运放器设计选型指导书
- 格式:doc
- 大小:274.50 KB
- 文档页数:26
ADI 公司开发创新能源解决方案已逾十年。
我们的高性能放大器产品组合在促进变电站设备中的电能质量监控方面起着重要作用,而且随着再生能源系统的最新发展,它们也有助于实现突破性的解决方案。
能源应用放大器欲了解有关能源应用的更多信息,请访问:/zh/energy典型太阳能电池系统图典型变电站自动化系统图过程控制和工业自动化应用放大器40多年来,工业过程控制系统设计者与ADI公司密切合作,以定义、开发、实施针对各种应用进行优化的完整信号链解决方案。
我们提供基于业界领先技术和系统性专业技术的精密控制与监测解决方案,使过程控制同时具备可靠性与创新性。
欲了解有关过程控制和工业自动化应用的更多信息,请访问:/zh/processcontrol仪器仪表和测量应用放大器ADI公司提供高性能模拟解决方案,用来检测、测量、控制各种传感器。
我们的技术支持广泛的创新设备鉴别、测量液体、粉末、固体和气体。
领先的放大器产品可帮助客户优化定性和定量仪器的性能。
网络分析仪框图电子秤框图欲了解有关仪器仪表和测量应用的更多信息,请访问:/zh/instrumentation电机和电源控制应用放大器针对电机和电源控制解决方案,ADI公司提供齐全的产品系列以优化系统级和应用导向设计。
ADI公司的放大器产品在电流检测和电压检测应用中具有许多优势。
欲了解有关电机和电源控制应用的更多信息,请访问:/zh/motorcontorl健器械的未来。
脉搏血氧仪功能框图医疗保健应用放大器(续)超声功能框图欲了解有关医疗保健应用的更多信息,请访问:/zh/healthcare通信应用放大器通信系统联通世界。
无论是传输重要信息,报导突发新闻,还是联系家人和朋友,通信系统都不可或缺。
宽带系统设计工程一向信赖ADI公司来创造卓越的设计。
ADI公司丰富多样的运算放大器支持由点到点通信系统、专用移动无线电和无线基础设施设备所组成的网络以低功耗、高容量和经济有效的方式运行。
运算放大器参数说明及选型指南一、运放的参数说明:1.增益:运算放大器的增益是指输出信号与输入信号之间的比值,通常用V/V表示。
增益可以是固定的,也可以是可调的。
增益决定了输出信号相对于输入信号的放大程度。
2.带宽:运算放大器的带宽是指在其增益达到-3dB时的频率范围。
带宽决定了运放的工作频率范围,对于高频应用,需要选择具有宽带宽的运放。
3.输入偏置电压:输入偏置电压是指在无输入信号时,运放输入端的直流偏置电压。
输入偏置电压可能会引入偏置误差,对于精密测量电路,需要选择输入偏置电压尽可能小的运放。
4.输入偏置电流:输入偏置电流是指在无输入信号时,运放输入端的直流偏置电流。
输入偏置电流可能会引起输入端的电平漂移,对于高精度应用,需要选择输入偏置电流尽可能小的运放。
5.输入偏置电流温漂:输入偏置电流温漂是指输入偏置电流随温度变化的比例。
输入偏置电流温漂可能会导致运放的工作点发生变化,对于温度变化较大的应用,需要选择输入偏置电流温漂较小的运放。
6.输入噪声:输入噪声是指在无输入信号时,运放输入端产生的噪声。
输入噪声可能会影响信号的纯净度,对于低噪声应用,需要选择输入噪声较低的运放。
7.输出电流:输出电流是指运放输出端提供的最大电流。
输出电流决定了运放的输出能力,在驱动负载电流较大的应用中,需要选择输出电流较大的运放。
8.输出电压:输出电压是指运放输出端能够提供的最大电压。
输出电压决定了运放的输出范围,在需要大幅度信号放大的应用中,需要选择输出电压较大的运放。
二、选型指南:1.确定应用需求:根据实际应用需求确定所需的放大倍数、带宽、输入/输出电压等参数。
例如,对于音频放大器,需要考虑音频频率范围、输出功率等因素。
2.选择性能指标:根据应用需求选择合适的性能指标。
不同应用对各个参数的要求可能会有所差异,需根据实际情况进行权衡与选择。
3.查询产品手册:查询供应商的产品手册或网站,获取相关产品的详细参数信息。
产品手册通常会提供各项参数的典型值和极限值,可以用于评估是否满足需求。
关于运放的书籍
关于运算放大器(运放)的书籍,有如下一些可以作为参考:
1. 《运算放大器应用手册:基础知识篇》,作者黄争,电子工业出版社出版。
这本书涵盖了运放的大量基础知识,比如运放的指标和分类,电压反馈和电流反馈运放的异同点,运放的负反馈和稳定性等,并专注于一些基础理论知识和通用技术的介绍和分析。
