第6章-代数方程与差分方程模型
- 格式:ppt
- 大小:2.29 MB
- 文档页数:41
差分方程知识点总结一、差分方程的概念差分方程是指用差分运算符号(Δ)表示的方程。
差分运算符Δ表示的是某一变量在两个连续时间点的变化量。
差分方程通常用于描述离散时间下的变化规律,比如时间序列、离散动力系统等。
二、常见的差分方程1. 一阶线性差分方程一阶线性差分方程的一般形式为:y(t+1) - y(t) = a*y(t) + b,其中a和b为常数。
一阶线性差分方程常常用于描述某一变量在不同时间点之间的线性变化规律。
2. 二阶线性差分方程二阶线性差分方程的一般形式为:y(t+2) - 2*y(t+1) + y(t) = a*y(t) + b,其中a和b为常数。
二阶线性差分方程通常用于描述某一变量在不同时间点之间的二阶线性变化规律。
3. 线性非齐次差分方程线性非齐次差分方程的一般形式为:y(t+1) - a*y(t) = b,其中a和b为常数。
线性非齐次差分方程通常用于描述某一变量在不同时间点之间的线性变化规律,并且受到外部条件的影响。
4. 滞后差分方程滞后差分方程的一般形式为:y(t+1) = f(y(t)),其中f为某一函数。
滞后差分方程通常用于描述某一变量在不同时间点之间的非线性变化规律。
5. 差分方程组差分方程组是指由多个差分方程组成的方程组。
差分方程组通常用于描述多个变量之间的变化规律,比如混合动力系统、多变量时间序列等。
三、差分方程的解法1. 特征根法特征根法是解一阶或二阶线性差分方程的一种常用方法。
通过求解特征方程,可以求得差分方程的通解。
2. 递推法递推法是解一阶或二阶非齐次差分方程的一种常用方法。
通过递推关系,可以求得差分方程的特解。
3. Z变换法Z变换法是解一阶或二阶差分方程的一种常用方法。
通过对差分方程进行Z变换,可以将其转换为等价的代数方程,然后求解其解。
4. 数值解法对于复杂的差分方程,通常采用数值解法求解。
数值解法包括Euler法、Runge-Kutta法、递推法等,通过迭代计算逼近差分方程的解。
差分方程及其应用在经济与管理及其它实际问题中,许多数据都是以等间隔时间周期统计的。
例如,银行中的定期存款是按所设定的时间等间隔计息,外贸出口额按月统计,国民收入按年统计,产品的产量按月统计等等。
这些量是变量,通常称这类变量为离散型变量。
描述离散型变量之间的关系的数学模型成为离散型模型。
对取值是离散化的经济变量,差分方程是研究他们之间变化规律的有效方法。
本章介绍差分方程的基本概念、解的基本定理及其解法,与微分方程的基本概念、解的基本定理及其解法非常类似,可对照微分方程的知识学习本章内容。
§1 基本概念 线性差分方程解的基本定理一、 基本概念1、函数的差分对离散型变量,差分是一个重要概念。
下面给出差分的定义。
设自变量t 取离散的等间隔整数值:,,,, 210±±=t t y 是t 的函数,记作)(t f y t =.显然,t y 的取值是一个序列。
当自变量由t 改变到1+t 时,相应的函值之差称为函数)(t f y t =在t 的一阶差分,记作t y ∆,即)()1(1t f t f y y y t t t -+=-=+∆。
由于函数)(t f y t =的函数值是一个序列,按一阶差分的定义,差分就是序列的相邻值之差。
当函数)(t f y t =的一阶差分为正值时,表明序列是增加的,而且其值越大,表明序列增加得越快;当一阶差分为负值时,表明序列是减少的.例如:设某公司经营一种商品,第t 月初的库存量是)(t R ,第t 月调进和销出这种商品的数量分别是)(t P 和)(t Q ,则下月月初,即第1+t 月月初的库存量)1(+t R 应是)()()()1(t Q t P t R t R -+=+,若将上式写作)()()()1(t Q t P t R t R -=-+,则等式两端就是相邻两月库存量的改变量。
