旋转对称图形的举例 (例子)
- 格式:ppt
- 大小:760.00 KB
- 文档页数:82
旋转单元测试题及答案一、选择题1. 旋转的定义是什么?A. 绕某一点转动B. 沿直线平移C. 缩放D. 反射2. 旋转变换不改变图形的哪些性质?A. 形状B. 大小C. 面积D. 所有选项3. 旋转对称图形在旋转多少度后能与自身重合?A. 90度B. 180度C. 360度D. 任意角度二、填空题4. 一个图形绕着某一点旋转____度后,与原图形重合,这个点称为图形的______。
5. 在平面直角坐标系中,若将点P(x, y)绕原点O(0, 0)逆时针旋转θ度,旋转后的坐标为______。
三、简答题6. 请简述旋转的性质,并给出一个生活中的例子。
7. 解释什么是旋转对称图形,并给出一个例子。
四、计算题8. 在平面直角坐标系中,点A(3, 4)绕原点O(0, 0)顺时针旋转90度,求旋转后点A的新坐标。
9. 若一个图形在旋转对称变换下,其旋转中心为点P(1, 2),旋转角度为120度,请画出旋转后的图形。
五、论述题10. 论述旋转在几何证明中的应用,并给出一个具体的几何证明例子。
答案:一、1. A2. D3. C二、4. 180,旋转中心5. (-y, x)三、6. 旋转的性质包括保持图形的形状和大小不变,旋转中心到图形上任意两点的距离相等。
生活中的例子包括门的开关,地球的自转等。
7. 旋转对称图形是指在旋转一定角度后能与自身重合的图形,例如等边三角形。
四、8. 点A的新坐标为(4, -3)。
9. 根据旋转对称图形的定义,旋转后的图形与原图形形状相同,位置不同,具体图形需根据题目要求绘制。
五、10. 旋转在几何证明中常用于证明图形的全等或相似,例如利用旋转证明两个三角形全等。
具体例子需根据题目要求给出。
角度的对称度标注案例角度的对称度是指一个物体或图形在某个中心点或中心线上的两侧具有相同的形状、大小和位置关系。
以下是关于角度的对称度的案例:1. 风车旋转:想象一下,在田野上有一个风车,它有四个叶片。
当风车旋转时,每个叶片都与它相对的叶片具有相同的形状和位置关系,这展示了角度的对称度。
2. 人体的对称:人体在中线上具有对称性。
例如,当我们将人体从中线切割成两半时,两侧的头、手、脚等部位具有相同的形状和位置关系。
3. 蝴蝶的翅膀:蝴蝶的翅膀通常是具有对称性的。
无论是左右对称还是上下对称,蝴蝶的翅膀都展现了角度的对称度。
4. 雪花的形状:雪花是天然界中的一个经典例子,它们具有六边形的对称形状。
无论从任何角度观察,雪花的六个分支都具有相同的形状和角度。
5. 镜子的反射:当我们站在镜子前面时,我们的左右两侧具有相同的形状和位置关系。
这展示了角度的对称度。
6. 蜜蜂的蜂巢:蜜蜂的蜂巢通常具有六边形的对称形状。
每个蜂房都与相邻蜂房具有相同的形状和角度。
7. 建筑物的设计:许多建筑物的设计都遵循角度的对称度原则。
例如,许多古代宫殿和教堂的建筑形式在左右两侧具有相同的形状和位置关系。
8. 花朵的形状:许多花朵都具有角度的对称度,例如玫瑰花、向日葵等。
花瓣的形状和位置关系在花朵的左右两侧是相同的。
9. 动物的身体结构:许多动物的身体结构在左右两侧具有对称性,例如脊椎动物的身体和四肢。
10. 自然界中的岩石:许多岩石的形状在左右两侧具有对称性,例如海滩上的卵石或山脉中的岩石。
以上是角度的对称度的一些案例,它们展示了在自然界和人造物体中广泛存在的对称性原则。
通过观察这些案例,我们可以更好地理解和欣赏角度的对称度。
平移和旋转能转化为轴对称吗平移、旋转和轴对称都是平面图形基本的全等变换,那么你是否思考过这样一个问题:平移和旋转能转化为轴对称吗?下面就让我们通过具体例子来研究这个问题.一、平移转化为轴对称例1 如图1,已知△ABC,直线m ∥n 且距离为a,画△ABC 关于直线m 对称的△A 'B 'C ',再画△A 'B 'C '关于直线n 对称的△A ''B ''C '',那么,能否通过平移△ABC 得到△A ''B ''C ''?研析:判断一个图形能否通过平移得到另一个图形,关键是看这两个图形对应点所连的线段是否平行且相等.由线段A A '、A 'A ''分别被对称轴m 、n 垂直平分,知点A 、A '、A ''共线,且A A ''=2a.同理可知, B B ''=2a ,C C ''=2a.所以A A ''、 B B ''、 C C ''互相平行且相等,所以将△ABC 沿与对称轴m(n)垂直的方向,平移2a 即可得到△A ''B ''C ''.(同学们可以再换几个不同的图形试一试)由此可猜想归纳出一般结论:当对称轴平行时,两次轴对称相当于一次平移,且平移的方向垂直于对称轴,平移的距离是两条对称轴之间的距离的2倍.