初二上数的开方单元测试题(附答案)1 - 副本
- 格式:doc
- 大小:135.50 KB
- 文档页数:2
第11章数的开方数学八年级上册-单元测试卷-华师大版(含答案)一、单选题(共15题,共计45分)1、估计的值应在()A.3和4之间B.4和5之间C.5和6之间D.6和7之间2、下列各式中正确是()A. B. C. D.3、的相反数是()A. B.- C.- D.4、在实数0,-,2,-中最小的实数为()A.-2B.-C.0D.-5、下列说法正确的是()A.非负实数就是指一切正数B.数轴上任意一点都对应一个有理数C.若是实数,则a为任意实数D.若|a|= -a,则a<06、7-2的算术平方根是A. B.7 C. D.47、下列说法中错误的是()A.数轴上的点与全体实数一一对应B.a,b为实数,若a<b,则C.a,b为实数,若a<b,则D.实数中没有最小的数8、下列说法中不正确的是( )A.任何实数都有一个立方根B.任何正数的两个平方根的和等于0C.自然数与数轴上的点一一对应D.非负数可以实施开方运算9、下列各数中,最小的数是()A.-1B.0C.1D.10、下列说法:①的相反数是;②算术平方根等于它本身的数只有零;③数轴上的点不是表示有理数,就是表示无理数;④若,都是无理数,则一定是无理数.其中正确的有().A.4个B.3个C.2个D.1个11、下列计算正确的是()A.2017 0=0B. =±9C.(x 2)3=x 5D.3 ﹣1=12、4的平方根是()A.2B.16C.D.13、3的平方根是()A. B. C. D.314、计算- + 的结果是()A.3B.C. D.515、4的算术平方根是( )A. B. C.±2 D.2二、填空题(共10题,共计30分)16、已知数轴上的点A、B所对应的实数分别是 -1.2和,那么A、B两点之间的距离为________17、计算:________.18、满足的整数有________个19、如图,把半径为 0.5的圆放到数轴上,圆上一点 A与数轴上表示 1的点重合,圆沿着数轴正方向滚动一周,此时点 A表示的数是________.(结果保留π)20、若都是无理数,且,则的值分别是________(填一组满足条件的值).21、若 a2=9,=﹣2,则 a+b 等于________.22、黄金分割数是一个很奇妙的数,大量应用于艺术、建筑和统计决策等方面,请向问-1最接近的整数为________.23、计算:+ =________.24、 ________3.(选填“>”、“<”或“=”)25、8的算术平方根是________;8的立方根是________.三、解答题(共5题,共计25分)26、计算:27、实数a、b、c在数轴上的对应点如图所示,化简.28、已知5a+2的立方根是3,4b+1的算术平方根是3,c是的整数部分,求a+b+c的值.29、已知2a的平方根是±2,3是3a+b的立方根,求a﹣2b的值.30、已知2a-1的平方根是±3,3a+b-9的立方根是2,c是的整数部分,求a+b+c的平方根.参考答案一、单选题(共15题,共计45分)1、A2、A3、B4、B5、C6、A7、B8、C9、A10、D11、D13、A14、B15、D二、填空题(共10题,共计30分)16、17、18、19、20、21、22、23、24、25、三、解答题(共5题,共计25分)27、28、29、30、。
华东师大版八年级数学上册《第十一章数的开方》章节检测卷-带含答案学校:___________班级:___________姓名:___________考号:___________一、选择题(每小题3分,共30分) 1.化简 |1−√2|+1的结果是 ( )A.2−√2B.2+√2C.√2D.22.计算:-64 的立方根与16的平方根的和是 ( )A.0B. -8C.0或-8D.8或-83.下列实数中,最小的是 ( )A.3 B √2 C √3 D.04.已知 m =√4+√3,则以下对m 的估算正确的是 ( )A.2<m<3B.3<m<4C.4<m<5D.5<m<65.下列说法正确的是 ( ) A.18的立方根是 ±12 B. -49 的平方根是±7C.11的算术平方根是 √11D.(−1)²的立方根是-16.下列各组数中互为相反数的是 ( )A. -2 与 √(−2)2B. -2 与 √−83C. -2 与 −12 D.2 与|-2|7.一个正数的两个平方根分别是2a-1与-a+2,则a 的值为 ( )A.1B. -1C.2D. -28.下列各数:3.14 π3 √16 2.131 331 333 1…(相邻两个1之3的个数逐次多1) 2321,√−93.其中无理数的个数为 ( )A.2个B.3个C.4个D.5个9.实数a、b、c在数轴上的对应点的位置如图所示,则正确的结论是 ( )A.|a|>4B. c-b>0C. ac>0D. a+c>010.已知min(√x,x2,x)表示取三个数中最小的那个数,例如:当x=9时min(√x,x2,x)=min(√9,92,9)=3,则当min(√x,x2,x)=116时,x的值为 ( )A.116B.18C.14D.12二、填空题(每小题3分,共15分)11.计算:(−1)2+√9= .12.已知a、b满足(a−1)2+√b+2=0,则a+b= .13.已知a2=16,√b3=2且 ab<0,则√a+b= .14.我们知道√a≥0,所√aₐ有最小值.当x= 时2+√3x−2有最小值.15.请你观察思考下列计算过程:∴112=121 ∴√121=11;∵1112=12321,∴√12321=111⋯⋯由此猜想:√12345678987654321= .三、解答题(本大题共9个小题,满分75分)16.(6分)计算:(1)|−2|+√−83−√16;(2)6×√19−√273+(√2)2.17.已知(x−7)²=121,(y+1)³=−0.064求代数式√x−2−√x+10y+√245y3的值.18.(6分)求下列各式中的x的值:(1)(x+1)²−1=0;(2)23(x+1)3+94=0.19.(8分)阅读材料:如果xⁿ=a,那么x叫做a的n次方根.例如:因为2⁴=16,(−2)⁴=16,所以2和-2都是16的4次方根,即16的4次方根是2和-2,记作±√164=±2.根据上述材料回答问题:(1)求81 的4次方根和32 的5 次方根;(2)求10°的n次方根.20.(9分)求下列代数式的值.(1)如果a²=4,b的算术平方根为3,求a+b的值;(2)已知x是25的平方根,y是16的算术平方根,且.x<y,求x-y的值.x−y21.(9分)如图是一个无理数筛选器的工作流程图.(1)当x为16时,y= ;(2)是否存在输入有意义的x值后,却始终输不出y值? 如果存在,写出所有满足要求的x值,如果不存在,请说明理由;(3)如果输入x值后,筛选器的屏幕显示“该操作无法运行”,请你分析输入的x值可能是什么情况;(4)当输出的y值√3₃时,判断输入的x值是否唯一,如果不唯一,请出其中的两个.22.(10分)阅读下面的文字,解答问题.大家知道√2是无理数,而无理数是无限不循环小数,因此、√2的小数部分我们不可能全部地写出来,于是小明用√2−1来表示√2的小数部分,你同意小明的表示方法吗?事实上,小明的表示方法是有道理的,因为√2的整数部分是1,将这个数减去其整数部分,差就是小数部分.又例如:√4<√7<√9,即2<√7<3∴√7的整数部分为2,小数部分为√7−2.请解答:(1)√57的整数部分是,小数部分是;(2)如果√11的小数部分为a,√7的整数部分为b,求|a−b|+√11的值;(3)已知:9+√5=x+y,其中x是整数,且0<y<1,求x-y的相反数.x−y23.(10分)小丽想用一块面积为400cm²的正方形纸片,沿着边的方向裁出一块面积为300cm²的长方形纸片.(1)请帮小丽设计一种可行的裁剪方案;(2)若使长方形的长宽之比为3:2,小丽能用这块纸片裁出符合要求的纸片吗? 若能,请帮小丽设计一种裁剪方案;若不能,请简要说明理由.24.(11分)如图1,长方形OABC 的边OA 在数轴上,点O 为原点,长方形OABC 的面积为12,OC 边的长为3.