连续梁线形监控方案
- 格式:doc
- 大小:1.18 MB
- 文档页数:8
1 工程概况1、鲁南高铁花果峪特大桥DK212+220.5处跨S241省道,道路与线路为斜交,角度约30。
,采用一联三孔(60+112+60)m 的预应力混凝土双线连续箱梁跨越,梁全长233.5m 。
S241省道路面宽度为15米,公路交叉里程K13+747。
桥型布置如图1-1所示。
11#墩12#墩10#墩13#墩6011260图1-1 (60+112+60)m 连续梁桥型布置图(1)下部结构本连续梁10#、13#边墩基础采用8-φ1.5m 钻孔灌注桩,桩长分别为20.5m 、15.0m ,11#主墩基础采用12-φ1.8m 钻孔灌注桩,桩长为15.0m ,12#主墩基础采用12-φ1.8m 钻孔灌注桩,桩长为13.0m ;10#、13#边墩承台尺寸:12.4×6.5×3m ,边墩高度:10#墩10米;13#墩13.5米;11#主墩尺寸:14.0×10.3×4.0m ,12#主墩尺寸:14.0×11.3×4.0m ,桥墩采用圆端形实体直坡墩,10#、13#边墩高10.0m 、13.5m ,11#、12#主墩高9.0m 、12.0m 。
(2)梁部结构箱梁为单箱单室、变高度、变截面箱梁,梁底、腹板、顶板局部向内侧加厚,均按直线线性变化。
全联在端支点,中支点处设横隔板,横隔板设有孔洞,供检查人员通过。
中支点处梁高9.017m ,边支点处梁高5.017m 。
边支点中心线至梁端0.75m ,梁缝分界线至梁端0.1m ,边支座横桥向中心距离6.0m ,中支座横桥向中心距离6.0m 。
桥面防护墙内侧净宽7.6m ,桥梁宽12.6m ,桥梁建筑总宽12.9m ,底板宽7.0m 。
顶板厚度43.5-73.5cm ,腹板厚度50cm ~95cm ,底板厚度50cm ~90cm ,腹、底板厚度均按折线变化。
在梁体边支点、中支点共设4个横隔板,隔板中部设有孔洞,供检查人员通过。
1.概述连续梁桥采用悬臂浇筑施工过程,即桥跨结构的形成过程,是一个漫长、复杂的施工及体系转换过程。
通过理论计算可以得到各施工阶段的理论立模标高,但在施工中存在着各种不确定因素引起的误差,这些误差包括施工荷载及位置偏差、结构几何尺寸偏差、材料性能偏差、各种施工误差等,均将不同程度地对桥梁结构的内力状态及成桥线型目标的实现产生干扰,并可能导致桥梁合拢困难、成桥线型及内力状态与设计要求不符等问题。
因此,为确保大桥施工过程结构安全,确保成桥线型及结构内力状态与设计偏差在允许范围内,在施工中实施有效的施工监控是非常必要的。
我部混凝土连续箱梁桥,采用悬浇施工。
项目对该段5段连续梁提出施工监控方案。
2、施工监控工作内容大跨径连续刚构及连续梁桥的施工监控是一个施工→量测→识别→修正→预告→施工的循环过程。
施工监控包括监测和施工控制两大部分。
具体内容包括:建立控制计算模型,根据施工步骤、施工荷载,对结构进行正装及倒拆计算,确定各施工阶段结构物控制点的标高(预抛高)。
在结构关键截面布置应力测点、线型测点,监测施工过程结构内力及线型,为施工控制提供依据。
根据实测数据,对施工过程产生的各项误差进行修正,提供下一阶段立模标高。
通过施工监控确保施工安全,以及确保成桥线型及结构内力状态与设计偏差在允许范围内。
3. 施工监控系统组成施工监控系统主要由业主、设计、施工、施工监控、监理等方面组成。
设计:提供设计成桥状态作为控制计算目标状态。
施工:对各施工阶段的有关原始参数进行测量,及时掌握现场施工荷载的变化情况并提供给施工监控组。
配合施工监控组的各项工作。
施工监控:①施工监测:根据施工监控需要及时量测各种数据。
②施工控制:根据现场提供的结构实际参数以及量测的结构内力及线型等数据,判别结构实际状态与理论值的偏差,通过计算分析及时采取措施加以调整,确定下一施工阶段的实际控制值,并向监理发出控制指令,同时向业主呈报资料备案。
监理及业主:全面协调与监督设计、施工、监控三方的工作。
新建铁路郑州至开封城际铁路工程(60+100 +60) m 连续梁施工监控方案郑州铁路局科学技术研究所二o—年七月.word 格式,4.2.1技术体系 4.2.2组织体系4.2.3协调体系5.4.1主梁线形监测 5.4.3线形控制的实施1概述 1.1项目概况 1.2技术标准 1.3监控方案制定依据 2施工监控的目标 3施工监控的目的和任务 4拟采用的施工监控方法和体系 4.1 施工监控方法 4.2 施工监控体系.1 .1.35.6 施工控制报告 1.5 6施工监控技术方案的保障措施 附表一:主梁施工控制数据指令表 15 16 附表二:梁段观测表 .18. 附表三:梁段模板变形观测表 2.Q. 附表四:桥梁实际参数测试表 22. 附表五:主梁轴线偏移及基础沉降观测表23..5.4.3 对施工监控技术体系的进一步说明4.3.1施工控制计算 4.3.2误差分析.6.4.3.3施工误差容许度指标7.5施工控制的主要工作7.5.1 实际参数的测试 5.2 实时控制 1.Q 5.3 监控计算1Q 5.4 几何控制12 .12. 141概述1.1项目概况新建铁路郑州至开封城际铁路工程(60+100+60) m预应力混凝土连续梁为单线、有砟曲线桥。