二、旋转转化为轴对称例2 如图2,已知△ABC,直线MN 、PQ 相交于点O,且夹角为α(0°<α≤90°),画△ABC 关于直线MN 对称的△A 'B 'C ',再画△A 'B 'C '关于直线PQ 对称的△A ''B ''C '',那么,能否通过旋转△ABC 而得到△A ''B ''C ''?研析:抓住旋转的三要素:旋转中心、旋转方向及旋转角进行分析.由轴对称的性质知,OA=O A ', O A '=O A '',OM 平分∠AO A ',OP平分∠A 'O A '',所以OA=O A '',∠AO A ''=2α.同理OB=O B '',OC=O C '',∠BO B ''=2α, ∠CO C ''=2α.所以点A 、B 、C 分别绕点O 顺时针旋转2α的角度,就得到点A ''、B ''、C '',故将△ABC 绕点O 顺时针A BC B ' C ' A '' B '' C '' A ' 图1 m n A ' ABC B ' C ' A '' B '' C ''Nα Q 图2 O M P旋转2α的角度就得到△A''B''C''.(同学们可以再换几个不同的图形试一试)由此可猜想归纳出一般结论:当对称轴相交于一点时,两次轴对称相当于一次旋转,且旋转中心是对称轴的交点,旋转角为对称轴夹角α(0°<α≤90°)的2倍,旋转方向,与第一条对称轴旋转α的角度到第二条对称轴的位置的方向一致.。
---------------------------------------------------------------最新资料推荐------------------------------------------------------平移、旋转、轴对称什么是平移、旋转、轴对称?如何判断一个图形进行了平移、旋转或者是否为轴对称图形?如何确定平移的的方向什么是平移、旋转、轴对称?如何判断一个图形进行了平移、旋转或者是否为轴对称图形?如何确定平移的的方向和距离?如何确定旋转角度和旋转中心?(1)什么是平移、旋转、轴对称?平移:一个图形在平面内沿某个方向移动一定距离,这样的图形运动叫平移。
旋转:一个图形在平面内绕着一个固定点转动一定角度,这样的图形运动叫旋转,这个固定点称为旋转中心,转动的角度称为旋转角度。
轴对称:如果一个平面图形,沿着某一条直线对折,直线两边的部分能够完全重合,这个图形就叫做轴对称图形。
这条直线叫对称轴。
互相重合的点叫对称点。
(2)如何判断一个图形进行了平移、旋转或者是否为轴对称图形?在学习中,学生可能会问到摩天轮的运动、窗帘的拉动、门的转动、荡秋千、钟摆等生活现象算不算旋转。
回答这些具体的问题,教师首先需要理解轴对称、平移和旋转的概念在图形的变换中有一个非常重要的变换,就是全等变换,1 / 5也叫做合同变换。
如果图形经过变换后与原来的图形是重合的,也就是图形的形状、大小不发生变化,那么这个图形的变换就叫做全等变换,即原来的图形中,任意两点的距离假设是 l 的话,经过变换后的两点之间的距离仍是 l,所以全等变换是一个保距变换,而且由于距离保持不变,图形整体的形状、大小,都可以证明仍然是保持不变的。
全等变换有几种方式。
我们可以想象一下两个完全一样的图形,要由一个图形的运动得到另一个图形,可以作怎样的运动呢?可以是平移。
除此以外呢?比如两个三角形有一顶点重合,那么有两种情况:一种是这两个三角形的三个顶点顺序是一致的,这时其中一个经过旋转就能与另一个重合;还有一种是顶点的顺序相反,这时将其中一个反射(翻折)就能得到另一个。
利用图形的旋转变换解题举例泰州市二中附中 姚永前 陈秀娟这一轮课程改革,对几何作了较大幅度的调整,印象较深之一是加强了“几何变换”的内容,即从变换的角度去认识传统几何中的证题术。
初中几何涉及的变换主要有平移、对称和旋转,本文从“旋转”这一角度举些例子,供大家参考。
我们知道,图形的旋转变换不改变图形的形状、大小,只改变图形的位置,故解题时可充分利用图形的旋转变换的这一特点,把图形位置进行改变,从而达到优化图形结构,进一步整合图形〔题设〕信息的目的,使较为复杂的问题得以顺利求解。
例1、如图〔1〕分别以正方形ABCD 的边AB 、AD 为直径画半圆,若正方形的边长为a ,求阴影部分的面积。
解:连AC 、BD 如右图,则绕AD 中点将图中②逆时针旋转090到图中③,将图中①绕AB中点顺时针方向旋转090到图中④,则原图中阴影部分的面积就和△DBC 的面积相等,所以图中阴影部分的面积=S ⊿DCB =21S 正方形ABCD =212a 。
这里我们用旋转变换的方法改变了图中①和②的位置,从而顺利地完成了计算。
例2、如图⑵所示,在⊿ABC 中,AB=AC ,∠BAC=090,D 是BC 上任一点,试说明2222AD CD BD =+。