(1)数轴上点 A 表示的数为 ;(2)将长方形OABC 沿数轴水平移动,移动后的长方形记为( O ′A ′B ′C ′,移动后的长方形(O ′A ′B ′C ′与原长方形OABC 重叠部分(如图2 中阴影部分)的面积记为S.①当S 恰好等于原长方形OABC 面积的一半时,求数轴上点. A ′表示的数;②设点A 的移动距离 AA ′=x.i 当S=4时,求x 的值;ii 点 D 为线段 AA'的中点,点 E 在线段0O ′上,且 OE =12OO ′,当点D 、E 表示的数互为相反数时,求x 的值. 参考答案1. C2. C3. D4. B5. C6. A7. B8. B9. B 10. C11.4 12. -1 13.214 2315.111 1111116.解: (1)|−2|+√−83−√16=2−2−4=−4.(2)6×√19−√273+(√2)2=6×13−3+2=2−3+2=1.17.解: :(x −7)²=121,∴x −7=±11, 则x=18 或x= -4 又∵x -2≥0 ∴x≥2 ∴x=18.∵(y+1)³= -0.064 ∴y+1= -0.4 ∴y= -1.4 ∴√x −2 - √x +10y + 245y =√18−2−√18+10×(−1.4)−√245×(−1.4)3=√16−√4+√−3433 =4-2-7 = -5.(2)6×√19−√273+(√2)2=6×13−3+2=2−3+2=1.18.解: (1)∵(x +1)²−1=0,∴(x +1)²=1,∴x +1=±1,解得x=0或x=-2.(2)∵23(x +1)3+94=0,∴8(x +1)3+27=0,∴(x +1)3=−278,∴x +1=−32,解得 x =−52.19.解:(1)因为 3⁴=81,(−3)⁴=81,所以3 和-3 都是81的4次方根,即81的4次方根是±3;因为 2⁵=32,所以32的5次方根是2.(2)当n 为奇数时 10" 的n 次方根为10;当n 为偶数时 10" 的n 次方根为±10.20.解:(1)∵a²=4 ∴a=±2 ∵b 的算术平方根为3 ∴b=9 ∴a+b=-2+9=7或a+b=2+9=11.(2)∵x 是25的平方根 ∴x=±5.∵y 是16的算术平方根 ∴y=4.∵x<y ∴x= -521.解:(1 √2(2)存在.当x=0,1时,始终输不出y 值.理由:0,1的算术平方根是0,1,一定是有理数.(3)当x<0时,筛选器无法运行.(4)x 值不唯一 x=3或x=9.(答案不唯一)22.解: (1)7√57−7(2 )∵3<√11<4,∴a =√11−3,∴2<√7<3,∴b =2,∴|a −b|+√11=|√11 - 3−2|+√11=5−√11+√11=5.(3)∵2<√5<3,∴11<9+√5<12,∵9+√5=x +y,其中x 是整数 且0<y<1 ∴x =11,y =9+√5−11=√5−2,∴x −y =11−(√5−2)=13−√5∴x -y 的相反数为 √5−13.23.解:(1)设面积为400 cm² 的正方形纸片的边长为a cm∴a²=400.又∵a>0 ∴a=20.又∵要裁出的长方形面积为300 cm²∴若以原正方形纸片的边长为长方形的长,则长方形的宽为300÷20=15( cm)∴可以以正方形一边为长方形的长,在其邻边上截取长为15cm 的线段作为宽即可裁出符合要求的长方形.(2)∵长方形纸片的长宽之比为3:2∴设长方形纸片的长为3x cm 则宽为2x cm∴6x²=300,∴x²=50.又∵ x >0,∴x =√50∴长方形纸片的长为 3√50.又∵ √50>√49=7,∴3√50>21>20∴ 小丽不能用这块纸片裁出符合要求的纸片.24.解:(1)4(2)①∵S 等于原长方形OABC 面积的一半 ∴S=6 ∴12-3×AA'=6 解得. AA ′=2.当向左运动时,如图1,( OA ′=OA −AA ′=4−2=2,∴点A'表示的数为2;当向右运动时,如图2,∵ ∴OA ′=OA +AA ′=4+2=6,.∴ 点A'表示的数为6.所以点 A'表示的数.为2 或6.②i 左移时,由题意得O C ⋅OA ′=4,∵OC =3,∴OA ′=43,∴:x =OA −OA ′=4−43= 83;同法可得,右移时, x =83,故当S=4时x =83.ii 如图1,当原长方形OABC 向左移动时,点 D 表示的数为 4−12x,点 E 表示的数为 −12x,由题意可得方程 4−12x +(−12x)=0,解得x=4; 如图2,当原长方形OABC 向右移动时,点D 、E 表示的数都是正数,不符合题意.综上所述,x 的值为4.。
《第11章数的开方》一、选择题(共10小题,每小题3分,满分30分)1.一个正数的正的平方根是m,那么比这个正数大1的数的平方根是()A.m2+1 B.±C.D.±2.一个数的算术平方根是,这个数是()A.9 B.3 C.23 D.3.已知a的平方根是±8,则a的立方根是()A.2 B.4 C.±2 D.±44.下列各数,立方根一定是负数的是()A.﹣a B.﹣a2C.﹣a2﹣1 D.﹣a2+15.已知+|b﹣1|=0,那么(a+b)2007的值为()A.﹣1 B.1 C.32007D.﹣320076.若=1﹣x,则x的取值范围是()A.x>1 B.x≥1 C.x<1 D.x≤17.在﹣,,,﹣,2.121121112中,无理数的个数为()A.2 B.3 C.4 D.58.若a<0,则化简||的结果是()A.0 B.﹣2a C.2a D.以上都不对9.实数a,b在数轴上的位置如图,则有()A.b>a B.|a|>|b| C.﹣a<b D.﹣b>a10.下列命题中正确的个数是()A.带根号的数是无理数B.无理数是开方开不尽的数C.无理数就是无限小数D.绝对值最小的数不存在二、填空题11.若x2=8,则x= .12.的平方根是.13.如果有意义,那么x的值是.14.a是4的一个平方根,且a<0,则a的值是.15.当x= 时,式子+有意义.16.若一正数的平方根是2a﹣1与﹣a+2,则a= .17.计算: += .18.如果=4,那么a= .19.﹣8的立方根与的算术平方根的和为.20.当a2=64时, = .21.若|a|=, =2,且ab<0,则a+b= .22.若a、b都是无理数,且a+b=2,则a,b的值可以是(填上一组满足条件的值即可).23.绝对值不大于的非负整数是.24.请你写出一个比大,但比小的无理数.25.已知+|y﹣1|+(z+2)2=0,则(x+z)2008y= .三、解答题(共40分)26.若5x+19的算术平方根是8,求3x﹣2的平方根.27.计算:(1)+;(2)++.28.解方程.(1)(x﹣1)2=16;(2)8(x+1)3﹣27=0.29.将下列各数按从小到大的顺序重新排成一列.2,,﹣,0,﹣.30.著名的海伦公式S=告诉我们一种求三角形面积的方法,其中p表示三角形周长的一半,a、b、c分别三角形的三边长,小明考试时,知道了三角形三边长分别是a=3cm,b=4cm,c=5cm,能帮助小明求出该三角形的面积吗?31.已知实数a、b、c、d、m,若a、b互为相反数,c、d互为倒数,m的绝对值是2,求的平方根.32.已知实数a,b满足条件+(ab﹣2)2=0,试求+++…+的值.《第11章数的开方》参考答案与试题解析一、选择题(共10小题,每小题3分,满分30分)1.一个正数的正的平方根是m,那么比这个正数大1的数的平方根是()A.m2+1 B.±C.D.±【考点】平方根.【分析】这个正数可用m表示出来,比这个正数大1的数也能表示出来,开方可得出答案.【解答】解:由题意得:这个正数为:m2,比这个正数大1的数为m2+1,故比这个正数大1的数的平方根为:±,故选D.【点评】本题考查算术平方根及平方根的知识,难度不大,关键是根据题意表示出这个正数及比这个正数大1的数.2.一个数的算术平方根是,这个数是()A.9 B.3 C.23 D.【考点】算术平方根.【分析】根据算术平方根的定义解答即可.【解答】解:3的算术平方根是,所以,这个数是3.故选B.