若记))()1()(t R t R t R -+=∆,并将理解为库存量)(t R 是时间t 的函数,则称上式为库存量函数)(t R 在t 时刻(此处t 以月为单位)的差分。
数学建模教学大纲【课程编码】 JSZB0240【适用专业】 信息与计算科学【课 时】 78【学 分】 4【课程性质、目标和要求】数学建模是信息与计算科学专业的一专业课。
它是研究如何将数学方法和计算机知识结合起来用于解决实际问题的一门边缘交叉学科,是集经典数学、现代数学和实际问题为一体的一门新型课程,是应用数学解决实际问题的重要手段和途径。
本课程主要介绍数学建模的概述、初等模型、简单优化模型、微分方程模型、差分方程模型、概率统计模型、图论模型、线性规划模型等模型的基本建模方法及求解方法.数学建模是继本科生高等数学、工程数学之后为了进一步提高运用数学知识解决实际问题的基本技能,培育和训练综合能力所开设的一门新学科。
通过具体实例的引入使学生掌握数学建模基本思想、基本方法、基本类型,学会进行科学研究的一般过程,并能进入一个实际操作的状态。
通过数学模型有关概念、特征的学习和数学模型应用实例的介绍,培养学生数学推导计算和简化分析能力,熟练运用计算机能力;培养学生联想、洞察能力,综合分析能力;培养学生应用数学方法解决实际问题的能力。
【教学时间安排】本课程计4学分,78学时(理论学时54,实验学时24) 学时分配如下:序号课程内容课时备注(教学形式)1建立数学模型4课堂讲授 作业 辅导2初等模型4课堂讲授 作业 辅导3简单的优化模型4课堂讲授 作业 辅导4数学规划模型8课堂讲授 作业 辅导5微分方程模型6课堂讲授 作业 辅导6差分方程模型4课堂讲授 作业辅导7离散模型6课堂讲授 作业 辅导8概率统计模型8课堂讲授 作业 辅导9动态优化模型6课堂讲授 作业 辅导10大作业讲评:露天矿生产的车辆安排4课堂讲授 课堂讨论11实验1:LINDO软件的使用方法4上机练习 12实验2:LINGO软件的使用方法4上机练习13实验3:用LINDO/LINGO软件包求解部分优化建模赛题4上机练习14实验4:用Matlab进行统计回归分析4上机练习15实验5:用Matlab作散点插值4上机练习16实验6:用Matlab作数据拟合4上机练习合 计78【教学内容要点】第一章 建立数学模型一、学习目的要求 使学生正确了解数学描述和数学建模不同于常规数学理论的思维特征,了解数学模型的意义及分类,掌握建立数学模型的一般方法及步骤。
数学建模第五版姜启源课后题答案第6章代码
第六章代数方程与差分方程模型代码
概述差分方程的类型
6.1贷款购房
6.2管住嘴迈开腿
6.3动物的繁殖与收获
6.4中国人口增长预测
一、差分方程的基本概念
1.差分的定义
定义规定t只取非负整数,设函数y,表示变量y在t点的取值y=f(t),t=0,?,?,,土n,.
称
Ay,=y1-y,=f(t+1)-f(t)为函数y,的一阶差分;称A2y,=△(Ay,)=Ay1-Ay.
=(y42-y21)-(y21-y)
=y42-2y1+y
依此类推,函数的n阶差分定义为:A"y,=△(A-1y)
二阶及二阶以上的差分统称为高阶差分。
例1求△(t2),△2(t2),A3(t2).
解设y,=t2,则Ay,=A(t2)=(t+1)2-t2=2t+1,
△2(y,)=A2(t2)=△(Ay,)=△(2t+1)
=(2(t+1)+1)-(2t+1)
=2,A2(y,)=△(A2y,)
=△(2)=2-2=0.
2.差分方程
例设某种商品t时期的供给量S,与需求量D都是这一时期价格P,的线性函数:S,=-a+b(a,b>0),D=c-d(c,d>0).