证法一(非旋转法):过A 点作 AE ⊥BC 于E ,如图⑶,则容易证明AE=BE=EC , 又BD=BE -DE ,DC=CE+DE ,所以()()222DE AE DE BE BD -=-=,()()222DE AE DE CE DC +=+=,所以22CD BD +=()2DE AE -+()2DE AE +=()222DE AE + ,而在直角三角形ADE 中,(3)(2)EABCD DC BA存在222AD DE AE =+,所以2222AD CD BD =+,这是传统的证明方法。
本题考虑到BD 、DC 、AD 三线段分散在两个三角形中,而且构成平方和的条件不明显,若利用旋转变换,将BD 、DC 放到一个三角形中,若这个三角形是直角三角形,则创造22CD BD +就更能接近所证的目标了.证法二(旋转法): 将△ADC 绕A 点顺时针方向旋转090到△AEB,如图⑷, 连DE, 易知△ADE 、△DBE 均为直角三角形,且AE=AD,BE=DC, 所以在Rt △EBD 中有22222DC BD DE BE BD +==+,在Rt △AED 中有222AD DE =,所以2222AD DC BD =+。
二图案美——对称、平移与旋转单元备课一、教学目标:1、结合实例进一步认识轴对称图形,能够用折纸等方法确定轴对称的图形的对称轴,会在方格稿纸上按要求画出轴对称图形的另一半。
通过观察实例,认识平面图形的平移和旋转,能在方格纸上,将简单的图形平移或旋转90°。
2、灵活运用对称,平移或旋转在方格纸上设计图案。
3、欣赏生活中的图案,体验图形的美。
二、主要内容:进一步认识轴对称图形,用折纸的方法确定轴对称图形的对称轴,能根据要求在方格纸上画出轴对称图形的另一半;认识平面图形的平移与旋转,能在方格纸上将简单图形平移或者旋转。
三教学重点:进一步认识轴对称图形和图形的平移和旋转。
四、教学难点:确定轴对称图形的对称轴,用平移或旋转的方法设计简单图案。
五、教学措施:1、充分利用学生的已有知识和生活经验展开学习让学生通过对具体实物的观察和操作活动,来认识轴对称图形,学会平移旋转的方法,切实体验数学与生活的联系。
2、引导学生动手操作,自主学习。
引导学生充分利用这些活动增强感性认识,加深对知识的理解,发展空间观念。
3、准确把握教学目标。
把握两点,第一点是在方格纸上画,另一点是画给定图形的轴对称图形。
图形的平移在这里学习较复杂的平移(连续平移)。
图形的旋转,则要求学生能够经一个图形一次性旋转90°即可。
4、注重抽象概括能力的培养。
第一学段在学习概念的时候,重点是让学生去体验,去感受,而第二学段应该把重点转移到让学生用比较规范的语言去总结,去归纳,培养学生的抽象概括能力及逻辑思维能力。
六、教学课时数,5课时。
信息窗1——美丽的旗帜教学内容:教科书第87~90页,进一步认识轴对称图形。
教学目标:1.进一步认识轴对称图形,理解轴对称图形的含义,能用对折的方法找出轴对称图形的对称轴,或者采用测量的方法,找出对称图形的对称点,掌握对称点和对称轴的关系。
2、并能画出轴对称图形的另一半。
2.主动参与画图形的活动,感受图形的对称美。
什么是旋转对称性有哪些常见例子在我们生活的这个丰富多彩的世界里,存在着许多奇妙的几何特性和规律,其中旋转对称性就是一种非常有趣且常见的现象。
那么,究竟什么是旋转对称性呢?简单来说,旋转对称性指的是一个图形或者物体在绕着某个中心点旋转一定角度后,与原来的图形或物体完全重合。
这就好像我们拿着一个漂亮的圆形盘子,无论怎么转动它,从任何角度看都和最初的样子没有差别。
让我们通过一些常见的例子来更深入地理解旋转对称性。
首先,圆就是一个具有完美旋转对称性的图形。
想象一下,我们以圆心为中心点,无论将圆旋转多少度,比如 30 度、60 度、90 度甚至是任意角度,它看起来都和原来一模一样。
这是因为圆的每一个点到圆心的距离都是相等的,这种特性使得它在旋转时能够保持不变。
正多边形也是具有旋转对称性的。
比如正三角形,以其几何中心为中心点,旋转 120 度,就能够与原来的图形重合;正四边形(也就是正方形),绕着中心点旋转 90 度就能重合;正六边形绕着中心点旋转60 度就可以重合。
这些正多边形的边数越多,旋转重合所需要的角度就越小。
花朵也是旋转对称性的美丽体现。
像向日葵,它的花盘通常呈现出一种规律的排列,从中心向外辐射,具有一定的旋转对称性。
还有一些兰花,它们的花瓣分布也常常展现出这种对称之美。
在工业设计中,旋转对称性也有广泛的应用。
汽车的轮胎,就是一个具有旋转对称性的部件。
当轮胎在滚动时,它的每一个位置在不同时刻都起着相同的作用,这种对称性保证了车辆行驶的平稳和安全。
还有我们日常使用的风扇叶片。
风扇在运转时,叶片不停地旋转,如果叶片的设计具有旋转对称性,那么在转动过程中产生的气流就会更加均匀和稳定,为我们带来舒适的风。
再看看一些传统的建筑和装饰。
比如中国古代的一些亭台楼阁,它们的屋顶常常采用旋转对称的设计,不仅美观,还能在结构上保持平衡和稳定。
