发出来,像一条小船在湍急的水流中行驶。
水流的波动,让这艘小船有时候稳稳当当,有时候却东倒西歪。
这种情况不仅在日常生活中能见到,在科学实验、通讯技术、甚至卫星信号传输中都能找到身影。
光线在大气中穿梭,受到的干扰可不少,真是让人心烦。
科学家们对此可是绞尽脑汁,希望能找到对策。
我们平常用的光纤通讯,虽然看起来很高大上,但实际上也受到了大气湍流的影响。
想象一下,光信号像一颗颗小小的水滴,顺着光纤快速流淌,却在大气中遇到了风浪,结果就像小孩子在海边捡贝壳,一波又一波,来不及反应,光线就散了,信息传递的速度一下子慢了下来。
真是让人心急如焚啊。
还有激光通信呢,原本想快速高效,结果被大气湍流搞得像慢动作重播。
这时候,科学家们得想出点新招儿,比如动态调节技术。
这就像打游戏,随时调整你的策略,才能不被对手牵着鼻子走。
光线在大气中的曲折传播,真是一场“斗智斗勇”的较量,谁也不想输,特别是那些研究人员。
咱们身边也有很多受大气影响的例子。
你们有没有注意到,晚上看星星的时候,那些星星有时候闪得厉害,有时候又稳定得像灯泡。
这就是大气湍流的“杰作”。
空气的不同层次、温度的变化,都会让星光在我们眼前翩翩起舞,真是美丽而又有些小调皮的现象。
空间光通信中的湍流抑制技术研究
自由空间光通信(Free Space Optics,FSO)是目前发展迅速的一种新型通信方式,在卫星通信、地面通信、军事方面都有广泛的应用。
折射率不稳定造成的大气湍流效应对自由空间光通信系统的性能有着严重的影响,是FSO系统中一个重要的问题。
本文主要针对空间光通信系统中的两种湍流抑制技术——自适应光学技术和部分相干光技术进行了研究,主要工作内容如下:1、对空间光通信系统中的大气湍流抑制方法进行了调研和综述,包括:孔径平均技术、分集技术、透镜改进技术、自适应光学技术、部分相干光技术等。
2、研究了激光在湍流大气中传输的基本理论,利用分步傅里叶方法和谱反演法对激光在大气中的传输进行了数值仿真。
研究了基于Fresnel缩放理论的实验室内长距离传输模拟方法。
3、完成了基于SPGD算法的非波前探测自适应光学大气湍流抑制实验,研究了非波前探测自适应光学技术对光纤耦合效率的提升作用。
实验结果表明,不同湍流强度下,校正后的光纤耦合效率能提升2.7~9dB不等,同时校正后的光纤耦合效率更集中。
4、研究了部分相干光技术。
对伪部分相干高斯谢尔模光束在湍流大气中的传输进行仿真分析。
仿真结果表明,部分相干光技术在长距离或强湍流情况下能有效降低闪烁系数,相干长度越小,湍流抑制能力越强。
当湍流强度Cn2=1×10-13m2/3,传输距离为2.5km时,相对于完全相干光,部分相干高斯谢尔模光束能将闪烁系数从2.8降低到2.2。
大气光学知识点总结大全一、大气光学基础知识1. 光的传播特性光在地球大气中的传播受多种因素影响,包括折射、散射、吸收、色散等。
这些影响因素会导致光的传播方向、强度和频谱发生变化,对于光学系统的设计和应用都具有重要意义。
2. 大气介质地球大气是光学器件的一个重要参考介质,其密度、温度、湿度等参数对光学系统的性能有着重要影响。
了解大气介质的特性,对于光学系统的设计和定位至关重要。
3. 光的散射和吸收大气中的气体、气溶胶和云等对光的散射和吸收现象在大气光学中占据着重要位置。
它们会影响光的传播路径和范围,对于气象、环境、通信等方面都有重要意义。
4. 大气透明度大气透明度是指大气对可见光的透射率,它受大气中的气体、颗粒和水汽含量等因素的影响。
了解大气透明度对于天文观测、遥感探测等有着重要的意义。
5. 大气湍流大气湍流是指大气中由温度、密度、风速等不均匀性引起的湍流运动现象。
它会导致大气中的光场发生畸变,对光学系统的分辨率和性能都具有重要影响。