主梁为单箱单室截面,中支点梁高7 m,跨中梁高4 m ,梁顶宽8.5 m,梁底宽5.5 m。
顶板厚度除梁端附近外均为41.5 cm ;底板厚度38 cm至85. 2 cm,在梁高变化段范围内按抛物线变化,边跨端块处底板由38 cm渐变至108 cm ;腹板厚40 cm至75 cm,按折线变化,边跨端块处腹板厚由40 cm渐变至60 cm。
全桥在端支点、中支点及跨中处共设5个横隔板,横隔板设有孔洞,供检查人员通过。
全桥共分55个梁段,0号梁段长度13 m,普通梁段长度为 3.0〜4.0 m,合拢段长2.0 m,边跨现浇直梁段长11.65 m。
主梁两个边跨直梁段和主墩0#块均采用支架法施工,其余梁段均采用挂篮对称悬臂施工。
2023-11-07CATALOGUE目录•工程概述•监控方案•监控数据采集与分析•监控技术与方法•工程应用案例•结论与展望01工程概述随着我国交通基础设施建设的快速发展,大跨度连续梁桥已成为重要的桥梁形式,具有跨越能力大、外形美观、结构合理等优点。
但同时大跨度连续梁桥的施工难度较大,需要进行严格的监控和管理。
项目背景本工程为某高速公路上的大跨度连续梁桥,主桥采用三跨连续梁结构,桥梁全长360米,其中主跨跨度为180米。
工程规模较大,涉及的施工环节较多,需要采取科学有效的监控措施以保证施工质量和安全。
工程规模本工程位于山区,地形起伏较大,施工环境较为复杂。
工程特点施工环境复杂由于桥梁跨度大,需要采用挂篮施工等高难度技术,施工难度较大。
施工难度大为了保证施工质量和安全,需要采取严格的监控措施,对施工过程中的变形、应力、温度等参数进行实时监测和数据分析。
监控要求高02监控方案监控方案设计确定监控内容对大跨度连续梁的挠度、应力、温度等关键参数进行监测,同时记录施工过程中的材料性能、荷载情况等。
选择监控方法和设备采用非接触式测量方法,如激光测距、红外线测温等,同时使用计算机控制系统进行数据采集和远程监控。
确定监控目的确保大跨度连续梁施工过程中的线型符合设计要求,避免施工误差和变形,保障工程质量。
1监控方案实施23在关键部位设置监测点,安装传感器和数据采集设备,连接电源和网络,确保数据传输的稳定性和安全性。
现场布置通过计算机控制系统自动采集数据,并实时传输到数据中心,以便进行数据分析和处理。
数据采集与传输确保施工现场的安全,采取措施如设置警戒线、安装安全警示标志等,保障工作人员和设备的安全。
现场安全措施对采集到的数据进行处理和分析,提取关键指标,如挠度、应力等,并进行对比和分析,以评估施工质量和安全性。
数据处理与分析监控方案效果评估根据监测结果进行风险评估,对可能存在的风险和问题进行预测和判断,采取相应的应对措施,以确保施工质量和安全。
京沪高速铁路淮河特大桥(40+56+40 ) m连续梁线型监控方案中铁十二局集团京沪高铁四标段项目经理部十三工区2009.061、工程概况 (1)2、施工监控方案 (2)2.1施工控制的任务 (2)2.2施工控制的基本依据 (2)2.3线形控制误差标准 (3)2.4线形控制方法 (3)2.4.1现场测试参数 (4)2.4.2监测点布置方案 (4)2.4.3施工控制的具体流程 (6)2.5梁部平面位置的控制 (8)附表2浇注段标高检查测量表 (11)附表3已浇注各梁段截面标高检查表 (13)附表4箱梁悬浇顶底板标高换算表(号墩) (15)附表5箱梁悬浇控制标高测量联系单(号墩) (17)附件关于成立悬灌梁线控实施小组的通知 (18)淮河特大桥(40+56+40 ) m连续梁线型监控方案1、工程概况淮河特大桥设计采用以三孔一联(40+56+40 ) m连续梁跨越蚌明高速公路,连续梁起始桥墩为1982#〜1985#墩,边墩均为3.8m X 7.8m矩形等截面实心墩,中墩均为3.8m *9.0m矩形斜柱实心墩。
梁部为直线无砟轨道预应力混凝土双线连续(箱)梁,为设计时速350公里的高速铁路桥梁。
预应力混凝土连续箱梁总长度为137.5m。
箱梁采用单箱单室等截面型式,梁高为4.35m (不计桥面垫层),顶宽为12.0m,底宽为6.7m。
箱梁中心顶板厚度为0.4m ,底板厚0.4〜0.8m ,腹板厚0.48〜0.8m。
全联在中支点设置厚1.9m横隔板,端支座设置厚1.05m横隔板,横隔板均设置孔洞,供检查人员通过。
全桥采用三向预应力体系,连续箱梁梁体纵向预应力采用7-7 小、15-7 ©5、16-7 ©5 钢绞线(Fpk=1860MPa ),纵向采用金属波纹管成孔;横向预应力采用4-7栢钢绞线(Fpk=1860MPa ),横向采用扁形金属波纹管成孔;竖向预应力采用© 25mm预应力用精轧螺纹钢筋,极限强度f pk=785Mpa,采用©35mm (内)铁皮管成孔。
1.概述连续梁桥采用悬臂浇筑施工过程,即桥跨结构的形成过程,是一个漫长、复杂的施工及体系转换过程。
通过理论计算可以得到各施工阶段的理论立模标高,但在施工中存在着各种不确定因素引起的误差,这些误差包括施工荷载及位置偏差、结构几何尺寸偏差、材料性能偏差、各种施工误差等,均将不同程度地对桥梁结构的内力状态及成桥线型目标的实现产生干扰,并可能导致桥梁合拢困难、成桥线型及内力状态与设计要求不符等问题。