2. 《数据转换器应用手册:基础知识篇》,作者黄争,电子工业出版社出版。
3. 《德州仪器高性能模拟器件在高校中的应用及选型指南》,这本书为TI
大学计划部黄争先生为TI杯模拟电子设计竞赛所作,书中用通俗易懂地方
式阐述了很多模拟电路中的概念。
4. 《Signal Chain Products Training》Frank Huang,这本书为电子书,为TI大学计划部黄争先生所著,与《德州仪器高性能模拟器件在高校中的
应用及选型指南》的内容大体相似。
此外,还可以参考《运算放大器入门教程》、《模拟电路与数字电路基础》、《电子工程导论》等书籍。
以上书籍仅供参考,建议根据自身实际需求进行选择。
《模拟集成电路分析与设计课程设计》指导书题目:套筒式运算放大器仿真与优化指导老师:朱玮联系方式:wzhu@ 一、课程设计目的复习、巩固模拟集成电路课程所学知识,运用软件candence,在一定的工艺模型基础上,完成一个套筒式运放器的电路结构设计、参数手工估算和电路仿真验证,并根据仿真结果与指标间的折衷关系,对重点指标进行优化,掌握电路分析、电路设计的基本方法,加深对运放相关知识点的理解,培养分析问题、解决问题的能力。
二、实验目标和要求1)学习cadence工具的基本设计流程;2)了解运放器的工作原理,对运放器进行设计和优化;3)结合理论知识与实际操作,加深对理论知识的理解;4)完成课程设计报告。
三、设计参数和要求1 设计参数(供参考):表1:设计参数表2 设计要求:1)给出满足题目要求的电路图;2)根据设计目标,计算各MOS管的尺寸,各个结点的偏置电压和电流;3)利用cadence对电路进行仿真,仿真内容包括:DC、AC及瞬态仿真、幅频及相频特性曲线、直流开环增益、单位增益带宽、共模抑制比、电源抑制比、输出电压摆幅、功耗等;4)对结果进行分析,并设计优化电路(共模反馈和二级放大电路)提高套筒式共源共栅运放器的输出摆幅;5)若对参数进行改动,应说明改动原因。
3 设计报告要求1)设计指标的确定及原因;2)电路结构的确定及原因;3)电路原理论述,具体到每个MOS管的作用;4)每个晶体管沟道长度与宽度的确定依据,所用电阻电容的选取依据;5)设计过程;6)完成设计要求中的各种波形和性能指标:幅相和频相特性、带宽增益;7)仿真结果的总结与改进(思考与感想)。
四、设计基础1套筒式运放器提高输入跨导和输入阻抗可以优化单级运算放大器的增益性能。
提高输入阻抗比提高输入跨导更具有研究价值。
在电路结构中添置一个共源共栅放大器会显著提高阻抗值,套筒式共源共栅结构应运而生。
伴随着共源共栅结构的加入,P 管和N管的输出阻抗增大,以共源共栅差动的形式,使电路获得理想的增益,较高的速度、低功率损耗、低噪声效应。
运放参数解释及常用运放选型集成运放的参数较多,其中主要参数分为直流指标和交流指标,外加所有芯片都有极限参数。
本文以NE5532为例,分别对各指标作简单解释。
下面内容除了图片从NE5532数据手册上截取,其它内容都整理自网络。
极限参数主要用于确定运放电源供电的设计(提供多少V电压、最大电流不能超过多少),NE5532的极限参数如下:直流指标运放主要直流指标有输入失调电压、输入失调电压的温度漂移(简称输入失调电压温漂)、输入偏置电流、输入失调电流、输入偏置电流的温度漂移(简称输入失调电流温漂)、差模开环直流电压增益、共模抑制比、电源电压抑制比、输出峰-峰值电压、最大共模输入电压、最大差模输入电压。
NE5532的直流指标如下:输入失调电压Vos输入失调电压定义为集成运放输出端电压为零时,两个输入端之间所加的补偿电压。
输入失调电压实际上反映了运放内部的电路对称性,对称性越好,输入失调电压越小。
输入失调电压是运放的一个十分重要的指标,特别是精密运放或是用于直流放大时。
输入失调电压与制造工艺有一定关系,其中双极型工艺(即上述的标准硅工艺)的输入失调电压在±1~10mV之间;采用场效应管做输入级的,输入失调电压会更大一些。
对于精密运放,输入失调电压一般在1mV以下。
输入失调电压越小,直流放大时中间零点偏移越小,越容易处理。
所以对于精密运放是一个极为重要的指标。
输入失调电压的温度漂移(简称输入失调电压温漂)ΔVos/ΔT输入失调电压的温度漂移定义为在给定的温度范围内,输入失调电压的变化与温度变化的比值。
这个参数实际是输入失调电压的补充,便于计算在给定的工作范围内,放大电路由于温度变化造成的漂移大小。
一般运放的输入失调电压温漂在±10~20μV/℃之间,精密运放的输入失调电压温漂小于±1μV/℃。