【点评】本题考查了算术平方根的定义,是基础题,熟记概念是解题的关键.3.已知a的平方根是±8,则a的立方根是()A.2 B.4 C.±2 D.±4【考点】立方根;平方根.【分析】根据乘方运算,可得a的值,根据开方运算,可得立方根.【解答】解;已知a的平方根是±8,a=64,=4,故选:B.【点评】本题考查了立方根,先算乘方,再算开方.4.下列各数,立方根一定是负数的是()A.﹣a B.﹣a2C.﹣a2﹣1 D.﹣a2+1【考点】立方根.【分析】根据正数的立方根是正数,0的立方根是0,负数的立方根是负数,结合四个选项即可得出结论.【解答】解:∵﹣a2﹣1≤﹣1,∴﹣a2﹣1的立方根一定是负数.故选C.【点评】本题考查了立方根,牢记“正数的立方根是正数,0的立方根是0,负数的立方根是负数”是解题的关键.5.已知+|b﹣1|=0,那么(a+b)2007的值为()A.﹣1 B.1 C.32007D.﹣32007【考点】非负数的性质:算术平方根;非负数的性质:绝对值.【分析】本题首先根据非负数的性质“两个非负数相加,和为0,这两个非负数的值都为0.”得到关于a、b的方程组,然后解出a、b的值,再代入所求代数式中计算即可.【解答】解:依题意得:a+2=0,b﹣1=0∴a=﹣2且b=1,∴(a+b)2007=(﹣2+1)2007=(﹣1)2007=﹣1.故选A.【点评】本题考查了非负数的性质,初中阶段有三种类型的非负数:(1)绝对值;(2)偶次方;(3)二次根式(算术平方根).当它们相加和为0时,必须满足其中的每一项都等于0.根据这个结论可以求解这类题目.6.若=1﹣x,则x的取值范围是()A.x>1 B.x≥1 C.x<1 D.x≤1【考点】二次根式的性质与化简.【分析】等式左边为算术平方根,结果为非负数,即1﹣x≥0.【解答】解:由于二次根式的结果为非负数可知,1﹣x≥0,解得x≤1,故选D.【点评】本题利用了二次根式的结果为非负数求x的取值范围.7.在﹣,,,﹣,2.121121112中,无理数的个数为()A.2 B.3 C.4 D.5【考点】无理数.【分析】无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此即可判定选择项.【解答】解:﹣,,﹣是无理数,故选:B.【点评】此题主要考查了无理数的定义,其中初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及像0.1010010001…,等有这样规律的数.8.若a<0,则化简||的结果是()A.0 B.﹣2a C.2a D.以上都不对【考点】二次根式的性质与化简.【分析】根据=|a|,再根据绝对值的性质去绝对值合并同类项即可.【解答】解:原式=||a|﹣a|=|﹣a﹣a|=|﹣2a|=﹣2a,故选:B.【点评】此题主要考查了二次根式的性质和化简,关键是掌握=|a|.9.实数a,b在数轴上的位置如图,则有()A.b>a B.|a|>|b| C.﹣a<b D.﹣b>a【考点】实数与数轴.【分析】根据数轴上的点表示的数右边的总比左边的大,绝对值的定义,不等式的性质,可得答案.【解答】解:A、数轴上的点表示的数右边的总比左边的大,b>a,故A正确;B绝对值是数轴上的点到原点的距离,|a|>|b|,故B正确;C、|﹣a|>|b,|得﹣a>b,故C错误;D、由相反数的定义,得﹣b>a,故D正确;故选:C.【点评】本题考查了实数与数轴,利用数轴上的点表示的数右边的总比左边的大,绝对值的定义,不等式的性质是解题关键.10.下列命题中正确的个数是()A.带根号的数是无理数B.无理数是开方开不尽的数C.无理数就是无限小数D.绝对值最小的数不存在【考点】命题与定理.【分析】根据各个选项中的说法正确的说明理由,错误的说明理由或举出反例即可解答本题.【解答】解:∵,故选项A错误;无理数是开放开不尽的数,故选项B正确;无限不循环小数是无理数,故选项C错误;绝对值最小的数是0,故选项D错误;故选B.【点评】本题考查命题与定理,解题的关键是明确题意,正确的命题说明理由,错误的命题说明理由或举出反例.二、填空题11.若x2=8,则x= ±2.【考点】平方根.【分析】利用平方根的性质即可求出x的值.【解答】解:∵x2=8,∴x=±=±2,故答案为±2.【点评】本题考查平方根的性质,利用平方根的性质可求解这类型的方程:(x+a)2=b.12.的平方根是±2 .【考点】平方根;算术平方根.【分析】根据平方根的定义,求数a的平方根,也就是求一个数x,使得x2=a,则x就是a的平方根,由此即可解决问题.【解答】解:的平方根是±2.故答案为:±2【点评】本题考查了平方根的定义.注意一个正数有两个平方根,它们互为相反数;0的平方根是0;负数没有平方根.13.如果有意义,那么x的值是±.【考点】二次根式有意义的条件.【分析】根据二次根式有意义的条件可得:﹣(x2﹣2)2≥0,再解即可.【解答】解:由题意得:﹣(x2﹣2)2≥0,解得:x=±,故答案为:.【点评】此题主要考查了二次根式有意义的条件,关键是掌握二次根式中的被开方数是非负数.14.a是4的一个平方根,且a<0,则a的值是﹣2 .【考点】平方根.【分析】4的平方根为±2,且a<0,所以a=﹣2.【解答】解:∵4的平方根为±2,a<0,∴a=﹣2,故答案为﹣2.【点评】本题考查平方根的定义,注意一个正数的平方根有两个,且互为相反数.15.当x= ﹣2 时,式子+有意义.【考点】二次根式有意义的条件.【分析】根据二次根式有意义的条件列出不等式,解不等式即可.【解答】解:由题意得,x+2≥0,﹣x﹣2≥0,解得,x=﹣2,故答案为:﹣2.【点评】本题考查的是二次根式有意义的条件,掌握二次根式中的被开方数是非负数是解题的关键.16.若一正数的平方根是2a﹣1与﹣a+2,则a= 1或﹣1 .【考点】平方根;解一元一次方程.【专题】计算题.【分析】根据一个正数的两个平方根互为相反数,分2a﹣1与﹣a+2是同一个平方根与两个平方根列式求解.【解答】解:①2a﹣1与﹣a+2是同一个平方根,则2a﹣1=﹣a+2,解得a=1,②2a﹣1与﹣a+2是两个平方根,则(2a﹣1)+(﹣a+2)=0,∴2a﹣1﹣a+2=0,解得a=﹣1.综上所述,a的值为1或﹣1.故答案为:1或﹣1.【点评】本题考查了平方根与解一元一次方程,注意平方根是同一个平方根的情况,容易忽视而导致出错.17.计算: += 1 .【考点】二次根式的性质与化简.【分析】直接利用二次根式的性质化简求出即可.【解答】解: +=π﹣3+4﹣π=1.故答案为:1.【点评】此题主要考查了二次根式的化简,正确化简二次根式是解题关键.18.如果=4,那么a= ±4 .【考点】二次根式的性质与化简.【分析】根据二次根式的性质得出a的值即可.【解答】解:∵ =4,∴a=±4,故答案为±4.【点评】本题考查了二次根式的性质与化简,掌握a2=16,得出a=±4是解题的关键.19.﹣8的立方根与的算术平方根的和为 1 .【考点】立方根;算术平方根.【分析】﹣8的立方根为﹣2,的算术平方根为3,两数相加即可.【解答】解:由题意可知:﹣8的立方根为﹣2,的算术平方根为3,∴﹣2+3=1,故答案为1.【点评】本题考查立方根与算术平方根的性质,属于基础题型.20.当a2=64时, = ±2 .【考点】立方根;算术平方根.【分析】由于a2=64时,根据平方根的定义可以得到a=±8,再利用立方根的定义即可计算a的立方根.【解答】解:∵a2=64,∴a=±8.∴=±2.【点评】本题主要考查了立方根的概念.如果一个数x的立方等于a,即x的三次方等于a(x3=a),那么这个数x就叫做a的立方根,也叫做三次方根.21.若|a|=, =2,且ab<0,则a+b= 4﹣.【考点】实数的运算.【分析】根据题意,因为ab<0,确定a、b的取值,再求得a+b的值.【解答】解:∵ =2,∴b=4,∵ab<0,∴a<0,又∵|a|=,则a=﹣,∴a+b=﹣+4=4﹣.故答案为:4﹣.【点评】本题考查了实数的运算,属于基础题,解答本题的关键是熟练掌握绝对值的性质和二次根式的非负性.22.若a、b都是无理数,且a+b=2,则a,b的值可以是π;2﹣π(填上一组满足条件的值即可).