因此,为确保大桥施工过程结构安全,确保成桥线型及结构内力状态与设计偏差在允许范围内,在施工中实施有效的施工监控是非常必要的。
我部混凝土连续箱梁桥,采用悬浇施工。
项目对该段5段连续梁提出施工监控方案。
2、施工监控工作内容大跨径连续刚构及连续梁桥的施工监控是一个施工→量测→识别→修正→预告→施工的循环过程。
施工监控包括监测和施工控制两大部分。
具体内容包括:建立控制计算模型,根据施工步骤、施工荷载,对结构进行正装及倒拆计算,确定各施工阶段结构物控制点的标高(预抛高)。
在结构关键截面布置应力测点、线型测点,监测施工过程结构内力及线型,为施工控制提供依据。
根据实测数据,对施工过程产生的各项误差进行修正,提供下一阶段立模标高。
通过施工监控确保施工安全,以及确保成桥线型及结构内力状态与设计偏差在允许范围内。
3. 施工监控系统组成施工监控系统主要由业主、设计、施工、施工监控、监理等方面组成。
设计:提供设计成桥状态作为控制计算目标状态。
施工:对各施工阶段的有关原始参数进行测量,及时掌握现场施工荷载的变化情况并提供给施工监控组。
配合施工监控组的各项工作。
施工监控:①施工监测:根据施工监控需要及时量测各种数据。
②施工控制:根据现场提供的结构实际参数以及量测的结构内力及线型等数据,判别结构实际状态与理论值的偏差,通过计算分析及时采取措施加以调整,确定下一施工阶段的实际控制值,并向监理发出控制指令,同时向业主呈报资料备案。
监理及业主:全面协调与监督设计、施工、监控三方的工作。
目录1 工程概况 (1)2 施工线形监控的依据、目的、原则与方法 (1)2.1依据 (1)2.2目的 (1)2.3原则 (2)2.4方法 (2)3 施工线形监控的内容 (3)3.1所需资料和准备工作 (3)3.2 施工过程中的线形监控 (4)3.3 施工线形监控中的辅助测试,试验及资料收集 (4)3.4 线形监控具体流程 (6)3.5 施工线形监控预警系统 (7)4 监控精度与总体要求 (7)4.1监控的精度 (7)4.2 监控的总体要求 (7)5 施工监控工作注意事项 (8)5.1 线形监测的注意事项 (8)7 投入人员及仪器设备 (9)7.1 施工单位投入监控人员 (9)7.2 施工单位投入仪器设备 (9)悬臂灌注梁线形监控方案1 工程概况连续梁采用轻型挂蓝分段悬臂灌注施工,先在托架上灌注0号段,再对称向两侧顺序灌注各梁段,形成T构。
利用搭膺架浇筑边跨梁段,最后浇筑合拢中跨形成连续梁体系。
2 施工线形监控的依据、目的、原则与方法2.1依据施工监控实施方案依据下列规范及文件编制:《时速250公里客运专线(城际铁路)有碴轨道预制后张法预应力砼简支整孔箱梁》通桥(2007)2224《铁路桥涵设计基本规范》TB10002.1-2005《铁路桥涵钢筋砼和预应力砼结构设计规范》TB10002.3-2005 《铁路桥涵砼和砌体结构设计规范》TB10002.4-2005《客运专线性能砼暂行技术条件》科技基(2005)101号《铁路桥涵施工规范》TB10203-2002《铁路混凝土与砌体工程施工规范》TB10210-2001《新建时速200-250公里客运专线铁路设计暂行规定》上、下铁建设(2005)140号《客运专线铁路桥涵工程施工质量验收暂行标准》铁建设(2005)160号《铁路混凝土结构耐久性设计暂行规定》(铁建设[2005]157号)2.2目的大跨度的现浇连续梁的梁段施工工序复杂,施工周期较长。
在施工过程中,将受到许许多多确定和不确定因素的影响,包括设计计算、桥用材料性能、施工精度、荷载、大气温度、混凝土的收缩徐变等诸多方面与实际状态之间存在差异。
悬臂现浇连续梁线性监控方案悬浇连续梁线形控制方案兰州交通建设工程质量检测站2011年5月1、工程概况及技术标准1.1工程概况XXXXXXXXXXXXXXXXXXXXXXXXXX号墩为无砟轨道现浇预应力混凝土连续梁,主梁全长221.5m,计算跨度为60+100+60m。
主桥上部采用预应力砼直腹板连续箱梁,箱梁顶宽12.2m,底板宽6.7m,悬臂长3.25m。
梁高为4.85~7.85m(不计桥面垫层),中支点处梁高7.85m,跨中10m直线段及边跨15.75m直线段梁高4.85m,梁底下缘按二次抛物线变化,边支座中心线至梁端0.75m。
箱梁采用C50砼,三向预应力结构。
箱梁为单箱单室断面,顶板厚度除梁端附近外均为40cm,底板厚度40.0~120cm,按直线线性变化,腹板厚60至80、80至100cm,按折线变化。
全联在端支点,中跨中及中支点处共设5个横隔板,横隔板设有孔洞,供检查人员通过。
主桥箱梁封端砼采用强度等级为C50干硬性补偿收缩砼,防撞墙、遮板、电缆槽竖墙及盖板采用C40砼。
纵向预应力采用1×7-15.2-1860-GB/T5224-2003预应力钢绞线,其标准强度f pk=1860 MPa,弹性模量E y=1.95×105 MPa。
竖向预应力采用φ25高强精轧螺纹钢筋,其标准强度f pk=830 MPa。
普通钢筋为HRB335带肋钢筋(即Ⅱ级钢筋)和Q235光圆钢筋(即Ⅰ级钢筋)。
主墩两个T构梁段对称划分,墩顶0#段长14.00m,两侧1#~13#梁段长度分别有2.50m、2.75m、3.0m、3.5m、4m;现浇梁段长9.75m;合龙段长2.00m。