二、大气光学技术与应用1. 大气光学探测技术大气光学探测技术是指利用光学方法对大气进行观测和监测的技术。
包括大气透明度测量、大气散射与吸收特性研究、大气湍流分析等。
这些技术对于气象、环境监测等领域具有重要的应用价值。
2. 望远镜大气校正技术望远镜是天文观测和遥感探测中常用的光学设备,但由于大气的影响,其分辨率和成像质量会受到影响。
大气校正技术是指利用大气光学原理对望远镜成像进行补偿和校正的技术,使得成像质量更加清晰和准确。
3. 大气折射校正技术激光通信、光电远程探测等领域需要通过大气进行信息传输,但由于大气折射效应的影响,光信号会发生偏移和扩散。
大气折射校正技术是指利用大气光学原理对光信号进行校正和补偿的技术,使得光信号传输更加可靠和稳定。
4. 大气光学遥感技术大气光学遥感技术是利用光学方法对大气成分、温度、湿度等参数进行遥感探测的技术。
包括红外遥感、紫外遥感、光谱遥感等方法,对于环境、气象、气候等领域都有着重要的应用价值。
⼤⽓湍流⼤⽓湍流胡⾮⾃然界中的流体运动存在着⼆种不同的形式:⼀种是层流,看上去平顺、清晰,没有掺混现象,例如靠近燃烧着的⾹烟头附近细细的烟流;另⼀种则显得杂乱⽆章,看上去毫⽆规则,例如烟囱⾥冒出来的滚滚浓烟,这就是湍流,也叫紊流,在⽇⽂⽂献中被叫作“乱流,更容易顾名思义。
相对来说层流却是很少见的。
我们⽣活的地球被⼤⽓所包围,⼴义地讲,整个地球⼤⽓系统都可以看作是处在具有宽⼴尺度湍流运动的状态,因此湍流研究具有极为重要的科学意义和实际应⽤价值。
⼤⽓湍流以近地层⼤⽓表现最为突出,风速时强时弱,风向不停摆动,就是湍流运动的具体表现。
⼤⽓湍流造成流场中各部分之间强烈混合,它能使⼤⽓中的动量、热量、⽔汽、污染物等产⽣强烈混合和输送,能对建筑物、飞⾏器等产⽣作⽤和影响,还会使⼤⽓折射性质发⽣变化从⽽导⾄电磁波和声波被散射,湍流是⼀种开放的、三维的、⾮定常的、⾮线性的、并具有相⼲结构的耗散系统,集物理现象的多种难点于⼀⾝。
⾃从1883年Reynolds做了著名的实验以来,⼀百多年⾥⼀直是科学的前沿和挑战性问题之⼀。
历史上,包括von Karman、Kolmogorov、Landau和周培源在内的许多著名科学家对湍流的研究均未获得⼤的成功。
在跨越了两个世纪之后的今天,尽管⼈们对湍流发⽣机理和湍流运动规律的了解有了很⼤的进展,湍流研究在⼯程技术上的应⽤也取得了很⼤的成就,但是就其本质上来说,对湍流的认识还很不全⾯,还有很多基本的问题没有搞清楚。
例如:⽬前为⽌,科学家们还给不出湍流的严格科学定义,也没有找到对湍流的解析和定量描述⽅法;尽管知道了控制流体运动的Navier-Storkes⽅程,但是由于该⽅程是强⾮线性、⾼⾃由度的偏微分动⼒系统,因⽽对其解析求解⼏乎是不可能的;Reynolds平均⽅程则遇到“不封闭”困难;湍流模式理论同样也因为对物理机制缺乏理解⽽并不很成功。
总之,湍流仍然是摆在全世界科技⼯作者⾯前的难题。
2.1 大气折射率在光学频率范围内,对流层(高度<17km)中的地球大气的空气折射率表示如下:n=1+77.6(1+7.52×10-3λ-2)(p/T)×10-6 (2.1)式中,p是以mbar为单位的大气气压,T是热力学温度,λ是以μm为单位的光波波长,由于地面上温度对n1(r)的贡献<1%,故(2.1)式中忽略了与水汽压相关的项,当然这一项对水上传播光路是不可忽略的。
2. 2 大气湍流描述自然界中的流体运动存在着二种不同的形式:一种是层流,看上去平顺、清晰,没有掺混现象;另一种是湍流,看上去毫无规则,显得杂乱无章。
例如,如果流体以一定的速度流过一个管子,我们可以用带颜色的染料对它进行观察,在流体速度低的时候,流线光滑面清晰,流体处于层流状态;不断增加流体速度,当流速达到一定值时,流线就不再是光滑的了,整个流体开始作不规则的随机运动,流体处于湍流状态。