【考点】无理数.【专题】开放型.【分析】由于初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及像0.1010010001…的数,而本题中a与b的关系为a+b=2,故确定a后,只要b=2﹣a即可.【解答】解:本题答案不唯一.∵a+b=2,∴b=2﹣a.例如a=π,则b=2﹣π.故答案为:π;2﹣π.【点评】本题主要考查了无理数的定义和性质,答案不唯一,解题关键是正确理解无理数的概念和性质.23.绝对值不大于的非负整数是0,1,2 .【考点】估算无理数的大小.【分析】先估算出的值,再根据绝对值的性质找出符合条件的所有整数即可.【解答】解:∵4<5<9,∴2<<3,∴符合条件的非负整数有:0,1,2.故答案为:0,1,2.【点评】本题考查的是估算无理数的大小及绝对值的性质,根据题意判断出的取值范围是解答此题的关键.24.请你写出一个比大,但比小的无理数+.【考点】无理数.【分析】无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.【解答】解:写出一个比大,但比小的无理数+,故答案为: +.【点评】此题主要考查了无理数的定义,其中初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及像0.1010010001…,等有这样规律的数.25.已知+|y﹣1|+(z+2)2=0,则(x+z)2008y= 1 .【考点】非负数的性质:算术平方根;非负数的性质:绝对值;非负数的性质:偶次方.【分析】根据非负数的性质列方程求出x、y、z的值,然后代入代数式进行计算即可得解.【解答】解:由题意得,x﹣3=0,y﹣1=0,z+2=0,解得x=3,y=1,z=﹣2,所以,(3﹣2)2008×1=12008=1.故答案为:1.【点评】本题考查了非负数的性质:几个非负数的和为0时,这几个非负数都为0.三、解答题(共40分)26.若5x+19的算术平方根是8,求3x﹣2的平方根.【考点】算术平方根;平方根.【分析】先依据算术平方根的定义得到5x+19=64,从而可术的x的值,然后可求得3x﹣2的值,最后依据平方根的定义求解即可.【解答】解:∵5x+19的算术平方根是8,∴5x+19=64.∴x=9.∴3x﹣2=3×9﹣2=25.∴3x﹣2的平方根是±5.【点评】本题主要考查的是算术平方根和平方根的定义,掌握算术平方根和平方根的定义是解题的关键.27.计算:(1)+;(2)++.【考点】实数的运算.【专题】计算题;实数.【分析】(1)原式利用平方根、立方根定义计算即可得到结果;(2)原式利用平方根及立方根定义计算即可得到结果.【解答】解:(1)原式=5﹣2=3;(2)原式=﹣3+5+2=4.【点评】此题考查了实数的运算,熟练掌握运算法则是解本题的关键.28.解方程.(1)(x﹣1)2=16;(2)8(x+1)3﹣27=0.【考点】立方根;平方根.【分析】(1)两边直接开平方即可;(2)首先将方程变形为(x+1)3=,然后把方程两边同时开立方即可求解.【解答】解:(1)由原方程直接开平方,得x﹣1=±4,∴x=1±4,∴x1=5,x2=﹣3;(2)∵8(x+1)3﹣27=0,∴(x+1)3=,∴x+1=,∴x=.【点评】本题考查了平方根、立方根的性质与运用,是基础知识,需熟练掌握.29.将下列各数按从小到大的顺序重新排成一列.2,,﹣,0,﹣.【考点】实数大小比较.【分析】把2,,﹣,0,﹣分别在数轴上表示出来,然后根据数轴右边的数大于左边的数即可解决问题.【解答】解:如图,根据数轴的特点:数轴右边的数字比左边的大,所以以上数字的排列顺序如下:2>>0>﹣>﹣.【点评】此题主要考查了利用数轴比较实数的大小,解答本题时,采用的是数形结合的数学思想,采用这种方法解题,可以使知识变得更直观.30.著名的海伦公式S=告诉我们一种求三角形面积的方法,其中p表示三角形周长的一半,a、b、c分别三角形的三边长,小明考试时,知道了三角形三边长分别是a=3cm,b=4cm,c=5cm,能帮助小明求出该三角形的面积吗?【考点】二次根式的应用.【分析】先根据BC、AC、AB的长求出P,再代入到公式S=,即可求得该三角形的面积.【解答】解:∵a=3cm,b=4cm,c=5cm,∴p===6,∴S===6(cm2),∴△ABC的面积6cm2.【点评】此题考查了二次根式的应用,熟练掌握三角形的面积和海伦公式是本题的关键.31.已知实数a、b、c、d、m,若a、b互为相反数,c、d互为倒数,m的绝对值是2,求的平方根.【考点】实数的运算.【分析】根据相反数,倒数,以及绝对值的意义求出a+b,cd及m的值,代入计算即可求出平方根.【解答】解:根据题意得:a+b=0,cd=1,m=2或﹣2,当m=±2时,原式=5,5的平方根为±.【点评】此题考查了实数的运算,平方根,绝对值,以及倒数,熟练掌握运算法则是解本题的关键.32.已知实数a,b满足条件+(ab﹣2)2=0,试求+++…+的值.【考点】分式的化简求值;非负数的性质:偶次方;非负数的性质:算术平方根.【分析】根据+(ab﹣2)2=0,可以求得a、b的值,从而可以求得+++…+的值,本题得以解决.【解答】解:∵ +(ab﹣2)2=0,∴a﹣1=0,ab﹣1=0,解得,a=1,b=2,∴+++…+=…+=+…+==.【点评】本题考查分式的化简求值、偶次方、算术平方根,解题的关键是明确分式化简求值的方法.。
第11章数的开方数学八年级上册-单元测试卷-华师大版(含答案)一、单选题(共15题,共计45分)1、若a=,b=,那么a b的值等于( )A.-8B.8C.-16D.162、有下列说法:(1)开方开不尽的数的方根是无理数;(2)无理数是无限不循环小数;(3)无理数包括正无理数、零、负无理数;(4)无理数都可以用数轴上的点来表示.其中正确的说法的个数是()A.1B.2C.3D.43、9的平方根是()A.±81B.±3C.﹣3D.34、下列说法中,正确的是()A.1的平方根是1B.(-1)2的平方根是-1C.-2是-8的立方根D.16的平方根是45、下列正确的是()A.任何数都有平方根B.﹣9的立方根是﹣3C.0的算术平方根是0D.8的立方根是±36、下列说法中正确是A. 是分数B.实数和数轴上的点一一对应C. 的系数为D. 的余角7、一个数的立方根等于它本身,则这个数是( )A.0B.1C.-1D.±1,08、下列说法正确的是()A.﹣a一定是负数B.一个数的绝对值一定是正数C.一个数的平方等于16,则这个数是4D.平方等于本身的数是0和19、某整数的两个不同平方根是与,则这个数是()A.1B.3C.-3D.910、25的算术平方根是()A.5B.C.-5D.±511、﹣8的立方根是( )A.±2B.2C.﹣2D.2412、下列计算正确的是()A.(x+y)2=x 2+y 2B.(﹣xy 2)3=﹣x 3y 6C.x 6÷x 3=x 2D. =213、如图,实数-3,x,3,y在数轴上的对应点分别为M、N、P、Q,这四个数中绝对值最大的数对应的点是();A.点MB.点NC.点PD.点Q14、在这四个数中,最小的数是()A. B.0 C.-3 D.15、若一个数的平方根等于它本身,则这个数是( )A. B.1 C. 或1 D. 或二、填空题(共10题,共计30分)16、将下列各数填入相应的集合中.﹣7,0,,﹣22 ,﹣2.55555…,3.01,+9,﹣2π.+10%,4.020020002…(每两个2之间依次增加1个0),无理数集合:{________…};负有理数集合:{________…};正分数集合:{________…};非负整数集合:{________…}.17、用一组a,b的值说明命题“若a2>b2,则a>b”是不正确,这组值可以是a=________,b=________.18、数轴上的点所对应的数是,那么与点距离是3的点对应的数是________.19、49的平方根是________ ; ________ 的立方根是-4.20、计算:=________.21、化简的结果为________.22、已知a、b为两个连续整数,且a<<b,则a+b=________23、在数轴上,将表示-2的点向右移动3个单位长度后,对应的点表示的数是________.24、计算:| - |+|2﹣|=________.25、比较大小:﹣________﹣2 .