具体箱梁节段参数见表1-1。
主桥箱梁0#块采用钢管支架施工,1#-13#块采用挂篮悬浇对称施工,边跨现浇段采用钢管桩支架施工,中跨及边跨合拢段均采用悬挂支架现浇。
单T划分为35个梁段,26个悬浇段。
施工悬臂长度42m,悬浇块件最大长度4m,最大重量167.134t,全桥共有2个0号块,1个中跨合拢段,2个边跨合拢段,52个悬浇块段。
新建铁路黔江至张家界至常德线野猫河大桥(40+64+36)m双线连续梁施工监控实施方案编制:复核:审核:项目负责人:中铁十七局集团有限公司勘察设计院二〇一七年一月目录第一章概述 (3)1工程概况 (3)2连续梁桥施工监控的主要内容 (3)3施工控制的目的与依据 (4)4施工监控的原则和方法 (5)5施工监控计算软件 (5)第二章施工控制中的结构分析 (6)1施工控制计算考虑的主要因素 (6)2施工控制的计算方法 (6)3施工控制分析的步骤 (7)4立模标高计算 (7)5参数识别与误差分析 (8)6立模标高的实时调整与预测 (8)第三章施工监控计算参数的确定 (10)1概述 (10)2结构分析参数取值 (10)第四章线形监测实施细则 (12)1箱梁悬臂施工平面及高程控制实施细则 (12)2箱梁施工测量网的建立 (12)3位移测点布置 (12)4观测时间与项目 (13)5箱梁悬浇施工控制测量工作 (15)6箱梁体系转换及合龙的监测 (16)7影响箱梁挠度变形的因素处理 (16)8箱梁温度测试实施细则 (17)9施工监控的精度与原则 (18)10施工阶段监测实施的总体要求 (18)第五章施工控制组织机构、工作流程及体系 (20)1施工控制组织机构 (20)2施工控制工作流程 (20)3施工控制体系 (21)第六章安全事项 (23)附表1 (24)附表2 (25)附表3 (26)附表4 (27)附表5 (28)附表6 (29)第一章概述1 工程概况野猫河大桥(DK43+351.75~ DK43+493.2)梁部结构为(40+64+36)m连续梁,桥墩均采用双线圆端型墩,连续梁采用挂篮悬臂灌注法施工。
结构形式:本连续梁计算跨度为(40+64+36)m,梁高3.1m~5.1m,梁体为单箱单室、变高度、变截面结构。
箱梁顶宽12m,底宽6.7m。
2 连续梁桥施工监控的主要内容对大型桥梁而言,理想的几何线形与合理的内力状态不仅与设计有关,而且还依赖于科学合理的施工方法。
公铁路特大桥连续梁施工线形监控方案对于分节段悬臂浇筑施工的预应力混凝土连续梁桥来说,施工控制就是根据施工监测所得的结构参数真实值进行施工阶段计算,确定出每个悬浇节段的立模标高,并在施工过程中根据施工监测的成果对误差进行分析、预测和对下一立模标高进行调整,以此来保证成桥后桥面线形、合拢段两悬臂端标高的相对偏差不大于规定值以及结构内力状态符合设计要求。
桥梁施工控制的目的就是确保施工过程中结构的可靠度和安全性,保证桥梁成桥桥面线形及受力状态符合设计要求。
大跨度预应力混凝土连续梁桥的施工控制包括两个方面的内容:变形控制和内力控制。
变形控制就是严格控制每一节段箱梁的竖向挠度及其横向偏移,若有偏差并且偏差较大时,就必须立即进行误差分析并确定调整方法,为下一节段更为精确的施工做好准备工作。
横向偏移可以通过精确测量控制和调整来达到要求,而影响竖向挠度的因素很多(如施工荷载、挂蓝自重、温度变化等),施工时就要充分考虑影响挠度的各种影响,在各节段设预抛高,也就是控制立模标高。
内力控制则是控制主梁在施工过程中以及成桥后的应力,尤其是合拢时间的控制,使其不致过大而偏于不安全,甚至在施工过程中造成主梁破坏。
悬臂施工属于典型的自架设施工方法。
由于连续梁桥在施工过程中的已成结构(悬臂节段)状态是无法事后调整的,所以,施工控制主要采用预测控制法。
连续梁桥施工控制主要体现在施工控制模拟结构分析、施工监测(包括结构变形与应变监测等)施工误差分析以及后续施工状态预测几个方面。
施工控制的最基本要求是确保施工中结构的安全和确保结构形成后的外形和内力状态符合设计要求。
东方红大桥采用悬臂浇筑施工,因其跨径较大,最终形成必须经历一个漫长而又复杂的施工与体系转换过程。
通过理论计算可以得到各施工阶段的理论主梁标高值,但在施工中存在着许多误差,这些误差均将不同程度地对成桥目标的实现产生干扰,并可能导致桥梁合拢困难、成桥线形与设计要求不符等问题,因此,为了确保东方红大桥施工安全,成桥线形符合要求,在施工中必须实施有效的施工控制。
改建铁路XX线扩能改造工程后坝湾双线特大桥(33+48+33)m预应力混凝土连续梁施工线形监控方案编制:复核:审核:XXX标项目部二〇年月目录1工程概况 (1)2 施工监控目的及依据 (2)3 施工监控测点布置及内容、方法 (3)4监控流程 (3)5 监控测点的保护 (4)6 质量保证措施 (4)附表一: (6)附表二: (7)附表三: (8)1.工程概况1.1桥梁概况改建铁路XX线扩能改造工程D1K238+065后坝湾双线特大桥,主跨采用结构形式为(33+48+33)m的预应力混凝土双线连续梁,主跨上跨南楠二级路,采用悬臂浇筑施工。
1.2设计主要技术标准(1)铁路等级:国铁Ⅰ级。