自从1883 年Reynolds 做了著名的湍流实验以来,以Monin-Obukhov 提出的相似理论、Deardorff 提出的大涡模拟、美国Kansas 州观测实验等为代表,大气湍流的研究已经取得了很大的进展和丰硕的成果,并在天气、气候研究和工程实际中获得成功地应用。
湍流对大气中声、光和其它电磁波的传播具有极为重要的影响,例如湍流风速、温度和湿度的脉动都会引起声音散射和减弱,大气小尺度光折射率的起伏(称为光学湍流),会严重影响光的传播和光学成像的质量等等。
长期以来,以Tatarskii 的工作为代表,声光电传播的湍流效应大都是按照Kolmogorov 的均匀、平稳和各向同性假设处理的,而实际的湍流经常不满足这些假设,要建立更加完善的波动传播模型就必须考虑湍流的各向异性、以及间歇性的影响。
2. 3 折射率湍流模型在湍流大气中,折射率在不同地点、不同时刻都是变化的。
一方面,我们还不可能对这些变化作出预测;另一方面,即使已知这些变化,要对所有时刻、所有地点的值作出描述实际上也是不可能的。
大气湍流中光传播的数值模拟* 马保科1,2, 郭立新1 吴振森1(1.西安电子科技大学,陕西西安 710071 2.西安工程大学,陕西西安 710048 )摘 要 光在大气湍流中传播时,受大气分子、气溶胶等粒子的相互作用,将发生光束扩展、漂移和相干性退化等大气湍流效应,这些因素严重影响了光波的远场特性。
文章从大气湍流中光传播的理论研究入手,分析了如何构造较为合理的大气湍流相位屏。
进而采用McGlamery 算法,对Kolmogorov 谱下的大气湍流随机相位屏进行了数值模拟,并分析了光波从发射机经湍流大气传播到达接收机时的远场变化特性。
研究表明,大气湍流的存在对光的远场传播质量造成很大的影响,研究结果也为大气湍流中与光传播相关的工程应用及自适应光学技术的完善提供了参考。
关键词 大气湍流;McGlamery 算法;相位屏模拟; 大气结构常数;中图分类号 TP391 文献标识码 A1 引言大气湍流是一个相当复杂的随机媒质系统,虽然物理学界对湍流的研究已经历了相当漫长的历史,但因涉及的因素千头万绪,其间的相互作用和关系也错综复杂,人们对其物理本质至今未能做到较为清楚的认识。
因此,光在大气湍流中传播问题的研究仍存在理论和实验上的挑战[1,2]。
通常,当光在湍流大气中传播时,光束截面内包含着许多的大气漩涡,这些漩涡各自对照射到它的那一部分光束形成衍射作用,可导致光束的强度和相位随机变化,进而表现出光束扩展,大气闪烁和相位起伏等大气湍流效应,从而严重降低了接收机的接收效率。
目前,突破大气湍流的影响仍是光在随机介质中传播所要解决的关键问题[3]。
早在20世纪中期,苏联的Obukhov 便采用Rytov 平缓微扰法由实验反演湍流特征。
在闪烁的饱和现象被发现之后,物理学界又将Markov 近似引入求解光场的统计矩,研究大气湍流下的光场特性[1]。
然而,在中等起伏条件下,目前仍没有找到很好的解析处理方法。
由于数值模拟能够从光的传播过程出发,较为清楚地反映出所涉及问题的物理本质,因而成为研究湍流效应的主要方法[4]。
4.1 光强起伏(光闪烁)的定义及基本描述光强起伏(光闪烁)是大气湍流导致的最常见且最明显的光传输效应之一,激光在湍流大气中传输时其光强随时间变化而产生随机起伏的现象被称作为光强起伏(光闪烁),其原因是大气折射率起伏在导致传输激光相位变化的同时,也导致了传输激光的振幅起伏,进而产生散射强度起伏现象,更进一步的原因可认为是由同一光源发出的通过略微不同路径的光线之间的随机干涉所造成。