输入偏置电流Ios输入偏置电流定义为当运放的输出直流电压为零时,其两输入端的偏置电流平均值。
运算放大器的参数、选型与应用唐桃波长江大学国家级电工电子实验教学示范中心创新基地长江大学石油仪器研究室1•1930年TI的前身Geophysical service inc.成立,主要研发地震仪与石油探测仪。
•1950年Geophysical service inc.上市同时改名为TI。
•1956年Burr-Brown Research公司成立。
•1958年7月TI公司的Jack Kilby发明了集成电路(integrated circuit)简称IC。
•1963年Fairchild公司的Bob widlar发明了世界上第一片世界公认的单片集成电路运放μA702但是不是很成功。
•1965年1月MATT LORBER和RAY STATA创建了ADI公司。
•1965年11月Fairchild公司的Bob widlar发明了μA709大获成功,但是μA709不稳定,易烧坏,易锁闭。
•1967年Bob widlar离开Fairchild加入NSC(National Semiconductor后并入TI),同年发表了LM101,后来陆续开发了LM301,LM307,LM308,LM318,LM309等运放。
•1969年Fairchild公司的Dave Fullagar发表了发明了世界上第一款内置30pF相位补偿电容的运放μA741一直应用至今,现在还是各大高校模电实验的首选运放。
2•1975年PMI公司的George Erdi发表了世界上第一款精密运放OP07(后逐渐发展出OP27 OP37 OP177及OP27的JFET版本OPA627,OP37的JFET版本OPA637).由于OP07太过经典,各大公司都推出了自己的相关产品。
•1972年NSC公司的Russell and Frederiksen引入新技术设计出LM324.•1975年RCA公司发布了CMOS运放CA3130.•1976年NSC公司发布了JFET运放LF356.•1978年TI发布了TL06X TL07X TL08X系列低价格JFET运放。
套筒式运放器指导书绪论套筒式运放器(socketed operational amplifier)是一种常用的集成电路器件,广泛用于电子电路的放大和信号处理任务中。
本指导书将介绍套筒式运放器的基本原理、使用注意事项和常见应用。
一、套筒式运放器的基本原理套筒式运放器是一种工作在直流和交流信号下放大电压的电子设备。
它由输入端、输出端和电源端组成,通常有一个由陶瓷制成的插口,可以插入不同类型的运放芯片。
套筒式运放器内部包含多个电子元件,如晶体管、电阻、电容等,它们协同工作以实现信号放大。
二、套筒式运放器的使用注意事项1. 电源选取:套筒式运放器通常需要供应正负双电源。
在选择电源时,应注意电源的电流和电压范围,确保与运放器的要求相匹配。
2. 输入输出范围:不同类型的套筒式运放器有不同的输入和输出范围。
在使用过程中,应确保输入信号和输出信号在允许范围内,避免超过运放器的最大额定值。
3. 输入阻抗:套筒式运放器的输入阻抗是一个重要参数,它影响信号的输入和输出。
在选择套筒式运放器时,应注意输入阻抗的数值,以确保与输入信号源的匹配。
4. 温度稳定性:套筒式运放器在不同温度条件下的性能稳定性也是一个重要指标。
在实际应用中,应注意温度范围和工作条件,以确保套筒式运放器的稳定性和可靠性。
三、套筒式运放器的常见应用1. 信号放大:套筒式运放器广泛用于各种信号放大任务中。
它可以放大传感器输出的微弱信号,以便后续的处理和分析。
同时,套筒式运放器还可用于音频放大、仪器放大等领域。
2. 滤波器:套筒式运放器可用作滤波器的关键组成部分。
通过合理连接电容和电阻,可以实现不同类型的滤波器,如低通滤波器、高通滤波器等。
3. 仪器放大器:套筒式运放器还可用于仪器放大器的设计。
在仪器测量中,信号的放大和精确度要求较高,套筒式运放器可以满足这些要求,并提供稳定可靠的性能。
结论套筒式运放器是一种常用的集成电路器件,具有广泛的应用前景。
本指导书简要介绍了套筒式运放器的基本原理、使用注意事项和常见应用。
前言作为世界领先的半导体产品供应商,TI 不仅在DSP的市场份额上有超过65%占有率的绝对优势;在模拟产品领域,TI 也一直占据出货量世界第一的位置。