(填“”或“”)三、解答题(共5题,共计25分)26、计算:(﹣1)2016+2sin60°﹣|﹣|+π0.27、已知有理数a,b,c在数轴上的对应点如图所示,化简:.28、计算:(﹣1)2015+sin30°﹣(π﹣3.14)0+()﹣1.29、如果ax+b=0,其中a,b为有理数,x为无理数,那么a=0且b=0.(1)如果(a﹣2)+b+3=0,其中a、b为有理数,试求a,b的值;(2)如果(2+)a﹣(1﹣)b=5,其中a、b为有理数,求a+2b的值.30、已知2a-1的平方根是±3,3a+b-9的立方根是2,c是的整数部分.求a+2b+c的算术平方根.参考答案一、单选题(共15题,共计45分)1、D2、B4、C5、C6、B7、D8、D9、D10、A11、C12、D13、D14、C15、A二、填空题(共10题,共计30分)16、17、19、20、21、22、23、24、25、三、解答题(共5题,共计25分)26、27、28、30、。
《第11章数的开方》一、选择题1.下列说法中正确的是()A.4是8的算术平方根B.16的平方根是4C.是6的平方根D.﹣a没有平方根2.下列各式中错误的是()A. B.C. D.3.若x2=(﹣0.7)2,则x=()A.﹣0.7 B.±0.7 C.0.7 D.0.494.的平方根是()A.6 B.±6 C.D.5.下列语句正确的是()A.如果一个数的立方根是这个数的本身,那么这个数一定是零B.一个数的立方根不是正数就是负数C.负数没有立方根D.一个数的立方根与这个数同号,零的立方根是零6.下列说法中正确的是()A.无限小数都是无理数B.带根号的都是无理数C.循环小数都是无理数D.无限不循环小数是无理数7.是无理数,则a是一个()A.非负实数 B.正实数C.非完全平方数 D.正有理数8.下列说法中,错误的是()A.是无限不循环小数B.是无理数C.是实数D.等于1.4149.与数轴上的点成一一对应关系的是()A.有理数B.实数 C.整数 D.无理数10.下列叙述中,不正确的是()A.绝对值最小的实数是零 B.算术平方根最小的实数是零C.平方最小的实数是零D.立方根最小的实数是零二、填空题11.和统称实数.12.1﹣绝对值是,相反数是,倒数是.13.下列说法:(1)带根号的数是无理数;(2)无限小数都是无理数;(3)无理数都是无限小数;(4)在实数范围内,一个数不是有理数,则一定是无理数,不是正数,则一定是负数.其中错误的有个.三、非负数性质的应用14.若x、y都是实数,且y=++2,求x+3y的平方根.15.若|a﹣3|+(5+b)2+=0,求代数式的值.16.已知=0,求3x+6y的立方根.四、定义的应用17.已知x﹣2的平方根是±2,2x+y+7的立方根是3,求x2+y2的平方根.18.如果M=是a+b+3的算术平方根,N=是a+2b的立方根,求M﹣N 的立方根.五、数形结合的应用19.点A在数轴上表示的数为3,点B在数轴上表示的数为﹣,则A,B两点的距离为.20.数a、b在数轴上的位置如图所示,化简:.21.已知a,b,c实数在数轴上的对应点如图所示,化简﹣|a﹣b|+|c﹣a|+.六.实数绝对值的应用22.化简下列各式:(1)|﹣1.4|(2)|π﹣3.14|(3)|﹣|(4)|x﹣|x﹣3||(x≤3)(5)|x2+1|.七、实数应用题23.有一个边长为11cm的正方形和一个长为13cm,宽为8cm的长方形,要作一个面积为这两个图形的面积之和的正方形,问正方形边长应为多少cm?八.引申提高24.已知的整数部分为a,小数部分为b,求(a+b)(a﹣b)的值.《第11章数的开方》参考答案与试题解析一、选择题1.下列说法中正确的是()A.4是8的算术平方根B.16的平方根是4C.是6的平方根D.﹣a没有平方根【考点】平方根;算术平方根.【分析】如果一个数x2=a(a≥0),那么x就是a的一个平方根.根据定义知道一个非负数的平方根有两个,它们互为相反数.【解答】解:A、∵4是16的算术平方根,故选项A错误;B、∵16的平方根是±4,故选项B错误;C、∵是6的一个平方根,故选项C正确;D、当a≤0时,﹣a也有平方根,故选项D错误.故选C.【点评】本题主要考查平方根和算术平方根的知识点,比较简单.2.下列各式中错误的是()A. B.C. D.【考点】算术平方根.【分析】A、根据平方根的定义即可判定;B、根据算术平方根的定义即可判定;C、根据算术平方根的定义即可判定;D、根据算术平方根的定义即可判定.【解答】解:A、=±0.6,故选项A正确;B、,故B选项正确;C、,故选项C正确,D、,故选项D错误.故选D.【点评】本题主要考查算术平方根的知识点,不是很难.3.若x2=(﹣0.7)2,则x=()A.﹣0.7 B.±0.7 C.0.7 D.0.49【考点】平方根.【分析】先根据乘方的运算法则计算出(﹣0.7)2=0.49,再根据平方根的意义即可求出0.49的平方根.【解答】解:∵x2=(﹣0.7)2,∴x2=0.49,∴x=±0.7.故选B.【点评】本题考查了平方根及乘方的知识,熟练掌握这些基础概念是解题的关键.4.的平方根是()A.6 B.±6 C.D.【考点】平方根.【专题】计算题.【分析】先计算出的值,再求其平方根.【解答】解:∵=6,∴6的平方根为,故选D.【点评】本题考查了平方根的概念.注意一个正数有两个平方根,它们互为相反数,一定先计算出的值,比较容易出错.5.下列语句正确的是()A.如果一个数的立方根是这个数的本身,那么这个数一定是零B.一个数的立方根不是正数就是负数C.负数没有立方根D.一个数的立方根与这个数同号,零的立方根是零【考点】立方根.【分析】A、根据立方根的性质即可判定;B、根据立方根的性质即可判定;C、根据立方根的定义即可判定;D、根据立方根的性质即可判定.【解答】解:A、一个数的立方根是这个数的本身的数有:1、0、﹣1,故选项A错误.B、0的立方根是0,u选项B错误.C、∵负数有一个负的立方根,故选项C错误.D、∵正数有一个正的立方根,负数有一个负的立方根,0的立方根是.故选项D正确.故选D.【点评】本题考查了平方根、立方根定义和性质等知识,注意负数没有平方根,任何实数都有立方根.6.下列说法中正确的是()A.无限小数都是无理数B.带根号的都是无理数C.循环小数都是无理数D.无限不循环小数是无理数【考点】无理数.【分析】根据无理数的定义,开方开不尽的数,与π有关的数,没有循环规律的无限小数都是无理数.【解答】解:由无理数的定义可知,无限不循环小数是无理数.故选D.【点评】此题主要考查了无理数的定义,注意带根号的要开不尽方才是无理数,无限不循环小数为无理数.7.是无理数,则a是一个()A.非负实数 B.正实数C.非完全平方数 D.正有理数【考点】实数.【分析】根据实数,即可解答.【解答】解:∵开方开不尽的数是无理数,是无理数,∴a是非完全平方数,故选:C.【点评】本题考查了实数,解决本题的关键是熟记开方开不尽的数是无理数.8.下列说法中,错误的是()A.是无限不循环小数B.是无理数C.是实数D.等于1.414【考点】实数.【分析】根据实数,即可解答.【解答】解:A、是无限不循环小数,正确;B、是无理数,正确;C、是实数,正确;D、 1.414,故本选项错误;故选:D.【点评】本题考查了实数,解决本题的关键是熟记是无理数.9.与数轴上的点成一一对应关系的是()A.有理数B.实数 C.整数 D.无理数【考点】实数与数轴.【分析】根据数轴上的点都表示一个实数,一个实数都可以用数轴上的点来表示进行回答.【解答】解:因为数轴上的点都表示一个实数,一个实数都可以用数轴上的点来表示,所以实数与数轴上的点成一一对应.故选B.【点评】此题考查了数轴上的点和实数之间的一一对应关系.10.下列叙述中,不正确的是()A.绝对值最小的实数是零 B.算术平方根最小的实数是零C.平方最小的实数是零D.