经典理论认为:光闪烁由尺寸比光束直径小的大气湍流引起,它与湍流的内尺度、外尺度、结构常数及传输距离等因素有关,其幅度特性由接受平面上光强的对数强度方差σI2来表征:σI2=I2−I2I2(4.1)光束在湍流大气中传输时,对数振幅满足正态分布,振幅对数满足χ定义为:χ≡ln(A/A0),其中,A为在湍流中传播时实际的光波振幅,A0为未经过湍流扰动的振幅。
设一对数正态分布为高斯随机变量(对数正态分布密度函数具有三个相对读了的参数:χ、σx、I0),其中对数振幅χ的均值为χ,标准偏差为σx,则其概率密度分布函数为:pχΧ=2πσ −χ−χ2σχ(4.2)其振幅A=A0 expχ。
引入概率变换:p A A=pχΧ=ln A dχdA ,dχdA=1A(4.3)则振幅的概率密度函数为:p A A=2πσA exp −12σχ2ln AA0−χ2,A≥0(4.4)闪烁起伏概率分布满足对数正态分布的物理意义是:光场u=u0expχ+jsδ中χ是大量独立前向散射元的和,由中心极限定理可知χ服从正态分布。
4.2 光强闪烁的日变化大气的湍流运动导致信道上折射率的不均匀起伏,引起光强起伏,表征光强起伏强弱程度的主要特征量是对数光强起伏方差。
它的定义:σln I2=ln I I0−ln I I02(4.5)其中ln I为瞬时光强的对数值:ln I为平均光强的对数值。
在较好的天气下,光强起伏值从太阳出来后开始上升,到中午达到最强,视观察距离的不同起伏值也不同,如果距离很长,起伏值趋于一条直线,达到“饱和”。
大气光学;海洋大气;光学湍流1.引言1.1 概述概述:大气光学、海洋大气和光学湍流是自然界中与光传播和光学观测相关的重要现象。
大气光学研究的目的在于了解大气对光的传播和传感器观测的影响,从而提高光学设备的性能和准确度。
海洋大气研究的目标是揭示海洋和大气界面上光的传输过程,从而促进海洋环境监测和海洋资源开发利用。
而光学湍流研究则关注光在大气中传播时因空气湍流引起的波前畸变问题,其研究对于激光通信、天文观测等领域具有重要意义。
本文将深入探讨大气光学、海洋大气和光学湍流这三个领域的基本概念、影响因素以及与观测和通信的关系。
首先,我们将介绍大气光学的基本概念,包括大气中的散射、吸收和辐射等现象,以及大气光学的主要影响因素,如大气湍流、气溶胶和云等。
接着,我们将探讨海洋大气的特点和影响因素,包括海洋表面对光的反射、折射和散射等过程,以及海洋中的气泡、藻类和悬浮颗粒等因素对海洋光学的影响。
最后,我们将重点讨论光学湍流的定义、特征以及对观测和通信的影响,包括湍流引起的波前畸变和相位失真等问题。
通过对大气光学、海洋大气和光学湍流的综合研究,我们可以更好地理解和模拟光在自然界中的传播和退化过程,为光学设备的设计和应用提供理论支持和技术指导。
同时,这些研究也有助于提高大气环境和海洋生态的监测能力,推动相关领域的发展和应用创新。
在结论部分,我们将对大气光学、海洋大气和光学湍流的关联性进行总结,并展望大气光学和海洋光学研究的意义和未来发展方向。
希望通过本文的介绍和分析,读者能够更全面地了解和认识这些重要的光学现象,为相关领域的科研和应用提供有益的参考和启示。
1.2文章结构1.2 文章结构本文共分为三个主要部分:大气光学、海洋大气和光学湍流。
每个部分将重点介绍相关的基本概念、特征和影响因素,并探讨它们对观测和通信的影响。
在第二部分,我们将深入研究大气光学。
首先,我们将介绍大气光学的基本概念,包括大气层的组成和结构,以及大气中的光传播机制。
大气湍流对激光通信的影响及对策研究作者:孙孚等来源:《电子技术与软件工程》2015年第24期摘要分析了大气湍流对自由空间激光传输和激光通信的影响,提出了几种应对大气湍流效应的有效方法。
【关键词】大气湍流效应激光传输激光通信自由空间激光通信依靠激光在大气中的无线传输实现信息的传递。
自由空间的大气信道是随机多变的,它对激光传输的影响主要表现为两个方面,即大气衰减效应和大气湍流效应。