在自然界中,一些生物的结构也具有旋转对称性。
比如海星,它的身体通常呈现出明显的旋转对称特征。
轴对称与轴对称图形一、知识点:1.什么叫轴对称:如果把一个图形沿着某一条直线折叠后,能够与另一个图形重合,那么这两个图形关于这条直线成轴对称,这条直线叫做对称轴,两个图形中的对应点叫做对称点。
2.什么叫轴对称图形:如果把一个图形沿着一条直线折叠,直线两旁的部分能够互相重合,那么这个图形叫做轴对称图形,这条直线叫做对称轴。
3.轴对称与轴对称图形的区别与联系:区别:①轴对称是指两个图形沿某直线对折能够完全重合,而轴对称图形是指一个图形的两个部分沿某直线对折能完全重合。
②轴对称是反映两个图形的特殊位置、大小关系;轴对称图形是反映一个图形的特性。
联系:①两部分都完全重合,都有对称轴,都有对称点。
②如果把成轴对称的两个图形看成是一个整体,这个整体就是一个轴对称图形;如果把一个轴对称图形的两旁的部分看成两个图形,这两个部分图形就成轴对称。
常见的轴对称图形有:圆、正方形、长方形、菱形、等腰梯形、等腰三角形、等边三角形、角、线段、相交的两条直线等。
4.线段的垂直平分线:垂直并且平分一条线段的直线,叫做这条线段的垂直平分线。
(也称线段的中垂线)5.轴对称的性质:⑴成轴对称的两个图形全等。
lA B⑵如果两个图形成轴对称,那么对称轴是对称点连线的垂直平分线。
6.怎样画轴对称图形:画轴对称图形时,应先确定对称轴,再找出对称点。
二、举例:例1:判断题:①角是轴对称图形,对称轴是角的平分线;()②等腰三角形至少有1条对称轴,至多有3条对称轴;()③关于某直线对称的两个三角形一定是全等三角形;()④两图形关于某直线对称,对称点一定在直线的两旁。
()例2:下图曾被哈佛大学选为入学考试的试题.请在下列一组图形符号中找出它们所蕴含的内在规律,然后把图形空白处填上恰当的图形.例3:如图,由小正方形组成的L形图中,请你用三种方法分别在下图中添画一个小正方形使它成为一个轴对称图形:例4:如图,已知:ΔABC和直线l,请作出ΔABC关于直线l的对称三角形。
运用平移、对称和旋转设计图案答案例1.艺术家们利用几何学中的平移、对称和旋转变换,设计出许多美丽的图案.考点:运用平移、对称和旋转设计图案.分析:根据运用平移、对称和旋转设计图案专题的内容进行填空.解答:解:艺术家们利用几何学中的平移、对称和旋转变换,设计出许多美丽的图案.故答案为:平移,对称,旋转.点评:此题考查了运用平移、对称和旋转设计图案.例2.如图的图形是如何得到的?考点:运用平移、对称和旋转设计图案.分析:第一个图形的脸是正立的,嘴巴在下,第二个图形是横向的,说明第二个图形是由第一个图形绕下巴顺时针旋转90°得到,第三个图形与第二个图形方向相同,说明第三个图形是由第二个图形向右平移得到的,第四个图形是倒立的,是由第三个图形顺时针旋转90°得到的.解答:解:第一个图形顺时针旋转90°得到第二个图形,第二个图形向右平移得到第三个图形,第三个图形顺时针旋转90°得到第四的图形;点评:本题是考查图形变换,由旋转、平移.旋转、平移后的图形与原图形大小,形状不变,只是位置变了.例3.(1)图中长方形四个顶点的位置是:A(6,8),B(8,8),C(6,5),D(8,5);(2)把长方形向右平移3格,画出平移后的图形,平移后的长方形四个顶点用数对表示分别是A1(9,8),B1(11,8),C1(9,5),D1(11,5)(3)把长方形绕D点顺时针旋转90度,画出旋转后的图形,旋转后的长方形四个顶点用数对表示分别是A2(11,7),B2(11,5),C2(8,7),D2(8,5).考点:运用平移、对称和旋转设计图案.分析:利用画图工具,复制,平移3个格,得到把长方形向右平移3格的长方形A1B1C1D1,把长方形绕D点顺时针旋转90度的图形A2B2C2D2,数一数,就可以填上各个位置的坐标.解答:解:A(6,8)B(8,8)C(6,5)D(8,5);A1(9,8)B1(11,8)C1(9,5)D1(11,5);A2(11,7)B2(11,5)C2(8,7)D2(8,5).点评:此题考查了运用平移、对称和旋转设计图案.例4.用多个三角形设计一个美丽的图案.考点:运用平移、对称和旋转设计图案.专题:图形与变换.分析:以三角形的一个顶点为中心,顺时针旋转90度、180度、270度即可.解答:解:作图如下:点评: 本题考查的是利用平移、对称及旋转设计图案.演练方阵A 档(巩固专练)一.选择题(共12小题)1.下列图形中( )是利用旋转设计而成的. A .B .C .考点: 运用平移、对称和旋转设计图案.分析: 利用旋转设计而成的图形应有一个旋转点,图形旋转后的形状和大小不变;因此得解. 