立方根最小的实数是零【考点】立方根.【分析】根据绝对值,算术平方根,平方,立方根的求法判断所给选项的正误即可.【解答】解:A、一个数的绝对值是非负数,其中,0最小,所以绝对值最小的实数是零是正确的,不符合题意;B、非负数的算术平方根是非负数,在非负数里,0最小,所以算术平方根最小的实数是零是正确的,不符合题意;C、任何数的平方都是非负数,非负数里,0最小,所以平方最小的实数是零是正确的,不符合题意;D、没有立方根最小的数,故错误,符合题意,故选D.【点评】综合考查了绝对值,算术平方根,平方,立方根与0的关系;没有立方根最小的数这个知识点是易错点.二、填空题11.有理数和无理数统称实数.【考点】实数.【分析】实数的定义:有理数和无理数统称实数.【解答】解:有理数和无理数统称实数.故答案是:有理数;无理数.【点评】本题考查了实数的定义.熟记概念是解题的关键.12.1﹣绝对值是﹣1 ,相反数是﹣1 ,倒数是﹣1﹣.【考点】实数的性质.【分析】根据差的绝对值是大数减小数,只有符号不同的两个数互为相反数,乘积为1的两个数互为倒数,可得答案.【解答】解:1﹣绝对值是﹣1,相反数是﹣1,倒数是﹣1﹣,故答案为:﹣1,﹣1,﹣﹣1.【点评】本题考查了实数的性质,利用差的绝对值是大数减小数是解题关键,求倒数时要分母有理化.13.下列说法:(1)带根号的数是无理数;(2)无限小数都是无理数;(3)无理数都是无限小数;(4)在实数范围内,一个数不是有理数,则一定是无理数,不是正数,则一定是负数.其中错误的有 3 个.【考点】实数.【分析】根据有理数和无理数的概念进行判断即可.【解答】解:=2,故带根号的数是无理数错误;0.3333…是有理数,故无限小数都是无理数错误;无理数都是无限小数正确;0既不是正数,也不是负数,故在实数范围内,一个数不是有理数,则一定是无理数,不是正数,则一定是负数错误,故答案为:3.【点评】本题考查的是实数的概念,正确区分有理数和无理数是解题的关键.三、非负数性质的应用14.若x、y都是实数,且y=++2,求x+3y的平方根.【考点】二次根式有意义的条件.【分析】根据二次根式有意义的条件可得,解不等式可得x=3,然后可得y的值,进而可得x+3y的值,然后计算平方根即可.【解答】解:由题意得:,解得:x=3,则y=2,x+3y=3+3×2=9,平方根为±=±3.【点评】此题主要考查了二次根式有意义的条件,关键是掌握二次根式中的被开方数是非负数.15.若|a﹣3|+(5+b)2+=0,求代数式的值.【考点】非负数的性质:算术平方根;非负数的性质:绝对值;非负数的性质:偶次方.【分析】首先利用绝对值、平方和二次根式的非负性和已知条件即可得到关于a、b、c的方程组,解方程组即可求得a、b、c的值,然后代入所求代数式中计算即可.【解答】解:∵|a﹣3|≥0,(5+b)2≥0,≥0,且|a﹣3|+(5+b)2+=0,∴a﹣3=0,5+b=0,c+1=0∴a=3,b=﹣5,c=﹣1∴=﹣.【点评】此题主要考查了非负数的性质,掌握绝对值、平方和二次根式的非负性是解决此类问题的关键.16.已知=0,求3x+6y的立方根.【考点】非负数的性质:算术平方根;立方根;二次根式有意义的条件.【分析】根据分式的值为零,可得方程组,根据解方程组,可得x、y的值,根据代数式求值,可得被开方数,根据开立方运算,可得答案.【解答】解:由=0,得.解得.3x+6y=﹣9+36=27.==3.【点评】本题考查了非负数的性质,利用了算术平方根的和为零得出方程组是解题关键,注意分母不能为零.四、定义的应用17.(2015春•桃园县校级期末)已知x﹣2的平方根是±2,2x+y+7的立方根是3,求x2+y2的平方根.【考点】立方根;平方根.【分析】先运用立方根和平方根的定义求出x与y的值,再求出x2+y2的平方根.【解答】解:∵x﹣2的平方根是±2,2x+y+7的立方根是3,∴x﹣2=22,2x+y+7=27,解得x=6,y=8,∴x2+y2=62+82=100,∴x2+y2的平方根是±10.【点评】本题主要考查了立方根和平方根,解题的关键是正确求出x与y的值.18.如果M=是a+b+3的算术平方根,N=是a+2b的立方根,求M﹣N 的立方根.【考点】立方根;算术平方根.【分析】根据“M=是a+b+3的算术平方根,N=是a+2b的立方根”即可列出关于a、b的二元一次方程组,解方程组即可得出a、b的值,将其代入M、N中求出M、N的值,再求出的值即可.【解答】解:由已知得:,解得:,∴M==3,N==2,∴==1.【点评】本题考查了立方根以及算术平方根,根据算术平方根以及立方根的定义列出关于a、b的二元一次方程组是解题的关键.五、数形结合的应用19.点A在数轴上表示的数为3,点B在数轴上表示的数为﹣,则A,B两点的距离为4.【考点】实数与数轴.【分析】根据数轴上两点间的距离是较大的数减较小的数,可得答案.【解答】解:由题意,得AB=|3﹣(﹣)|=4,故答案为:4.【点评】本题考查了实数与数轴,利用数轴上两点间的距离是较大的数减较小的数是解题关键.20.(2012秋•杞县校级期末)数a、b在数轴上的位置如图所示,化简:.【考点】二次根式的性质与化简;实数与数轴.【专题】常规题型.【分析】根据数轴判断出a、b的取值范围,然后判断出a+1,b﹣1,a﹣b的正负情况,再根据二次根式的性质去掉根号,进行计算即可得解.【解答】解:根据图形可得,﹣2<a<﹣1,1<b<2,所以﹣1<a+1<0,0<b﹣1<1,a﹣b<0,所以,=﹣(a+1)+(b﹣1)+(a﹣b),=﹣a﹣1+b﹣1+a﹣b,=﹣2.【点评】本题考查了二次根式的性质与化简,实数与数轴.根据图形判断出a、b的取值范围,是解题的关键.21.已知a,b,c实数在数轴上的对应点如图所示,化简﹣|a﹣b|+|c﹣a|+.【考点】立方根;实数与数轴.【分析】首先根据数轴上的各点的位置,可以知道a<0,b<0,c>0,且|a|>|b|>c,接着有a﹣b <0,c﹣a>0,b﹣c<0,由此即可化简绝对值,最后合并同类项即可求解.【解答】解:有数轴可知,a<0,b<0,c>0,∴|a|>|b|>c,a﹣b<0,c﹣a>0,b﹣c<0,∴=﹣a﹣(b﹣a)+(c﹣a)+(c﹣b)=﹣a﹣b+a+c﹣a+c﹣b=2c﹣2b﹣a.【点评】本题考查实数与数轴上的点的对应关系,在原点O左边的数小于0,右边的数大于0,同时也考查了对带有绝对值和根号的代数式的化简.六.实数绝对值的应用22.化简下列各式:(1)|﹣1.4|(2)|π﹣3.14|(3)|﹣|(4)|x﹣|x﹣3||(x≤3)(5)|x2+1|.【考点】实数的性质.【分析】根据绝对值的性质解答.【解答】解:(1)|﹣1.4|=1.42﹣;(2)|π﹣3.14|=π﹣3.14;(3)|﹣|=﹣;(4)∵x≤3,∴|x﹣|x﹣3||=|x﹣3+x|=|2x﹣3|(5)|x2+1|=x2+1.【点评】本题考查的是绝对值的性质,掌握正数的绝对值是它本身,0的绝对值是0,负数的绝对值是它的相反数是解题的关键.七、实数应用题23.有一个边长为11cm的正方形和一个长为13cm,宽为8cm的长方形,要作一个面积为这两个图形的面积之和的正方形,问正方形边长应为多少cm?【考点】算术平方根.【分析】利用已知得出新正方形的面积,进而求出其边长.【解答】解:由题意可得:两个正方形的面积和为:112+13×8=225(cm2),则正方形边长应为:=15(cm).【点评】此题主要考查了算术平方根的定义,正确开平方求出是解题关键.八.引申提高24.已知的整数部分为a,小数部分为b,求(a+b)(a﹣b)的值.【考点】估算无理数的大小;平方差公式.【分析】根据5<<6,可得a、b的值,再代入(a+b)(a﹣b)即可求值.【解答】解:∵25<29<36,∴5<<6,∴a=5,b=﹣5,∴(a+b)(a﹣b)=(5+﹣5)(5﹣+5)=(10﹣)=10﹣29.【点评】本题考查了估算无理数的大小和二次根式的混合运算的应用,主要考查了学生的计算能力.。