而本手册是针对中国大学生创新活动的简化选型指南,帮助老师和同学们快速了解TI的模拟产品。
需要提醒大家的是,这本手册仅仅涵盖了TI模拟产品的一小部分,如果您需要更为全面细致的选型帮助和技术文档,请访问/analog以获取运算放大器,数据转换器,电源管理,时钟,接口逻辑和RF等产品信息,访问 /mcu 以获得更多MSP430,Tiva和C2000的产品信息。
众人拾柴火焰高,如果你读过本手册的前面几个版本,一定会对其中略去的几个章节耿耿于怀,也会对其中草草结束的部分感到不满,今年在TI中国大学计划工程师团队的共同努力下,我们基于2012年的版本将本手册进行了第一阶段的充实工作。
比如我们加入了原理部分,解读了放大器,数据转换器,电源的指标和选型方案;比如我们完善了应用技巧相关的章节,突出了实际操作中需要注意的问题,比如噪声控制,PCB设计,等等;比如我们开始逐步强调模数混合系统设计的重要性,毕竟在现代的电子系统中,纯模拟的模块已经越来越少了。
诸如这些改进,都是为了把更多的业界先进技术带给高校学生,加强同学们的工程实践能力,培养系统设计意识。
本手册将分为以下几部分介绍信号链和电源相关的知识及TI产品在大学生创新活动中的应用:第一部分:运算放大器的原理和设计,由王沁工程师整理和编写;第二部分:数据转换器的原理和设计,由崔萌工程师整理和编写,钟舒阳和谢胜祥两位工程师也参与了其中的部分章节;第三部分:线性电源和开关电源的原理和设计,由胡国栋工程师整理和编写,汪帅工程师也参与了其中的部分章节。
全书由黄争规划并进行了校对和修改。
但是由于时间仓促,水平有限,手册中一定存在不少错漏,请大家积极给予反馈,提出宝贵意见。
德州仪器中国大学计划TI 概览德州仪器公司,Texas Instruments,即TI,是总部在美国德克萨斯州的一家高科技企业。
运算放大器应用电路设计综合性实验(10学时)1 实验目的1. 掌握运放的选型;2. 掌握放大平移电路的设计;3. 掌握电路设计中的稳定性、增益裕度、相位裕度等概念,并懂得分析电路的幅频、相频特性曲线(环路增益与闭环传递函数);4. 掌握运放应用电路的参数设计;5.熟悉使用ORCAD搭建仿真电路,分析实验结果。
2 实验内容1.针对电阻采样设计一运算关系y=9u i+1.25,其中,输入信号的瞬态频率为20KHz,幅值在±0.1V之间,要求经过调理后的输出电压幅值在0~3V之间,同时信号调理电路需要同时具备滤波功能,低通滤波器的截止频率120KHz。
2.要求根据应用特性,根据带宽、输入电流变化、输入偏置电流、输入失调电流、摆速、摆幅、电源抑制比、容性负载(需要考虑集成ADC的采样电容)、共模抑制比等参数选择运放,实验报告结合具体的图进行详细说明。
3.设计电路,推导电路的传递函数,分析零极点所在。
组合调整电阻、电容参数,移动极点,使电路的幅频、相频特性可满足实时测控的要求。
实验报告需具体推导传递函数,做详细的分析,并用ORCAD扫频数据验证理论。
实验报告需同时给出每一个电阻电容参数设计的具体根据。
4. 设计一截止频率为120KHz的二阶sallen-key滤波器,对比两电路对于20KHz输入信号的相位滞后。
3 预备知识1.理想运放方程及放大平移、衰减平移电路实例;2. 反馈与稳定性理论;3. 运放的噪声理论;4.运放的参数选型。
4 实验设备1. 硬件:PC机;2. 软件:Cadence 16.5。
5 实验原理略6 实验步骤1. 复习课堂教学内容;2.建立ORCAD仿真文件;3. 推导并分析电路传递函数4.根据理论调整电路参数,以满足设计要求。
分析ORCAD时域、频域实验结果,进行理论验证。
7 实验报告要求1. 仅报告实验目的与实验内容即可,需按照实验内容要求提交详细的设计报告。
运算放大器选型指南运算放大器(Operational Amplifier,简称Op Amp)是一种重要的电子元件,广泛应用于各种电子设备和电路中。
它具有输入阻抗高、增益稳定、输出能力强等特点,可放大输入信号并输出放大后的信号,被用于放大、滤波、比较、积分、微分等多种信号处理应用。
在进行运算放大器选型时,需要考虑以下几个因素:1.功能要求:首先要明确需要运算放大器实现的功能。
不同的应用场景需要不同的功能要求,比如需要放大直流或交流信号,需要实现滤波、比较、积分、微分等功能。
2.参数指标:选择合适的运算放大器要考虑其参数指标,如增益带宽积、输入与输出电压范围、电源电压范围、偏置电压、输入偏置电流、输出阻抗等。
这些参数指标对于实现具体的应用要求至关重要。