(2)桥上线路:双线,本梁线间距按4.468m设计,平曲线半径R=7000m,连续梁梁部曲线曲做。
(3)设计行车速度:旅客列车速度目标值200km/h。
(4)设计活载:“中-活载”(5)牵引类型:电力(6)轨枕及钢轨:全线均采用钢筋混凝土轨枕,200km/h速度目标值路段范围内铺设Ⅲbc型有挡肩混凝土轨枕;钢轨类型为60kg/m。
(7)环境:一般大气条件下无防护措施的地面结构,环境类别为碳化环境,作用等级为T2。
(8)地震动峰值加速度:0.05g。
(9)施工方法:悬臂浇筑法。
1.3梁部构造梁体为单箱单室、变高度、变截面箱梁,梁体全长115.1m,中跨10m梁段和边跨端部14.55m梁段为等高梁段,梁高2.7m;主墩处梁高为4.0m,其余梁段梁底下缘按二次抛物线Y=2.7+1.3×x2/289(m)变化,其中以6号、18号截面顶板顶为原点,x=0~17(m)。
全桥顶板厚35cm;边跨端块处顶板厚由35cm渐变至52cm,底板厚39~100cm,边跨端块处底板厚由39cm渐变至70cm;腹板厚35~60cm,边跨端块处腹板厚由35cm渐变至60cm。
梁体在边支座处及主墩处设横隔板,全联共设4道,横隔板中部设有孔洞,以利检查人员通过。
悬臂现浇连续梁线性监控方案清晨的阳光透过窗帘的缝隙,洒在了我的办公桌上,笔尖轻触着纸张,我的思绪开始蔓延。
十年的方案写作经验,让我在面对“悬臂现浇连续梁线性监控方案”这个题目时,心中已经有了大致的轮廓。
一、项目背景及目标这个项目,我们旨在通过线性监控技术,确保悬臂现浇连续梁的施工质量和安全性。
线性监控,听着就感觉很高大上,其实原理并不复杂,就是通过一系列传感器和数据分析系统,实时监测梁的形变和应力情况,确保其在施工过程中不会出现任何意外。
二、监控方案设计1.传感器布置传感器是监控系统的眼睛,我们需要在梁的各个关键部位布置传感器,包括应变片、位移传感器和加速度传感器等。
这些传感器将实时采集梁的应力、位移和加速度数据,为我们的监控提供第一手资料。
2.数据采集与传输采集到的数据需要实时传输到监控中心,这就需要一套稳定的数据传输系统。
我们可以采用无线传输方式,通过Wi-Fi或者4G网络将数据实时传输到监控中心,确保数据的实时性和准确性。
3.数据处理与分析数据采集回来后,我们需要对数据进行处理和分析。
这需要一套高效的数据处理算法,通过对数据的实时分析,我们可以得出梁的应力、位移和加速度等参数的变化情况,从而判断梁是否处于安全状态。
三、监控方案实施1.传感器安装传感器安装是监控方案实施的第一步,我们需要在梁的预定位置精确安装传感器。
这需要专业的安装团队,他们需要具备丰富的安装经验和专业技能,确保传感器的安装质量和准确性。
2.数据传输系统搭建数据传输系统的搭建是关键环节,我们需要选择合适的传输设备和技术,确保数据的实时性和稳定性。
同时,还需要对传输设备进行定期维护和检修,确保其正常运行。
3.监控中心建设监控中心是整个监控系统的核心,我们需要建设一个具备高性能计算能力和大数据处理能力的监控中心。
监控中心需要实时接收并处理来自传感器的数据,对梁的应力、位移和加速度等参数进行实时监控和分析。
四、监控效果评估监控方案实施后,我们需要对监控效果进行评估。
连续梁线形监控方案1、测量点埋设1.1浇筑0#块时需埋设对应水准点。
1.2埋设各梁段标高测量点,梁顶面标高测点设置1-10号测点,小里程端1、2、3、4、5,大里程端6、7、8、9、10,边测点距翼缘外端0.4m,次外测点距翼缘外端3m,中点在中轴线上;梁底测点A,B,H,K位于梁段前端底部内吊杆(吊带)对应处。
如图,2、测量点观测2.1在每个梁段立模时(浇砼前),浇注当前节段混凝土后(浇砼后),准备好张拉当前节段对应钢束前(张拉前),张拉当前节段对应钢束后(张拉后),结构体系转换前后(边、中跨合拢、拆临时锚固)测量和记录梁面所有已埋设水准点处标高。
2.2每个节段的标高测量,尤其是立模标高和浇注砼后标高的测量,要求安排在年平均气温附近及温度较恒定时段,建议一般安排的早上6:30之前,特殊情况下可安排在天气多云时。
2.3每个节段的施工过程测量4个工况的标高:浇筑前,浇筑后,张拉前,张拉后。
2.4梁顶标高测量需设立短钢筋作标识点,短钢筋安放时需与梁内钢筋网焊接,下端贴紧模板,测量时标尺立于短钢筋顶部,梁顶标高数据需扣除短钢筋顶部到梁顶结构面距离。
3、测量数据记录3.1挂篮及模板系统行走到位后按提供的理论梁底立模标高进行立模(标高误差小于1cm);同时记录实测梁底立模标高,加上对应处梁高后,得出实测梁顶立模标高,做平均处理后填入标高反馈数据表。
3.2梁顶面所有已埋设水准点处标高原始数据在经过处理(扣除短钢筋外露量后对梁顶标高求平均)和定性判别(保证无明显不合理数据)后,填入标高反馈数据表。
3.3对边跨现浇直线段支架进行预压处理,并记录和提供在与待浇筑梁段同等(或略大)重量的重物加载下的支架变形数据,以及重物卸载后的支架残余变形数据。
3.4边跨和中跨合拢前,观测和记录好每天的气温变化情况,以及梁体的变形规律,为合拢做好准备。
3.5现场提供当前节段标高的同时需提供之前浇筑所有梁段标高。