则t时期的价格P,由t-1时期的价格P.1与供给量及需求量之差S.a-D.按以下关系确定P=P1-2(S1-D-1)(a为常数),即P-[1-2(b+d)JP,=a(a+c).。
第八讲 差分方程模型一、差分方程介绍规定t 只取非负整数。
记为变量在t 点的取值,则称t y y t t t y y y −=Δ+1为的一阶向前差分,简称差分,称Δ为的二阶差分。
类似地,可以定义的阶差分。
t y t t t t t y t t y y y y y y +−=Δ−Δ=ΔΔ=+++12122)(t y t y n t ny Δ由及的差分给出的方程称为的差分方程,其中含的最高阶差分的阶数称为该差分方程的阶。
差分方程也可以写成不显含差分的形式。
例如,二阶差分方程也可改写成t y t 、t y t y t y 02=+Δ+Δt t t y y y 012=+−++t t t y y y 。
满足一差分方程的序列称为差分方程的解。
类似于微分方程情况,若解中含有的独立常数的个数等于差分方程的阶数时,称此解为该差分方程的通解。
若解中不含任意常数,则称此解为满足某些初值条件的特解。
t y 称如下形式的差分方程)(110t b y a y a y a t n t n t n =+++−++L (1) 为阶常系数线性差分方程,其中是常数,n n a a a ,,,10L 00≠a 。
其对应的齐次方程为0110=+++−++t n t n t n y a y a y a L (2)容易证明,若序列与均为(2)的解,则也是方程(2)的解,其中为任意常数。
若是方程(2)的解,是方程(1)的解,则也是方程(1)的解。
)1(t y )2(t y )2(2)1(1t tt y c y c y +=21,c c )1(t y )2(t y )2()1(t t t y y y +=方程(1)可用如下的代数方法求其通解: (I )先求解对应的特征方程(3)00110=+++−a a a n nL λλ(II )根据特征根的不同情况,求齐次方程(2)的通解。
(i )若特征方程(3)有n 个互不相同的实根n λλ,,1L ,则齐次方程(2)的通解为t n n t c c λλ++L 11 (为任意常数)n c c ,,1L (ii )若λ是特征方程(3)的重根,通解中对应于k λ的项为t k k tc c λ)(11−++L ,),,1(k i c i L =为任意常数。
差分方程的特征方程差分方程是描述离散时间系统动态行为的数学模型。
在差分方程中,特征方程是一个重要的概念,它能够帮助我们理解和分析系统的稳定性和响应。
什么是差分方程在离散时间系统中,我们通常用差分方程来描述系统的动态行为。
与连续时间系统不同,离散时间系统是在离散的时间点上进行状态更新和信号处理的。
差分方程是描述离散时间系统中状态变化的数学方程。
差分方程通常采用递推的方式来描述系统的动态行为。
它包含了当前时刻的状态和之前时刻的状态之间的关系。
通过递推公式,我们可以根据当前时刻的状态来计算下一个时刻的状态。
差分方程的一般形式可以表示为:y[n] = f(y[n-1], y[n-2], ..., y[n-k])其中,y[n]表示第n个时刻的状态,f()是一个函数,它描述了当前时刻状态和之前时刻状态之间的关系。
k表示差分方程的阶数,它决定了递推公式中需要考虑的之前时刻的状态的个数。
差分方程的特征方程差分方程的特征方程是一个与差分方程有关的代数方程。
特征方程的解决方案可以帮助我们理解和分析差分方程的稳定性和响应。
特征方程的一般形式可以表示为:a0 r^n + a1 r^(n-1) + ... + an-1 r + an = 0其中,r是特征方程的解,n是差分方程的阶数,a0, a1, ..., an是差分方程中的系数。
特征方程的解决方案可以分为两种情况:实数解和复数解。
实数解如果特征方程的解是实数,那么差分方程的解也将是实数。
实数解的情况下,我们可以通过解特征方程来确定差分方程的稳定性和响应。
特征方程的实数解通常可以分为三种情况:1.不同的实数解:特征方程的根是不同的实数。
在这种情况下,差分方程的解将包含不同的指数项,每个指数项对应一个实数解。
差分方程的稳定性取决于实数解的大小和符号。
2.重复的实数解:特征方程的根是重复的实数。
在这种情况下,差分方程的解将包含相同的指数项,每个指数项对应一个实数解。
差分方程的稳定性取决于实数解的重复次数和符号。