第11章 数的开方时间:60分钟满分:100分一、选择题(每小题3分,共30分) 1.64的立方根是( )A.4B.-4C.-8D.±82.若x2=(-0.7)2,则x=( )A.-0.7B.0.7C.±0.7D.0.493.在下列实数,81100,3.141 592 643,1π,7,711中有理数有( )A.5个B.3个C.4个D.2个4.下列计算正确的是( )A.(-3)2=-3B.36=±6C.39=3D.-3-8=25.观察下表,被开方数a的小数点的位置移动和它的算术平方根a的小数点的位置移动符合一定的规律.若a=180,- 3.24=-1.8,则被开方数a的值为( ) a0.000 0010.000 10.01110010 000 1 000 000a0.0010.010.1110100 1 000A.32.4B.324C.32 400D.-3 2406.若a是最小的正整数,b是最大的负整数,c是平方根等于本身的数,则a,b,c三数之和是( )A.-1B.0C.1D.27.直径为1个单位长度的圆上有一点A,现将点A与数轴上表示3的点重合,并将圆沿数轴无滑动地向左滚动一周,如图.若点A到达数轴上的点B处,则点B表示的数是( )A.2π-3B.π-3C.3-πD.3-2π8.已知|a|=5,b2=49,且|a+b|=a+b,则a-b的值为( )A.2或12B.2或-12C.-2或12D.-2或-129.一个长方体的体积为162 cm3,它的长、宽、高的比为3∶1∶2,则它的表面积为( )A.198 cm2B.162 cm2C.99 cm2D.81 cm210.如图,网格中小正方形的边长均为1,把阴影部分剪拼成一个正方形,正方形的边长为a.若4-a的整数部分和小数部分分别是x,y,则x(x-y)= ( )A.-2B.-2+6C.6D.2-6二、填空题(每小题3分,共18分)11.任意写一个无理数 .(满足-2到-1之间)12.若一个数的算术平方根是8,则这个数的立方根是 .13.已知a,b互为相反数,c,d互为倒数,则a3+b3+38cd的值为 .14.已知x-2的平方根是±7,且3x+y―2=4,则y的值为 .15.通过计算发现:13=1,13+23=3,13+23+33=6,13+23+33+43=10,仔细观察上面几道题的计算结果,请猜想13+23+…+1003= .16.任何实数a,可用[a]表示不超过a的最大整数,如[4]=4,[2]=1.现对36进行如下操作:36[36]=6[6]=2[2]=1,这样对36进行3次操作后就会变为1.(1)类似地,对81进行 次上述操作后会变为1;(2)在只需要进行2次上述操作后就会变为1的所有正整数中,最大的是 .三、解答题(共52分)17.计算:(1)(4分)0.04+3-8-1―16; (2)(4分)16+3-27-(-3)2-|3-π|.2518.求下列各式中x的值.(1)(4分)4(x-3)2=9;(2)(4分)(x+10)3+125=0.19.(6分)已知M=3是m+3的算术平方根,N=2m-4n+3n―4是n-4的立方根,求M―N-3N的值.20.(8分)一个数值转换器,如图所示:(1)当输入的x为16时,输出的y值是 ;(2)若输入有效的x值后,始终输不出y值,请写出所有满足要求的x的值,并说明你的理由;(3)若输入x值后,转换器的屏幕显示“该操作无法运行”,请你分析输入的x值可能是什么情况;(4)若输出的y是3,请直接写出两个满足要求的x的值.21.(10分)木工李师傅现有一块面积为4 m2的正方形胶合板,准备做装饰材料用,他设计了如下两种方案.方案一:以正方形胶合板的边长为边裁出一块面积为3 m2的长方形装饰材料.方案二:沿着边的方向裁出一块面积为3 m2的长方形装饰材料,且其长宽之比为3∶2.李师傅设计的两种方案是否可行?若可行,请帮助解决如何裁剪;若不可行,请说明≈0.7)理由.(参考数据:1222.(12分)有两个十分喜欢探究的同学小明和小芳,他们善于将所做的题目进行归类,下面是他们的探究过程.(1)解题与归纳:①小明摘选了以下各题,请你帮他完成填空.22= ;52= ;62= ;02= ;(-3)2= ;(-6)2= .②归纳:对于任意实数a,有a2= =③小芳摘选了以下各题,请你帮她完成填空.(4)2= ;(9)2= ;(25)2= ;(36)2= ;(49)2= ;(0)2= .④归纳:对于任意非负实数a,有(a)2= .(2)应用:根据他们归纳得出的结论,解答问题.数a,b在数轴上的位置如图所示,化简:a2-b2-(a-b)2-(b―a)2.参考答案与解析1.A2.C 因为x2=(-0.7)2,所以x2=0.49,所以x=±0.7.3.B 81100=910,是有理数.根据有理数的定义可知,81100,3.141 592 643,711是有理数,共3个.4.D (-3)2=3,36=6,39≠3,-3-8=2.5.C 由题表可知被开方数a的小数点每向左或向右移动2位,算术平方根a的小数点就相应地移动1位.因为- 3.24=-1.8,所以32400=180,所以a=32 400.6.B ∵a是最小的正整数,∴a=1.∵b是最大的负整数,∴b=-1.∵c是平方根等于本身的数,∴c=0,∴a+b+c=1+(-1)+0=0.7.C 由题意知,在数轴上点A与点B之间的距离为π×1=π,且点B在点A的左侧,所以点B表示的数是3-π.8.D ∵|a|=5,∴a=±5.∵b2=49,∴b=±7.∵|a+b|=a+b,∴a+b>0,∴a=±5,b=7.∴当a=5, b=7时,a-b=5-7=-2;当a=-5,b=7时,a-b=-5-7=-12,∴a-b的值为-2或-12.9.A 由题意可设长方体的长、宽、高分别是3x cm,x cm,2x cm,则3x·x·2x=162,即6x3=162,x3=27,所以x=3,所以该长方体的长、宽、高分别是9 cm,3 cm,6 cm,所以它的表面积为2×(9×3+9×6+3×6)=198(cm2).10.B 由题意得S阴影=12×2×2×2+12×2×2=6,∴a2=6.∵a>0,∴a=6.∵4<6<9,∴2<6<3,∴1<4-6<2,∴4-a的整数部分x=1,小数部分y=3-6,∴x(x-y)=1×(1-3+6) =-2+6.11.-2(答案不唯一) ∵1<2<4,即1<2<2,∴-2<-2<-1,∴满足-2到-1之间的无理数可以为-2.12.4 由一个数的算术平方根是8可得,这个数为64,64的立方根是4,∴这个数的立方根为4.13.2 因为a,b互为相反数,所以a3与b3也互为相反数,故a3+b3=0.因为c,d互为倒数,所以cd=1,所以原式=0+38=0+2=2.14.15 由题意得x-2=49,∴x=51.∵3x+y―2=4,∴x+y-2=64,∴y=64+2-x=15.15.5 05013=1,13+23=1+2=3,13+23+33=1+2+3=6,13+23+33+43=1+2+3+4=10,可猜想13+23+…+1003=1+2+3+…+100=5 050.16.(1)3;(2)15 (1)81[81]=9[9]=3[3]=1,故对81进行3次上述操作后会变为1.(2)最大的是15,15[15]=3[3]=1,而16[16]=4[4]=2[2]=1,即在只需要进行2次上述操作后就会变为1的所有正整数中,最大的是15.17.解:(1)原式=0.2+(-2)-925=0.2-2-35=-2.4.(4分)(2)原式=4-3-3-(π -3)=4-3-3-π+3=-2-π+3.(4分)18.解:(1)因为4(x-3)2=9,所以(x-3)2=94,所以x-3=32或x-3=-32,解得x=92或x=32.(4分)(2)因为(x+10)3+125=0,所以(x+10)3=-125,所以x+10=3-125,所以x+10=-5,解得x=-15.(4分)19.解:因为M=3是m+3的算术平方根,所以m+3=32=9,即m=6. (2分)因为N=2m ―4n +3n ―4是n-4的立方根,所以2m-4n+3=3,将m=6代入2m-4n+3=3,解得n=3,所以 N=33―4=-1, (4分)所以 M ―N -3N =3―(―1)-3-1 =2+1=3. (6分)20.解:(1)2(2分)因为16的算术平方根是4,4是有理数,所以4不能输出.