4、施工标高数据的提供4.1根据设计资料建立桥梁和挂篮的有限元计算模型并整理计算数据。
连续梁(连续刚构)梁部线形监控实施原则
1 线形控制的依据
线形控制以梁体长期徐变完成后桥面达到设计要求的线形为控制依据。
2线形控制的内容
梁体的挠度、中线的偏移、箱体的扭转。
3测点的布置(见附图)
a)在各梁段端部顶面砼中预埋钢质测点桩。
b)各模板折线点设置测点。
4测量的内容
a)灌注砼前模板标高测量。
b)每灌注一段砼,均测量0号段墩顶的标高。
测量每一梁段在灌
注砼前后、张拉后本梁段及其它已施工梁段的标高。
在合拢前
一段进行全桥联测,在合拢段施工过程中,测量合拢段临时锁
定前后、张拉前后的标高,以及各梁段标高。
c)各梁段测量及模板调校的时间均宜安排在清晨。
5有关的数据修正(见附表一)
6数据记录表格
a)由监控单位提供给施工单位的《梁段立模调整表》。
(见附表二)
b)由施工单位反馈给监控单位的《梁段标高测量表》。
(见附表三) 7立模标高的计算
各梁段立模标高按下式计算:
Hn=hn+△h1+△h2+△h3
其中:
hn为梁面的设计高程
△h1灌注本节段需理论调整值
△h2为挂篮的弹性变形(含灌注后前一节段产生的变形)
△h3前一梁段调整存在的误差
注:△h1,△h2,△h3均按向上为正。
挂篮弹性变形△h2由施工单位对挂篮进行压重试验,提供压重曲线,根据梁段重量及施工荷载来确定。
附图:
附表一
有关的数据修正表。
1 工程概况1、鲁南高铁花果峪特大桥DK212+220.5处跨S241省道,道路与线路为斜交,角度约30。
,采用一联三孔(60+112+60)m的预应力混凝土双线连续箱梁跨越,梁全长233.5m。
S241省道路面宽度为15米,公路交叉里程K13+747。
桥型布置如图1-1所示。
图1-1 (60+112+60)m连续梁桥型布置图(1)下部结构本连续梁10#、13#边墩基础采用8-φ1.5m钻孔灌注桩,桩长分别为20.5m、15.0m,11#主墩基础采用12-φ1.8m钻孔灌注桩,桩长为15.0m,12#主墩基础采用12-φ1.8m 钻孔灌注桩,桩长为13.0m;10#、13#边墩承台尺寸:12.4×6.5×3m,边墩高度:10#墩10米;13#墩13.5米;11#主墩尺寸:14.0×10.3×4.0m,12#主墩尺寸:14.0×11.3×4.0m,桥墩采用圆端形实体直坡墩,10#、13#边墩高10.0m、13.5m,11#、12#主墩高9.0m、12.0m。
(2)梁部结构箱梁为单箱单室、变高度、变截面箱梁,梁底、腹板、顶板局部向内侧加厚,均按直线线性变化。
全联在端支点,中支点处设横隔板,横隔板设有孔洞,供检查人员通过。
中支点处梁高9.017m,边支点处梁高5.017m。
边支点中心线至梁端0.75m,梁缝分界线至梁端0.1m,边支座横桥向中心距离6.0m,中支座横桥向中心距离6.0m。
桥面防护墙内侧净宽7.6m,桥梁宽12.6m,桥梁建筑总宽12.9m,底板宽7.0m。
顶板厚度43.5-73.5cm,腹板厚度50cm~95cm,底板厚度50cm~90cm,腹、底板厚度均按折线变化。
在梁体边支点、中支点共设4个横隔板,隔板中部设有孔洞,供检查人员通过。
在0#段中跨梁侧底板处设φ1.0m进人洞,作为梁部桥墩检查通道。
梁体分11#、12#墩2个对称T构,单个T构分13个悬臂浇筑段,1(1')#段到4(4')#节段长度3.0m,5(5')#段到9(9')#节段长度3.5m,10(10')#节段到13(13')#节段长度 4.0m,14#边跨合龙段、14'#中跨合龙段节段长度均为 2.0m;0#段节段长度19.0m,重量1833.51t,15#边跨现浇段节段长3.75m,重量274t。
双线连续梁施工线性监控方案一、工程概况 (3)(一)桥梁概况 (3)(二)技术标准 (3)(三)主梁设计参数 (4)(四)主梁材料 (5)二、施工监控的目的及意义 (5)(一)施工监控的目的 (5)(二)施工监控的意义 (6)三、施工监控的原则及实施方法 (6)(一)施工监控原则 (6)四、施工监控主要工作内容 (11)(一)理论分析预测 (11)(二)施工监测 (15)(三)施工控制 (17)五、施工监控工作步骤 (18)六、施工监控技术依据及精度要求 (18)(一)技术依据 (18)(二)精度要求 (19)七、分工及相关要求 (19)(一)施工与监控分工 (19)(二)相关要求 (20)河北天鸿道桥科技有限公司连续梁施工监控方案双线连续梁施工线性监控方案一、工程概况(一)桥梁概况新建时速250公里青岛至荣成城际铁路北珠岩跨绕城高速公路特大桥(60+100+60)m、(32+48+32)m连续梁、青烟直通线跨外夹河特大桥(48+80+48)m连续梁,按有砟轨道设计。
(二)技术标准1、设计速度:设计最高行驶速度250km/h。
2、线路情况:双线正线,直、曲线,曲线半径2000m,线间距4.6m,有砟轨道。
3、设计荷载:⑴恒载结构构件自重:按《铁路桥涵设计基本规范》(TB10002.1-2005)采用。
⑵活载列车活载:纵向计算采用ZK标准荷载。
横向计算采用ZK特种荷载。
离心力、横向摇摆力、人行道及栏杆荷载分别根据《高速铁路设计规范(试行)》(TB10621-2009)选取办理。