3.精度要求:根据应用需求考虑运算放大器的精度要求,如增益的稳定性、输入和输出的精度、温度漂移、噪声等。
一般来说,要求精度越高的应用,选择的运算放大器性能要求也相对较高。
4.效率和成本:运算放大器的效率和成本也是选型中的考虑因素。
效率指的是运算放大器的功耗和能耗,可以根据实际需求选择功耗较低的型号。
成本包括器件本身的价格和其他外部元件的成本,需要综合考虑投资和应用需求。
5.兼容性和可靠性:考虑运算放大器的兼容性和可靠性,特别是在多个放大器组成的电子系统中,要保证各个放大器之间的配合和运行稳定性。
在具体选型时,可以参考厂商提供的数据手册和技术规格表,查找满足应用需求的运算放大器型号。
此外,也可以借鉴其他工程师的经验和评价,了解不同型号的优缺点,从而做出更好的选择。
总结起来,在运算放大器选型时要考虑功能要求、参数指标、精度要求、效率和成本、兼容性和可靠性等因素,根据实际需求选择合适的型号。
最后,进行实际应用前,还需通过实验和测试验证选型的正确性和可靠性。
如何选择合适的电子电路中的运算放大器在电子电路设计中,运算放大器是一种重要的元件,广泛应用于信号放大、滤波、运算等电路中。
选择合适的运算放大器对于电路的性能和稳定性至关重要。
本文将介绍如何选择合适的电子电路中的运算放大器。
一、了解运算放大器的基本原理运算放大器(Operational Amplifier,简称OP AMP)是一款集成电路,具有差分输入、高放大倍数、低失调、高输入阻抗等特点。
它由输入级、放大级和输出级构成,输出电压与输入电压之间存在着线性的关系。
在选择运算放大器之前,我们先要了解其基本原理和性能参数。
二、确定电路应用需求在选择合适的运算放大器之前,我们需要明确电路的应用需求,比如信号放大、滤波、运算等具体功能。
针对不同的需求,运算放大器的性能参数也会有所差异,因此需根据电路应用来确定所需的运算放大器性能参数。
三、选择合适的增益和带宽在实际应用中,我们需要根据具体电路要求选择合适的放大器增益和带宽。
放大器增益可以决定输出信号相对于输入信号的倍数,带宽则决定了放大器能够正常工作的频率范围。
一般情况下,放大器的带宽越高,其性能越好。
四、考虑输入偏置电流和失调参数运算放大器的输入偏置电流和失调参数是其关键性能指标之一。
输入偏置电流是指运算放大器输入端电流不平衡所引起的电流,失调参数是指输入与输出之间的偏差。
在选择运算放大器时,需根据实际应用情况考虑这些参数,选择具有低偏置电流和低失调参数的运算放大器。
五、考虑供电电压和封装形式运算放大器的供电电压和封装形式也是选择的考虑因素之一。
供电电压一般分为单电源供电和双电源供电,需根据电路实际需求选择合适的供电电压。
而封装形式包括直插式(DIP)和表面贴装式(SMD)等,需根据电路板设计及装配方式选择合适的封装形式。
六、参考厂家手册和性能曲线在选择合适的运算放大器时,可以参考相关厂家的手册和性能曲线。
厂家手册中会提供运算放大器的详细性能参数和特性,性能曲线则可以直观地了解运算放大器的工作性能和特点,便于选择合适的型号。
运算放大器参数说明及选型指南(本文来源于网络,经整理转载于此)运算放大器参数说明及选型指南(本文来源于网络,经整理转载于此)一。
运算放大器的专业术语1 bandwidth 带宽: 电压增益变成低频时1/(2 )的频率值2 共模抑制比:common mode rejection ratio3 谐波失真:harmonic distortion 谐波电压的均方根值的和/基波电压均方根值4 输入偏置电流:input bias current 两输入端电流的平均值5 输入电压范围:input voltage range共模电压输入范围运放正常工作时输入端上的电压;6 输入阻抗:input impendence Rs Rl指定时输入电压与输入电流的比值7 输入失调电流input offset current 运放输出0时,流入两输入端电流的差值;8 输入失调电压 input offset voltage 为了让输出为0,通过两个等值电阻加到两输入端的电压值9 输入电阻:input resistance:任意输入端接地,输入电压的变化值/输入电流的变化值10 大信号电压增益:large-signal voltage gain 输出电压摆幅/输入电压11 输出阻抗:output impendence Rs Rl指定时输出电压与输出电流的比值12 输出电阻:output