解答: 解:A 、有一个旋转点,有一个形状和大小不变的图形菱形,因此A 是利用菱形向右绕右顶点旋转90°、180°、270°而形成的;B 、小图形有大小的变化,因此不是利用旋转设计而成的;C 、菱形图形的大小形状虽然不变,但没有一个旋转点,它是菱形平移3次而形成的. 故选:A . 点评: 图形旋转后的大小和形状不变是判断这个图形是否是通过旋转形成的基本方法.2.把正方形的右边剪去一块补到上面(如图),得到的图形是( )A .B .C .D .考点: 运用平移、对称和旋转设计图案. 专题: 图形与变换. 分析: 把正方形的右边剪去一块,正方形缺失是右边,据此排除答案A 和C .又因为剪去的部分是补到上面,答案D 补到了下面,排除D ,所以选B . 解答: 解:把正方形的右边剪去一块补到上面,只有C 符合题意.故选:B.点评:解答此题最好的办法是动手操作一下,即可以解决问题,又锻炼动手操作能力.3.在如图所示的四个图案中既包含图形的旋转,又有图形的轴对称设计的是()A.B.C.D.考点:运用平移、对称和旋转设计图案.专题:图形与变换.分析:根据图形的特点结合轴对称图形和中心对称图形的概念解答.解答:解:A、不是对称图形,不符合题意;B、不是轴对称图形,不符合题意;C、只是轴对称图形,不符合题意;D、既有轴对称,又有旋转,符合题意.故选:D.点评:此题考查了旋转的概念以及轴对称图形的概念:直线两旁的部分能够互相重合的两个图形叫做这两个图形成轴对称.把一个图形绕某一点旋转一定角度后得到另一个图形,叫做旋转变换.4.如图的图形中,()是由旋转得到的.A.B.C.考点:运用平移、对称和旋转设计图案.分析:根据对称和旋转设计图案的方法可知,A、B是完全重合的,而C不能,只能用旋转得到,从而可以进行选择.解答:解:由对称和旋转设计图案的方法可知,A、B是对折后是完全重合的,而C不能,只能用旋转得到,故选:C.点评:此题考查了利用对称和旋转设计图案.5.如图是由☆经过()变换得到的.A.平移B.旋转C.对称考点:运用平移、对称和旋转设计图案.分析:平移就是水平移动,大小和形状不变;旋转除了大小和形状不变外,还要有一个绕点;对称形成的图形要能找到一条对称轴.据此得解.解答:解:图形中有5个五角星并排在一条直线上,因此是由☆经过平移变换得到的.故选:A.点评:此题考查了运用平移、对称和旋转设计图案,锻炼了学生的空间想象力和创新思维能力.6.如图所示,将一张正方形纸片先由下向上对折压平,再由右翻起向左对折压平,得到小正方形ABCD.取AB的中点M和BC的中点N,剪掉AMBN得五边形AMNCD.则将折叠的五边形AMNCD纸片展开铺平后的图形是()A.B.C.D.考点:运用平移、对称和旋转设计图案.分析:此题可以动手操作,验证一下,即可解决问题.解答:解:找一张正方形纸片,按上述顺序折叠、剪切,展开后得到的图形如右图所示.故选:D.点评:图形的折叠和剪切,可动手操作实践一下,也解决问题的好方法.7.(2012•河西区模拟)下面()图形旋转会形成圆柱.A.B.C.考点:运用平移、对称和旋转设计图案.分析:一个长方形沿一条直线旋转就会成为一个圆柱.解答:解:选项中只有A是长方形旋转;故选:A.点评:本题是判断平面图形经过旋转后大图形,长方形旋转后是圆柱,半圆旋转后是球体,三角形旋转后是圆椎.8.已知一个半圆,下面()这种方式不能将半圆变成圆.A.平移B.翻折C.旋转考点:运用平移、对称和旋转设计图案.分析:一个半圆,如果以它的直径为轴翻折,会得到一个新的半圆,这个半圆由于是已知半圆翻成的,它的直径与已知半圆相等,这两个半圆是以已知半圆的直径所在的直线为对称轴的轴对称图形,两个半圆正好组成一个圆;一个已知半圆,以它的圆心或直径的端点为旋转点,不论是顺时针还是逆时针旋转180°,都会得到一个与原半圆直径相等的半圆,这个半圆与原半圆能组成一个圆;一个半圆,平移后得到的半圆虽然与原半圆的直径相等,但平移后的半圆与原半圆的半圆弧总是在一个方向,这两个半圆不能组成一个圆.解答:解:一个已知半圆,以直径为轴翻转后的图形与已知半圆能变成一个圆;一个已知半圆,以它的圆心或直径的端点为旋转点,不论是顺时针还是逆时针旋转180°后的图形与已知半圆能变成一个圆;一个已知半圆,平移后得到的半圆,已知半圆方向相同,与已知半圆不能变成一个圆;故选:A点评:本题主要是考查运用平移、轴对称设计图案.9.左图是由经过()变换得到的.A.平移B.旋转C.对称D.折叠考点:运用平移、对称和旋转设计图案.分析:采用平移的方法,平移4次,复制下图案,即可得到左图.解答:解:采用平移的方法,平移4次,复制下图案,即可得到左图.故答案为:A.点评:此题考查了运用平移、对称和旋转设计图案.10.如图是由经过()变换得到了.A.旋转B.平移C.对称考点:运用平移、对称和旋转设计图案.分析:采用平移的方法,平移5次,复制下图案,即可得到右图.解答:解:采用平移的方法,平移5次,复制下图案,即可得到左图.