⑶附加力风力:按《铁路桥涵设计基本规范》(TB10002.1-2005)第4.4.1条计算。
温度荷载:根据《铁路桥涵钢筋混凝土和预应力混凝土结构设计规范》(TB10002.3-2005)计算。
⑷特殊荷载:列车脱轨荷载:根据《高速铁路设计规范(试行)》(TB10621-2009)第7.2.12条规定办理。
地震力:按《铁路工程抗震设计规范》(2009版)(GB50111-2006)规定计算。
跨度80m连续梁的线型控制本标段淠河总干渠特大桥(48+80+48)m连续箱梁,采用悬臂法浇筑施工,悬灌施工10个节段,总悬臂长度达76m,设计箱梁高较大,自重大,容易发生挠度变形,必须将其作为施工控制主要对象。
其线形控制为本段连续箱梁施工的重点及难点工程。
1、施工控制的内容、目的施工控制的目的就是确保施工中连续梁结构形成后的外观线形和内力状态符合设计要求。
悬灌预应力砼连续梁的施工控制,是根据施工监测所得的结构参数真实值进行施工阶段的仿真分析,确定出每个悬臂浇筑阶段的立模标高,并在施工过程中根据施工监测的成果对误差进行分析、预测和对下一立模标高进行调整,以此来保证成桥后桥面线形、合拢段两悬臂端标高的相对偏差不大于规定值,以及结构内力状态符合设计要求。
2、施工控制的主要方法80m连续梁的施工控制采用正装结构分析预测,进行仿真分析并与现场实测值进行比对,采用最小二乘法进行误差调整,落实在现场并进行箱梁模型标高调整,以取得最佳的线形控制结果。
误差调整采用最小二乘法,通过对设计参数的识别与修正,可以使提前预测值不断向真实值逼近,随着数据量的增多,其准确性也逐步提高。
采用H实际挠度=A×H理论计算+B×TIME实测+C的线性回归模式进行控制。
在具体运用中,使用计算机进行最小二乘法参数估计,通过对已知量的线性回归,在解出回归系数后即可按照多元线性回归模型对未知量进行预测。
3、施工控制系统的建立连续箱梁的施工控制系统由施工控制管理系统和施工现场(微机)控制分系统组成。
(1)施工控制管理系统经理部成立专门施工控制小组进行全程监测(重点放在几何控制上),以保证80m连续箱梁顺利合拢和成桥后线形流畅并且符合设计要求。
施工监控小组组长由项目总工兼任,施工控制人员可直接由有经验的技术员担任。
见图1悬灌连续箱梁施工控制管理系统框图。
图1悬灌连续箱梁施工控制管理系统框图控制反馈(2)施工现场控制系统施工现场控制系统是施工控制系统的技术核心,它包括整个施工控制的主要分析过程,具有数据比较、当前结构状态把握、误差分析、参数识别、未来预测、综合调优决策等功能。
赣州港至机场快速路连接线工程40+60+40m连续梁线形监控方案编制:辛河岭复核:李忠鑫审批:陈朝友中国化学工程第七建设有限公司南康公共服务三期工程PPP项目部目录一、工程概况及技术标准 (1)1.1、工程概况 (1)1.2、施工监控技术依据 (2)1.3、线路技术标准 (2)二、线形控制必要性和方法 (3)2.1、施工控制的必要性 (3)2.2、施工控制的方法 (4)三、监控计算 (6)3.1、连续梁施工步骤 (7)3.2、计算模型及分析方法 (7)3.3、确定计算监控基本参数 (8)3.4、长期收缩徐变设置 (8)3.5、计算内容 (8)3.6、立模标高的确定与调整 (9)四、线形测量 (9)4.1、变形监测 (9)4.2、轴线偏移测量 (11)4.3、墩顶沉降和水平位移测量 (11)4.4、考察大气温度对主桥线形影响 (11)4.5、监控技术方案的保证措施 (11)五、应力测试 (12)5.1、应力测试断面 (13)5.2 、测试仪器及要求 (13)六、主要注意事项 (14)6.1、施工步骤安排计划 (14)6.2、测试项目 (14)6.3、对施工现场的要求 (15)七、控制具体流程 (15)八、监控目标 (16)一、工程概况及技术标准1.1、工程概况赣州港至机场快速路连接线工程,位于赣州市南康区镜坝镇以及东山街道。
道路起点对接产业大道(在建),与东山北路北延段平交,本工程项目起点里程为K0+065为东山北路北延与产业大道交叉口,线路自西向东,与南康区机场快速路平交后,转为由北向南,跨章水河支流,经南康家居特色小镇东侧,跨章水河、现状滨江大道,止于赣南大道交叉口,线路全长约 5.184km。
K4+486.5跨章水河桥单幅桥全宽20.25m,采用三室箱型截面,外侧腹板为斜腹板,腹板斜率为3.5:1,中支点梁高4.0m,边支点及跨中梁高 2.1m,梁底边形按二次抛物线变化,边跨等高段长10.9m,中跨等高段长2.0m。
连续梁线形监控方案
1、测量点埋设
1.1浇筑0#块时需埋设对应水准点。
1.2埋设各梁段标高测量点,梁顶面标高测点设置1-10号测点,小里程端1、2、3、4、5,大里程端6、7、8、9、10,边测点距翼缘外端0.4m,次外测点距翼缘外端3m,中点在中轴线上;梁底测点A,B,H,K位于梁段前端底部内吊杆(吊带)对应处。
如图,
2、测量点观测
2.1在每个梁段立模时(浇砼前),浇注当前节段混凝土后(浇砼后),准备好张拉当前节段对应钢束前(张拉前),张拉当前节段对应钢束后(张拉后),结构体系转换前后(边、中跨合拢、拆临时锚固)测量和记录梁面所有已埋设水准点处标高。