resistance 输出电压为0,从输出端看进去的小信号电阻13 输出电压摆幅:output voltage swing 运放输出端能正常输入的电压峰值;14 失调电压温漂 offset voltage temperature drift15 供电电源抑制比:power supply rejection 输入失调电流的变化值/电源的变化值16 建立时间 settling time 从开始输入到输出达到稳定的时间;17 摆率:slew rate输入端加上一个大幅值的阶跃信号的时候输出端电压的变化率18 电源电流 supply current19 瞬态响应 transient response 小信号阶跃响应20 单位增益带宽unity gain bandwirth 开环增益为1时的频率值21 电压增益 voltage gain 指rs rl固定时输出电压/输入电压二。
运算放大器的结构形式主要有三种:模块、混合电路和单片集成电路。
对于设计工程师来说,不仅是要知道所用产品的型号,而且还应熟悉生产这些产品的工艺,从而能够从一类放大器中选出一种放大器做特定的应用。
表1 给出了各种运算放大器结构的性能情况。
(一)模块放大器目前使用几种工艺生产运算放大器,性能最高的放大器是以模块的形式由分立元件构成的。
因为使用分立元件,所以可选用像高压输出晶体管、超低电流的FET 管以及阻值很高的电阻等等这类专门制作的元件。
在模块的设计中,在电气测试时(密封之前)通过对直流参数(比如失调电压)或交流参数(比如建立时间)进行细调的方法来选择电阻和电容是可能的。
模块工艺的缺点是实际的尺寸较大和价格高。
由于每个模块都是单独构成的,大量加工制造是不现实的,并且制造成本相对地也是很高的,但是对于那些对性能有极高级别要求的特殊应用来说,由于模块运算放大器的规范由生产厂来保证,所以它们还是有吸引力的。
模块运算放大器包括斩波稳定放大器、可变电抗静电计放大器和宽带高速放大器。
1.斩波稳定放大器当需要放大(或缩小)电平极低的电压信号时,要使用斩波放大器。
斩波放大器的内部是交流耦合的--有效的差动输入信号被斩波成方波,这个方波被解调和放大。
交流耦合消除了许多与运放有关的误差,因此失调和漂移极低。
斩波放大器的主要性能指标:低失调电压10 A低失调漂移0.1 V/℃长期稳定性1 V/年高开环增益107V/V低温升漂移3 V2.静电计放大器当需要尽可能高的输入阻抗和最低的偏置电流时,要使用静电计放大器。
静电计放大器内部也是交流耦合的,输入信号被加到包括低漏流的变容二极管(电压可变电容)的电桥上,该电桥由高频载波信号所激励。
输入电压引起电桥的不平衡,合成的交流误差信号被交流耦合到下一级,在那里被同步解调和放大。
使用低漏流可变电容产生的输入电流低至10fA(1fA=10-15A),获得这样的低电流是以较高的失调电压为代价的。
运放器设计选型指导书目录1.0目的2.0适用范围3.0背景说明3.1制作选型指导的必要性3.2实际的内部结构及封装3.3瑞谷运放器类别4.0运放器知识介绍4.1工作原理4.2 类型4.3 主要参数5.0器件案例分析5.12904替代不匹配;5.2LM324 限流电阻不匹配;6.0器件设计选型注意事项7.0运放器应用电路1.0.目的:◆提升技术人员对运放器件的了解水准,并通过后续不断升级和完善,可形成具有实际指导性的文件;◆避免电路设计不匹配,器件选型,器件替代错乱;2.0.适用范围:本指导书适用于对运放器知识学习,设计选型号及替代。
3.0.背景说明:3.1全面了解运放器的及时性:在2010年运放器出现了两个问题:●2904替代;在线产品由于2904替代时出现近30%的产品输出震荡,原因是两品牌2904参数不匹配导致;●LM324N 电路设计;某产品在南京出现10多台无输出或灯闪现象,原因是 OCP保护电路提前动作,LM324正反向输入端限流保护电阻不匹配,在潮湿度较高的环境中,漏电流急剧增大,导致限流电阻大的一端比较电压高于另外一端,运放输出提前翻转所至;●因此急需我们对运放器本身特性及实际应用有一个全面的系统的了解;3.2 运放器的内部结构图及封装图:(以LM324为例)3.3瑞谷运放器类别:LM324N/D,LM224/D,LM2904A/D,LM358/D/P,OP07C系列,OPA177/244/237 等。