故答案为:B.点评:此题考查了运用平移、对称和旋转设计图案.11.将图形顺时针旋转90°,得到的图形是()A.B.C.D.考点:运用平移、对称和旋转设计图案.分析:利用画图工具,逐个分析由原图旋转多少度得到的,如下图所示,即可得解.解答: 解:4个选项各是由原图如何旋转得到的:通过画图分析,A 符合题意;故选:A . 点评: 此题考查了运用平移、对称和旋转设计图案. 12.下列图案每一幅都是由一个基本图形变化得到的.其中没有运用旋转规律得到的图案是( ) A . B .C .考点: 运用平移、对称和旋转设计图案. 专题:图形与变换. 分析: 寻找基本图形,旋转中心,旋转角,旋转次数,逐一判断. 解答: 解:图形1可由一个基本“花瓣”绕其中心经过4次旋转,每次旋转90°得到;图形2可由一个基本“不规则5边形”绕其中心经过4次旋转,每次旋转90°得到; 图形3可由一个基本图形三角形经过平移得到; 其中没有运用旋转规律得到的图案是C ; 故选:C . 点评: 本题考查了利用旋转设计图案的知识,培养学生分析和判断问题的能力.二.填空题(共1小题)13.图B 是由图A 经过 旋转 变换得到的图案,图b 是由图a 经过 平移 变换得到的图案.考点: 运用平移、对称和旋转设计图案. 专题: 图形与变换. 分析: 根据题意,通过观察图形,(1)可知图形A 和图形B 中心对称,所以图形B 是由图形A 顺时针旋转180度得到的.(2)图形a 经过平移变换得到图形b ,即图形b 是由图形a 平移得到的. 解答: 解:(1)图形B 是由图形A 顺时针旋转180度得到的.(2)图形b 是由图形a 平移得到的. 故答案为:旋转;平移. 点评: 本题主要考查几何图形的变换,关键在于认真分析图形,找到它们是怎么变换的.三.解答题(共1小题)14.下面图形是经过什么方式变换得来的?填一填.考点:运用平移、对称和旋转设计图案.专题:图形与变换.分析:根据图形平移的意义,上图是由一个图形经过两次平移得到的;根据图形旋转的意义,左下图是由一个图形绕某点顺时针(或逆时针)旋转5个60°而成的;根据轴对称的意义,右下图是由一个图形经过轴对称得到的.解答:解:上图经过平移得到的;左下图是经过旋转得到的;右下图是经过轴对称得到的.故答案为:点评:本题是考查图形平移的意义、旋转的意义、轴对称的意义.小学阶段图形变包括图形的平移、旋转、轴对称.灵活去用可设计出很多精美的图案.B档(提升精练)一.选择题(共15小题)1.(2009•邗江区模拟)下列各图形面积计算公式的推导过程中,没有用到平移或旋转的是.()A.平行四边形B.长方形C.圆考点:运用平移、对称和旋转设计图案.分析:把平行四边形转化成长方形的方法有三种:第一种是沿着平行四边形的顶点作的高剪开,通过平移拼出长方形;第二种是沿着平行四边形中间任意一高剪开;第三种是沿平行四边形两端的两个顶点作的高剪开,把剪下来的两个小直角三角形拼成一个长方形,再和剪后得出的长方形拼成一个长方形;我们在硬纸板上画一个圆,把圆分成若干等分,剪开后用这些近似的等腰三角形的小纸片拼一拼,就可以拼成一个近似的平行四边形,如果分的分数越多,每一份会越细,拼成的图形就会越接近长方形;长方形的长等于圆周长的一半,即c/2,宽等于圆的半径r,因为长方形的面积=长×宽,所以圆的面积s=c×r÷2 又因为c=2πr 所以s=πr2.解答:解:通过以上分析,平行四边形和圆的面积计算公式都是平移或旋转得到的,只有长方形利用小正方形拼组得到的;故选:B.点评:此题考查了运用平移、对称和旋转设计图案.2.下列图片中,哪些是由图片①分别经过平移和旋转得到的()A.③和④B.③和②C.②和④D.④和③考点:运用平移、对称和旋转设计图案.专题:图形与变换.分析:解答此题的关键是:由平移的定义和旋转的性质进行判断.解答:解:图(1)沿一直线平移可得到(3),顺时针旋转可得到(4).故选A.点评:解答此题要明确平移和旋转的性质:(1)①经过平移,对应线段平行(或共线)且相等,对应角相等,对应点所连接的线段平行且相等;②平移变换不改变图形的形状、大小和方向(平移前后的两个图形是全等形).(2)①对应点到旋转中心的距离相等;②对应点与旋转中心所连线段的夹角等于旋转角;③旋转前、后的图形全等.3.图是由经过()变换得到的.A.平移B.对称C.平移或对称考点:运用平移、对称和旋转设计图案.专题:图形与变换.分析:如图,是经过一个图形平移得到的.解答:解:图是由经过平移变换得到的.故选:A.点评:此题是考查运用平移设计图案.平移就是把整个图案的每一个特征点按一定方向和一定的距离平行移动.平移不改变图形的形状和大小,只改变位置.4.如图所示,将一张正方形纸片先由下向上对折压平,再由右翻起向左对折压平,得到小正方形ABCD.取AB的中点M和BC的中点N ,剪掉AMBN得五边形AMNCD.