2.2每个节段的标高测量,尤其是立模标高和浇注砼后标高的测量,要求安排在年平均气温附近及温度较恒定时段,建议一般安排的早上6:30之前,特殊情况下可安排在天气多云时。
2.3每个节段的施工过程测量4个工况的标高:浇筑前,浇筑后,张拉前,张拉后。
2.4梁顶标高测量需设立短钢筋作标识点,短钢筋安放时需与梁内钢筋网焊接,下
端贴紧模板,测量时标尺立于短钢筋顶部,梁顶标高数据需扣除短钢筋顶部到梁顶结构面距离。
3、测量数据记录
3.1挂篮及模板系统行走到位后按提供的理论梁底立模标高进行立模(标高误差小
于1cm);同时记录实测梁底立模标高,加上对应处梁高后,得出实测梁顶立模标高,做平均处理后填入标高反馈数据表。
3.2梁顶面所有已埋设水准点处标高原始数据在经过处理(扣除短钢筋外露量后对
梁顶标高求平均)和定性判别(保证无明显不合理数据)后,填入标高反馈数据表。
3.3对边跨现浇直线段支架进行预压处理,并记录和提供在与待浇筑梁段同等(或略大)重量的重物加载下的支架变形数据,以及重物卸载后的支架残余变形数据。
3.4边跨和中跨合拢前,观测和记录好每天的气温变化情况,以及梁体的变形规律,为合拢做好准备。
3.5现场提供当前节段标高的同时需提供之前浇筑所有梁段标高。
4、施工标高数据的提供
4.1根据设计资料建立桥梁和挂篮的有限元计算模型并整理计算数据。
4.2分析和判别现场试验数据(混凝土弹性模型、强度,挂篮和支架变形规律、预
应力束摩阻系数)。
4.3用试验数据重新调整部分计算模型参数并重新计算和整理数据。
4.4为现场提供各个待浇注梁段的立模标高,以及混凝土浇注后的标高数据。
4.5分析现场标高反馈数据,判别已提供标高数据的合理性和准确性,并对以后待
浇注梁段的立模标高预测值进行修正。
4.6悬浇梁段标高提供数据表。
4.7立模标高是指挂篮及模板系统行走到位后并可靠锚固后,钢筋没有绑扎前,待
浇筑梁段前端面的标高。
确定立模标高时,依据梁底水准点标高立模。
4.8各梁段端面结构顶面(不含横坡、防水层厚度)标高,即为梁顶标高,此标高为
中间3点高程平均值,毫米精度;1,5,6,10四点标高作为参照,不参与平均计算。
4.9浇筑前标高为立模标高,梁段前端底部内吊带(吊杆)对应处的高程测点标高为
梁底立模标高,加上梁高得出梁顶立模标高。
5、实例说明
以40+64+40m连续梁为例,悬浇梁段标高反馈工作量。
5.1单侧悬浇段数量为7段,共有38个标高测试截面;
5.2每个悬浇段前端面顶部设置5个水准点,底部设置2个水准点(不设短钢筋);
5.3支架上现浇的0#段中心及端面,边直线段端面的顶部各设置5个水准点;
5.4标高反馈数据表中共需记录42个工况下的标高数据;
5.5全桥梁顶面共埋设水准点(短钢筋)190个;
5.6至全桥二期恒载铺设完毕,共需测量和记录标高数据1148个。
6、注意事项
6.1施工工序决定桥梁成桥的内力和线形。
线形监控工作的本质是对未施工结构部
分的力学行为进行预测,预测建立在既定的施工工序基础之上,如果工序改变,会导致原来的预测结果可能有重大误差,且很难调整已施工结构部分。
6.2现场测量数据的采集,需固定专人负责线形监控和协调工作,负责监控测量台
帐的及时建立和数据的统计备案工作,并严格按照统一规定和格式及时上报标高测量数据给线形分析人员。
6.3所有测量监控点随着梁段的不断延伸要加强保护和利用,每阶段测量工作完成
后,须在一日内将数据整理完毕。
6.4工区线形监控负责人必须对桥梁各截面设计高程、各工况测量高程、截面高度
实测数据进行初步判别和把关,对异常数据要及时核对和改正。
6.5施工过程中,现场测量人员需跟踪观测各连续梁墩台沉降,即0#块中心水准
点高程变化,并对桥梁结构顶面高程及时修正,以确保数据的准确性。
6.6对于施工现场出现的同一联桥中各中墩对应施工挂篮结构或重量不同、同一联
桥中各中墩施工不同步且0#块施工日期相差较远等情况,监控人员需及时通知线形分析方。
6.7应及时提供合龙方案(包括刚性骨架构造及顶推力作用位置、方式)和按规定
进行边跨现浇梁段支架预压试验并向监控方提供试验数据,对于主跨小于100m的连续梁,在合龙之前的倒数第3个悬臂段浇筑前或更早阶段浇筑完成边跨现浇直线段并提供支架预压试验数据;对于主跨大于100m的连续梁或刚构桥,在合龙之前的倒数第5 个悬臂段浇筑前或更早阶段浇筑完成边跨现浇直线段并及时向线控方提供支架预压试验数据,现场须按照线控方提供的标高调整现浇段支架顶面高程,之后浇筑边跨现浇段。
6.8在边跨或中跨合龙前,至少要连续三天在凌晨、中午及傍晚三个时段观测和记录桥梁线形监控点随气温的变化规律并向线控方及时提供高程数据,线控方在确认满足合龙条件后,现场才能浇筑合龙段混凝土并进行后续施工。
桥梁边跨或中跨合龙后,在分批次张拉预应力束的过程中,要密切关注梁体外观,若有裂纹产生必须立即停止施工并分析原因,合龙束张拉后,须经过一段时间的观测证明梁体状态正常之后方可割断预应力束。
6.9现场测量人员须严格按照线控方提供的标高进行立模;严格控制箱梁截面尺寸;
严格控制预应力筋管道定位工艺及接头工艺。
线控方需定期深入施工现场对线控情况进行指导和验证,确保大跨度连续梁的线形监控质量。