4.0运放器知识介绍4..1运算放大器工作原理:运算放大器(Operational Amplifier,简称OP、OPA、OPAMP)是一种直流耦合﹐差模(差动模式)输入、通常为单端输出(Differential-in, single-ended output)的高增益(gain)电压放大器,因为刚开始主要用于加法,乘法等运算电路中,因而得名。
一个理想的运算放大器必须具备下列特性:无限大的输入阻抗、等于零的输出阻抗、无限大的开回路增益、无限大的共模排斥比的部分、无限大的频宽。
最基本的运算放大器如图1-1。
一个运算放大器模组一般包括一个正输入端(O P_P)、一个负输入端(OP_N)和一个输出端(OP_O)。
通常使用运算放大器时,会将其输出端与其反相输入端(inverting input node)连接,形成一负反馈(negative feedback)组态。
原因是运算放大器的电压增益非常大,范围从数百至数万倍不等,使用负反馈方可保证电路的稳定运作。
但是这并不代表运算放大器不能连接成正回馈(positive feedback),相反地,在很多需要产生震荡讯号的系统中,正回馈组态的运算放大器是很常见的组成元件。
开环回路运算放大器如图1-2。
当一个理想运算放大器采用开回路的方式工作时,其输出与输入电压的关系式如下:Vout = ( V+ -V-) * Aog其中Aog代表运算放大器的开环回路差动增益(open-loop differential gai由于运算放大器的开环回路增益非常高,因此就算输入端的差动讯号很小,仍然会让输出讯号「饱和」(saturation),导致非线性的失真出现。
因此运算放大器很少以开环回路出现在电路系统中,少数的例外是用运算放大器做比较器(comparator),比较器的输出通常为逻辑准位元的「0」与「1」。
闭环负反馈将运算放大器的反向输入端与输出端连接起来,放大器电路就处在负反馈组态的状况,此时通常可以将电路简单地称为闭环放大器。
闭环放大器依据输入讯号进入放大器的端点,又可分为反相(inverting)放大器与非反相(non-inverting)放大器两种。
反相闭环放大器如图1-3。
假设这个闭环放大器使用理想的运算放大器,则因为其开环增益为无限大,所以运算放大器的两输入端为虚接地(virtual ground),其输出与输入电压的关系式如下:Vout = -(Rf / Rin) * Vin图1-3反相闭环放大器非反相闭环放大器如图1-4。
假设这个闭环放大器使用理想的运算放大器,则因为其开环增益为无限大,所以运算放大器的两输入端电压差几乎为零,其输出与输入电压的关系式如下:Vout = ((R2 / R1) + 1) * Vin图1-4非反相闭环放大器闭环正回馈将运算放大器的正向输入端与输出端连接起来,放大器电路就处在正回馈的状况,由于正回馈组态工作于一极不稳定的状态,多应用于需要产生震荡讯号的应用中。
理想运放和理想运放条件在分析和综合运放应用电路时,大多数情况下,可以将集成运放看成一个理想运算放大器。
理想运放顾名思义是将集成运放的各项技术指标理想化。
由于实际运放的技术指标比较接近理想运放,因此由理想化带来的误差非常小,在一般的工程计算中可以忽略。
理想运放各项技术指标具体如下:1.开环差模电压放大倍数Aod = ∞;2.输入电阻Rid = ∞;输出电阻Rod =03.输入偏置电流IB1=IB2=0 ;4.失调电压UIO 、失调电流IIO 、失调电压温漂、失调电流温漂均为零;5.共模抑制比CMRR = ∞;;6.-3dB带宽fH = ∞ ;7.无内部干扰和噪声。
实际运放的参数达到如下水平即可以按理想运放对待:电压放大倍数达到104~105倍;输入电阻达到105Ω;输出电阻小于几百欧姆;外电路中的电流远大于偏置电流;失调电压、失调电流及其温漂很小,造成电路的漂移在允许范围之内,电路的稳定性符合要求即可;输入最小信号时,有一定信噪比,共模抑制比大于等于60dB;带宽符合电路带宽要求即可。
运算放大器中的虚短和虚断含意理想运放工作在线性区时可以得出二条重要的结论:虚短因为理想运放的电压放大倍数很大,而运放工作在线性区,是一个线性放大电路,输出电压不超出线性范围(即有限值),所以,运算放大器同相输入端与反相输入端的电位十分接近相等。
在运放供电电压为±15V时,输出的最大值一般在10~13V。
所以运放两输入端的电压差,在1mV以下,近似两输入端短路。
这一特性称为虚短,显然这不是真正的短路,只是分析电路时在允许误差范围之内的合理近似。