大气衰减效应是指因大气对激光的散射与吸收作用而导致的激光能量衰减;而大气湍流效应则是指大气的折射率因大气的湍流运动而发生随机起伏,进而导致激光的相位及强度在空间和时间上都呈现为随机起伏的变化。
大气衰减效应对自由空间激光通信的影响一般来说是比较容易解决的。
而大气湍流效应则不然,由于它的强度和发生几率都是随机的,因而它对自由空间激光通信的影响很大而且难以克服,所以必须予以高度重视。
1 大气湍流对激光传输的影响对于实际的大气而言,由于它始终处于随机的湍流运动状态之中,因此它的折射率也始终随空间和时间无规则地变化着。
而折射率的这种无规则变化将使在大气中传输的激光参量随机而变,进而严重影响光束的质量。
其表现为:光束弯曲漂移、光强闪烁、光束展宽等,这些影响被统称为大气的湍流效应。
1.1 光强闪烁大气折射率随机细小的变化将引起光束截面内强度的随机变化,简称光强闪烁。
事实上,当光束穿过大气湍流漩涡时,折射率的随机起伏将引起光波的波前畸变,致使接收端的相位随机改变。
当激光束的直径R大于湍流直径r时,光束内就将会包含多个湍流漩涡,而每个湍流漩涡又各自对激光光束形成独立的衍射和散射,从而导致光束截面内强度在空间和时间上的随面起伏,忽强忽弱,这就是所谓的光强闪烁。
1.2 光束弯曲与漂移大气中传输的激光束,当其直径R小于湍流漩涡的直径r时,激光束便被包含在这个湍流漩涡内,此时湍流的影响主要是使光束的整体产生随机偏折。
体现在接收端,就是在接收端面上,光束的中心将围绕某个统计平均位置随机快速地跳动,此即光束漂移,在数值上可以用漂移量来表示。
一、激光大气衰减基础:激光大气衰减包括大气气体分子对激光的吸收和散射、气溶胶粒子的吸收和散射,激光信号通过均匀大大气介质之后,其电磁辐射强度满足:比尔-郎伯-布格定律:I(ν,l)=I0(ν)e−k(ν)l;ν:为波数,I(ν)为信号传输l距离之后的电磁辐射强度,k(ν)代表消光系数,I0(ν)为进入介质前的光辐射能量。
透过率函数:T(ν,l)=I(ν)=e−k(ν)l;I0(ν)其中,τ=kl也被称作光学厚度,是一种无量纲的物理量;其中,k(ν)既包括了大气分子的吸收(k ma(ν))和散射(k ms(ν))系数,也包括了气溶胶的吸收(k aa(ν))和散射((k as(ν)))系数:k(ν)=k ma(ν)+k ms(ν)+k aa(ν)+k as(ν)在实际的大气信道中,k(ν)随着高度(z)的变化(假设大气具有分层均匀特性),即可以表示为k(ν,z),当信号光以天顶角θ入射到大气介质中时,光学厚度可以表示为:zτ(ν,z)=∫sec(θ)k(ν,z)dz其中,其他的消光系数表如附图所示:大气分子吸收效应的从测量:二、大气光学湍流:1、大气湍流模型的描述:均匀各向同性湍流、非均匀各向同性湍流均匀各向同性湍流(是一种理想化的大气湍流模型,在复杂地形区和高空,对流层以上的区域,满足该理论条件的大气湍流区域有限,特别是近年来对大气湍流间歇性现象的发现,更证明了Kolmogorov模型应用的局限性。
目前工程中常需要借助大量的实验观测数据对该模型进行修正。
)查理森级串模型:湍流可以视作由气体流动形成的差别较大的涡旋,大涡旋不稳定,其从外界获取能量后,通过分裂等一系列复杂的运动将能量传递给次级涡旋,最后再最小的涡旋中通过气体黏性损耗。
在一定的区域内,涡旋级串达到某种平衡状态,形成局部均匀各向同性湍流,具有普适性的统计规律。
为了确定气体湍流的统计规律,基于不同的假设条件,提出了许多统计模型,其中使用最广泛的为柯尔莫哥洛夫(Kolmogorov )模型: 柯尔莫哥洛夫(Kolmogorov )模型:模型假设:(1) 当雷诺数足够大时,存在具有各向同性结构的高波数区,在该区里,气体运动的统计特征只决定于流体的黏性系数ν和能量耗散率ε。