则将折叠的五边形AMNCD纸片展开铺平后的图形是()A.B.C.D.考点:运用平移、对称和旋转设计图案.分析:此题可以动手操作,验证一下,即可解决问题.解答:解:找一张正方形纸片,按上述顺序折叠、剪切,展开后得到的图形如右图所示.故选:D.点评:图形的折叠和剪切,可动手操作实践一下,也解决问题的好方法.5.由图形A到图形C是怎样的旋转过程.()A.A顺时针旋转90°得到图CB.A逆时针旋转180°得到图CC.A逆时针旋转90°得到图B,再逆时针旋转90°得到图C考点:运用平移、对称和旋转设计图案.专题:平面图形的认识与计算.分析:把一个图形绕着某一点转动一个角度的图形变换叫做旋转,旋转的要素是旋转方向,旋转中心,旋转角度.据此可对每个选项进行分析.解答:解:A.图A绕点“O”顺时针旋转90°得到图B,得不到图C,故错误.B.图A绕点“O”逆时针旋转180°得到图C.正确.C.图A绕点“O”逆时针旋转90°得到图D,得不到图B,所以错误.故选:B.点评:本题主要考查了学生对旋转知识的掌握情况.6.把下面的图A绕中心点顺时针旋转90度后再向下平移四个格得到图形是()A.A、B.B、C.C、D.D、考点:运用平移、对称和旋转设计图案.专题:图形与变换.分析:观察图形,图形A绕中心点顺时针旋转90度后,再向下平移4格后,得到的图形是C,据此即可选择.解答:解::图形A绕中心点顺时针旋转90度后,再向下平移4格后,得到的图形是C,故选:C.点评:本题重点是考查的平移、旋转.关键弄清旋转一定度数时笑脸的特征及平移的格数.7.如图,甲、乙、丙、丁四个轮子连在一组皮带上,已知甲的转向为顺时针,则丙的转向为()A.顺时针B.逆时针C.先顺后逆D.不能确定考点:运用平移、对称和旋转设计图案.分析:通过画图,皮带的转向的一致性,可以判断出每个轮子的转向,由此得解.解答:解:甲、乙、丙、丁四个轮子连在一组皮带上,已知甲的转向为顺时针,丁是逆时针,则丙的转向为顺时针,乙是顺时针.故选:A.点评:此题考查了运用平移、对称和旋转设计图案.8.钟面上,时针从“8”起逆时针旋转90°后,时针应该指着()A.3B.12 C.5考点:运用平移、对称和旋转设计图案.专题:图形与变换.分析:钟面上有12个数字,这12个数字把一个周角平均分成了12份,一个周角是360°,每份是360°÷12=30°,即两个相邻数字间的度数是30°,时针从“8”绕中心点O逆时针旋转90°,90°÷3=3,就是旋转了3个数字,即8﹣3=5,此时时针指向“5”,解答:解:如图,表盘上时针从“8”绕中心点O逆时针旋转90°,90°÷3=3,就是旋转了3个数字,即8﹣3=5,此时时针指向“5”;故选:C.点评:解答本题主要掌握钟面上的12个数字把一个周角平均分成了12份,每份是360°÷12=30°,即个相邻数字间的度数是30°.9.下列图案中,()是由图案的一部分经过旋转得到的.A.B.C.考点:运用平移、对称和旋转设计图案.专题:图形与变换.分析:根据平移,旋转,轴对称的定义即可作出判断.解答:解:图形A是平移得到的,图形C是平移得到的,只有图形B是旋转得到的;故选:B.点评:本题考查了利用旋转设计图案的知识,培养学生分析和判断问题的能力.10.如图所示,在图甲中,Rt△OAB绕其直角顶点O每次旋转90˚,旋转三次得到右边的图形.在图乙中,四边形OABC 绕O点每次旋转120˚,旋转二次得到右边的图形.下列图形中,不能通过上述方式得到的是()A.B.C.D.考点:运用平移、对称和旋转设计图案.分析:根据旋转的概念以及图甲、图乙演示所体现的规律来判断.解答:解:根据旋转的概念和上述规律知:A、旋转120°得到;B、旋转180°得到;C、是轴对称图形,也是中心对称图形,旋转180°得到;D、不能通过旋转得到.故选:D.点评:此题不仅考查了旋转的概念,更考查了同学们的规律探索能力.11.国旗上的四个小五角星,通过怎样的移动可以相互得到()A.轴对称B.平移C.旋转D.平移和旋转考点:运用平移、对称和旋转设计图案.专题:图形与变换.分析:观察国旗上的小五角星可知:国旗上的小五角星绕中心点进行旋转一定的角度,可以互相得到,据此即可解答.解答:解:四个小五角星通过旋转可以得到.故选:C.点评:本题考查旋转与平移的性质:旋转变化前后,对应线段、对应角分别相等,图形的大小、形状都不改变;关键是要找到旋转中心.12.如图,O是正六边形ABCDEF的中心,下列图形中可由△OBC平移得到的是()A.△COD B.△OAB C.△OAF D.△OEF考点:运用平移、对称和旋转设计图案.专题:图形与变换.分析:平移前后图形的大小、形状都不改变,由此可以判断由△OBC平移得到的三角形.解答:解:A、△COD方向发生了变化,不属于平移得到;故本选项错误;B、△OAB方向发生了变化,不属于平移得到,故本选项错误;C、△OAF属于平移得到;故本选项正确;D、△OEF方向发生了变化,不属于平移得到;故本选项错误;故选:C.