虚断由于运放的输入电阻一般都在几百千欧以上,流入运放同相输入端和反相输入端中的电流十分微小,比外电路中的电流小几个数量级,流入运放的电流往往可以忽略,这相当运放的输入端开路,这一特性称为虚断。
显然,运放的输入端不能真正开路。
运用“虚短”、“虚断”这两个概念,在分析运放线性应用电路时,可以简化应用电路的分析过程。
运算放大器构成的运算电路均要求输入与输出之间满足一定的函数关系,因此均可应用这两条结论。
如果运放不在线性区工作,也就没有“虚短”、“虚断”的特性。
如果测量运放两输入端的电位,达到几毫伏以上,往往该运放不在线性区工作,或者已经损坏。
重要指标输入失调电压UIO一个理想的集成运放,当输入电压为零时,输出电压也应为零(不加调零装置)。
但实际上集成运放的差分输入级很难做到完全对称,通常在输入电压为零时,存在一定的输出电压。
输入失调电压是指为了使输出电压为零而在输入端加的补偿电压。
实际上是指输入电压为零时,将输出电压除以电压放大倍数,折算到输入端的数值称为输入失调电压,即UIO的大小反应了运放的对称程度和电位配合情况。
UIO越小越好,其量级在2mV~20mV之间,超低失调和低漂移运放的UIO一般在1μV~20μV之间输入失调电流IIO当输出电压为零时,差分输入级的差分对管基极的静态电流之差称为输入失调电流IIO ,即由于信号源内阻的存在,IIO的变化会引起输入电压的变化,使运放输出电压不为零。
IIO愈小,输入级差分对管的对称程度越好,一般约为1nA~0.1µA。
输入偏置电流IIB集成运放输出电压为零时,运放两个输入端静态偏置电流的平均值定义为输入偏置电流,即从使用角度来看,偏置电流小好,由于信号源内阻变化引起的输出电压变化也愈小,故输入偏置电流是重要的技术指标。
一般IIB约为1nA~0.1µA。
输入失调电压温漂△UIO/△T输入失调电压温漂是指在规定工作温度范围内,输入失调电压随温度的变化量与温度变化量的比值。
它是衡量电路温漂的重要指标,不能用外接调零装置的办法来补偿。
输入失调电压温漂越小越好。
一般的运放的输入失调电压温漂在±1mV/℃~±20mV/℃之间。
输入失调电流温漂△IIO/△T在规定工作温度范围内,输入失调电流随温度的变化量与温度变化量之比值称为输入失调电流温漂。
输入失调电流温漂是放大电路电流漂移的量度,不能用外接调零装置来补偿。
高质量的运放每度为几个pA。
最大差模输入电压Uidmax最大差模输入电压Uidmax是指运放两输入端能承受的最大差模输入电压。
超过此电压,运放输入级对管将进入非线性区,而使运放的性能显著恶化,甚至造成损坏。
根据工艺不同,Uidmax约为±5V~±30V。
最大共模输入电压Uicmax最大共模输入电压Uicmax是指在保证运放正常工作条件下,运放所能承受的最大共模输入电压。
共模电压超过此值时,输入差分对管的工作点进入非线性区,放大器失去共模抑制能力,共模抑制比显著下降。
最大共模输入电压Uicmax定义为,标称电源电压下将运放接成电压跟随器时,使输出电压产生1%跟随误差的共模输入电压值;或定义为下降6dB时所加的共模输入电压值。
开环差模电压放大倍数Aud是指集成运放工作在线性区、接入规定的负载,输出电压的变化量与运放输入端口处的输入电压的变化量之比。
运放的Aud在6 0~120dB之间。
不同功能的运放,Aud相差悬殊。
差模输入电阻Rid是指输入差模信号时运放的输入电阻。
Rid越大,对信号源的影响越小,运放的输入电阻Rid一般都在几百千欧以上。
运放共模抑制比KCMR的定义与差分放大电路中的定义相同,是差模电压放大倍数与共模电压放大倍数之比,常用分贝数来表示。
不同功能的运放,KCMR 也不相同,有的在60~70dB之间,有的高达180dB。
KCMR越大,对共模干扰抑制能力越强。
开环带宽BW开环带宽又称-3dB带宽,是指运算放大器的差模电压放大倍数Aud在高频段下降3dB所对应的频率fH。
单位增益带宽BWG是指信号频率增加,使Aud下降到1时所对应的频率f T,即Aud为0dB时的信号频率fT。
它是集成运放的重要参数。
741型运放的f T=7Hz,是比较低的。
转换速率SR (压摆率)转换速率SR 是指放大电路在电压放大倍数等于1的条件下,输入大信号(例如阶跃信号)时,放大电路输出电压对时间的最大变化速率,见图7-1-1。
它反映了运放对于快速变化的输入信号的响应能力。
转换速率SR的表达式为转换速率SR是在大信号和高频信号工作时的一项重要指标,目前一般通用型运放压摆率在1~10V/µs左右。