点评:平移的基本性质是:①平移不改变图形的形状和大小;②经过平移,对应点所连的线段平行且相等,对应线段平行且相等,对应角相等.13.如图是按照一定的规律排列起来的,请按这一规律在“?”处画出适当的图形.()A.B.C.D.考点:运用平移、对称和旋转设计图案.分析:这组图形应该从两方面来看:一是旗帜的方向,二是旗帜上的星星颗数.可以发现:旗帜是按逆时针转的,并依次旋转90度,所以第三面旗帜是第二面逆时针旋转90度得来的.其次再看旗帜上的星星颗数,可见颗数依次减少一颗,由此得解.解答:解:这组图形应该从两方面来看:一是旗帜的方向,二是旗帜上的星星颗数.可以发现:旗帜是按逆时针转的,并依次旋转90度,所以第三面旗帜是第二面逆时针旋转90度得来的.其次再看旗帜上的星星颗数,可见颗数依次减少一颗,所以第3面旗帜上应是3颗星星,所以“?”处图形应为C选项.故答案为:C.点评:此题考查了运用平移、对称和旋转设计图案.14.根据下图的变化规律,在空白处填上适当的图形()A.B.C.考点:运用平移、对称和旋转设计图案.分析:我们把整个图形分成三部分:单箭头、双箭头和三箭头,它们的变化规律都是按照顺时针旋转90度.因此得解.解答:我们把整个图形分成三部分:单箭头、双箭头和三箭头,它们的变化规律都是按照顺时针旋转90度.所以,“?”处应填C选项.故答案为:C.点评:此题考查了运用平移、对称和旋转设计图案.认真观察找出规律,是解决此题的关键.15.(2014•顺德区模拟)如图所示,把一个正方形三次对折后沿虚线剪下,则所得图形是()A.B.C.考点:运用平移、对称和旋转设计图案.分析:找一张纸,裁一个正方形,上折,右折,沿虚线剪开,然后把余下的部分展开,即可得解.解答:解:经过实践,两次折叠后沿虚线剪开,图形展开,即可得解,图形是B的图形;故答案为:B.点评:此题考查了运用平移、对称和旋转设计图案.二.填空题(共12小题)16.一个简单图形经过平移、旋转或轴对称,能形成一个较复杂的图形.√.(判断对错)考点:运用平移、对称和旋转设计图案.专题:图形与变换.分析:根据图形平移、旋转、轴对称的特征,可以将一个简单的图案,通过这些变化,形成一个较复杂的图形.如,可以将一个图案通过平移形成壁报的花边、将一个梅花瓣通过四次旋转形成一朵梅花、把纸折叠,通过轴对称剪出一个图形的一半,展开后就是一个完整的图案.解答:解:一个简单图形经过平移、旋转或轴对称,能形成一个较复杂的图形.故答案为:√.点评:本题主要是考查平移、旋转、轴对称的意义及特征.利用这些变化可以将一个简的图案变成一个较复杂的图形.17.图是某设计师设计的方桌布图案的一部分,请你运用旋转变换的方法将该图形绕O点顺时针依次旋转90゜、180゜、270゜,你会得到一个什么样的立体图形?考点:运用平移、对称和旋转设计图案.专题:作图题;图形与变换.分析:根据旋转图形的特征,这个图形绕点O顺时针旋转90°、180°,270°,点0的位置不动,其余各部分均绕点O顺时针旋转90゜、180゜、270゜,得到的是一个星星图案.解答:解:根据分析画图如下:故答案为:点评:本题是考查运用图形旋转设计图案.关键是旋转的角度要准确.18.我们可以用平移、旋转、轴对称等基本方法,对图形进行变换,来设计图案.考点:运用平移、对称和旋转设计图案.分析:我们学过的图形变换由平移、旋转、轴对称,利用这此基本方法,可以将一个图图形通过这些方法来设计精美的图案.解答:解:我们可以用平移、旋转、轴对称等基本方法,对图形进行变换,来设计图案;故答案为:平移,旋转,轴对称.点评:本题是回顾小学阶段学习的图形变换方法.19.利用平移、对称和旋转变换可以设计许多美丽的镶嵌图案.…√.(判断对错)考点:运用平移、对称和旋转设计图案.分析:规则的平面分割叫做镶嵌,镶嵌图形是完全没有重叠并且没有空隙的封闭图形的排列.一般来说,构成一个镶嵌图形的基本单元是多边形或类似的常规形状,例如经常在地板上使用的方瓦.利用平移、对称、旋转变换可以设计许多美丽的镶嵌图案.解答:解:例如蜜蜂的蜂窝就是正六边形的平移、旋转、对称的典型图案;如下图所示,利用平移、对称和旋转变换设计的许多美丽的镶嵌图案:故答案为:√.点评:此题考查了运用平移、对称和旋转设计图案.20.在方格图中设计一个你喜欢的图案,并写出你设计的图案占整幅图的多少?考点:运用平移、对称和旋转设计图案.专题:作图题.分析:根据旋转图形的特征,在图中画一等腰三角形,绕一底角(点O)顺(或逆)时针旋转90°,再旋转90°,再旋转90°即可得到一个美丽的图案;每个三角形占1格,四个三角形占1×4=4格,图中共有10×5=50格,据此可求出图案占整幅图的多少.解答:解:由分析画图如下:(1×4)÷(10×5)=4÷50=;。