因为4的算术平方根是2,2是有理数,所以2不能输出.因为22,2是无理数,故输出2.(2)0,1.理由:因为0和1的算术平方根是它们本身,0和1是有理数,所以当x 为0或1时,始终输不出y 值.(4分)(3)x<0.当x<0时,导致开平方运算无法进行. (6分)(4)3或9.(答案不唯一)(8分)21.解:方案一可行.(1分)因为正方形胶合板的面积为4 m 2,所以正方形胶合板的边长为4=2(m).(2分)因为以正方形胶合板的边长为边裁一块面积为3 m 2的长方形装饰材料,所以所裁长方形的宽为3÷2=1.5(m).(3分)因此裁出一个长为2 m,宽为1.5 m 的长方形装饰材料是可行的.(5分)方案二不可行.理由如下:设所裁长方形装饰材料的长为3x m 、宽为2x m,则3x·2x=3,(6分)即x 2=12,解得x=12(负值已舍去),所以所裁长方形装饰材料的长为312m.(8分)因为312≈3×0.7=2.1,所以312>2,所以方案二不可行.(10分)22.解:(1)①2 5 6 0 3 6(3分)②|a|=(5分)③4 9 25 36 49 0(7分)④a(8分)(2)由题中数轴得,a<0,b>0,b>a,所以b-a>0, (9分)原式=|a|-|b|-|a-b|-(b-a)=-a-b+(a-b)-(b-a)=-a-b+a-b-b+a=a-3b. (12分)。
2021-2022学年华东师大新版八年级上册数学《第11章数的开方》单元测试卷一.选择题1.9的平方根是()A.±3B.﹣3C.3D.2.9的平方根是()A.±3B.3C.﹣3D.3.4的平方根是()A.±4B.±2C.2D.﹣24.121的平方根是±11的数学表达式是()A.B.C.D.5.实数4的算术平方根是()A.B.±C.2D.±26.若+|y+3|=0,则的值为()A.B.﹣C.D.﹣7.下列说法正确的是()A.﹣3是﹣9的平方根B.3是(﹣3)2的算术平方根C.(﹣2)2的平方根是2D.8的立方根是±28.下列说法不正确的是()A.的平方根是B.﹣9是81的一个平方根C.0.2的算术平方根是0.04D.﹣27的立方根是﹣39.实数﹣1,3.14,,π,,中,无理数的个数是()A.0B.1C.2D.310.式子2+的结果精确到0.01为(可用计算器计算或笔算)()A.4.9B.4.87C.4.88D.4.89二.填空题11.一个正数的两个平方根分别为3﹣a和2a+1,则这个正数是.12.如果x<0,y>0且x2=4,y2=9,则x+y=.13.已知实数x,y满足+(y+1)2=0,则x﹣y等于.14.16的平方根是,的立方根是.15.=.16.正数的两个平方根是2a+1和4﹣3a,则这个正数是.17.正数a的两个平方根是方程3x+2y=2的一组解,则a=.18.方程x3﹣8=0的根是.19.(1)方程0.25x=1的解是x=.(2)用计算器计算:.(结果保留三个有效数字)20.下列实数中:①,②,③,④0,⑤﹣1.010010001.其中是无理数的有(填序号).三.解答题21.求出下列x的值.(1)4x2﹣49=0;(2)27(x+1)3=﹣64.22.如果一个数的平方根是a+1和2a﹣7,求这个数.23.已知x,y,z满足+|x﹣y|+z2﹣z+=0,求2x﹣y+z的算术平方根.24.求x的值:(1)(x﹣2)2=1;(2)﹣27(x﹣1)3﹣125=0.25.已知2a﹣1的平方根是±3,3a+b﹣1的立方根是2,求2a﹣b的平方根.26.一个正数x的平方根是3a﹣4与8﹣a,则a和这个正数是多少?27.已知实数a,b,c满足:b=+4,c的平方根等于它本身.求的值.参考答案与试题解析一.选择题1.解:9的平方根是±3,故选:A.2.解:±=±3,故选:A.3.解:∵(±2)2=4,∴4的平方根是±2.故选:B.4.解:“121的平方根是±11”,根据平方根的定义,即可得出±=±11.故选:C.5.解:实数4的算术平方根是2.故选:C.6.解:∵+|y+3|=0,∴2x+1=0,y+3=0,解得x=﹣,y=﹣3,∴原式==.故选:C.7.解:A、负数没有平方根,故A错误;B、3是(﹣3)2的算术平方根,故B正确;C、(﹣2)2的平方根是±2,故C错误;D、8的立方根是2,故D错误.故选:B.8.解:A、,故A选项正确;B、=﹣9,故B选项正确;C、=0.2,故C选项错误;D、=﹣3,故D选项正确;故选:C.9.解:﹣1是整数,属于有理数;3.14是有限小数,属于有理数;是分数,属于有理数.无理数有:,π,共3个.故选:D.10.解:∵≈1.732,≈1.414,∴2+≈2×1.732+1.414=4.878≈4.88.故选:C.二.填空题11.解:根据题意得3﹣a+2a+1=0,解得:a=﹣4,∴这个正数为(3﹣a)2=72=49,故答案为:49.12.解:∵x2=4,y2=9,∴x=±2,y=±3,又∵x<0,y>0,∴x=﹣2,y=3,∴x+y=﹣2+3=1.故答案为:1.13.解:根据题意得,x﹣2=0,y+1=0,解得x=2,y=﹣1,所以,x﹣y=2﹣(﹣1)=2+1=3.故答案为:3.14.解:16的平方根是,=8,,即的立方根是2.故答案为:±4;2.15.解:∵62=36,∴.16.解:根据题意得:2a+1+4﹣3a=0,解得:a=5,可得这个正数的两个平方根为11和﹣11,则这个正数为121.故答案为:121.17.解:∵x、y是正数a的两个解,∴y=﹣x,∴3x+2(﹣x)=2,∴3x﹣2x=2,解得x=2,∴a=x2=4.故答案为:4.18.解:x3﹣8=0,x3=8,解得:x=2.故答案为:x=2.19.解:(1)∵0.25x=1,两边同时乘以4得,∴x=4.(2)﹣3.142≈3.6055﹣3.142=0.4636≈0.464.20.解:下列实数中:①,②,③,④0,⑤﹣1.010010001.其中是无理数的为:②③,故答案为②③三.解答题21.解:(1)4x2﹣49=0x2=,解得:x=±;(2)27(x+1)3=﹣64(x+1)3=﹣,x+1=﹣,解得:x=﹣22.解:根据题意得a+1+2a﹣7=0,解得a=2.则这个数是:(a+1)2=9.23.解:∵+|x﹣y|+z2﹣z+=0,∴+|x﹣y|+(z﹣)2=0,∴2y+z=0,x﹣y=0,z﹣=0,解得:x=﹣,y=﹣,z=,则2x﹣y+z=2×(﹣)﹣(﹣)+=﹣++=.所以2x﹣y+z的算术平方根.24.解:(1)(x﹣2)2=1,∴(x﹣2)2=9,∴x﹣2=±3.解得:x=5或x=﹣1.(2)﹣27(x﹣1)3﹣125=0∴﹣27(x﹣1)3=125,∴(x﹣1)3=﹣,∴x﹣1=﹣,解得:x=﹣.25.解:∵2a﹣1的平方根是±3,∴2a﹣1=9,a=5,∵3a+b﹣1的立方根是2,∴3a+b﹣1=8,∴b=﹣6,∴2a﹣b=16,∴2a﹣b的平方根是±4.26.解:根据一个正数有两个平方根,它们互为相反数得:3a﹣4+8﹣a=0,即得:a=﹣2,即3a﹣4=﹣10,则这个正数=(﹣10)2=100.27.解:∵﹣(a﹣3)2≥0,∴a=3把a代入b=+4得:∴b=4∵c的平方根等于它本身,∴c=0∴=.。
第11章数的开方一、选择题1.在-3, 0, 4,低这四个数中,最大的数是()A.在1到2之间B.在2到3之间C.在3到4之间D. 8. 在已知实数:・1, 0,吉,・2中,最小的一个实数是 A. - 1 B. 0 C. £ D. - 2 29. 下列四个实数中,绝对值最小的数是( )A.・5B. -忑C. 1D. 410. 在・2, 0, 3,頁这四个数中,最大的数是( )A. - 2B. 0C. 3D. ^611. 在1, -2, 4,逅这四个数中,比0小的数是( A. -2 B. 1C. A /3D. 412. 四个实数・2, 0, -V2,1中,最大的实数是( A. -2 B. 0 C. - V2D. 113. 与无理数阿最接近的整数是( )A. 4B. 5C. 6D. 7A. -3B. 0C. 4D.后2.下列实数中,最小的数是( )A. -3B. 30.1D. 03.在实数1、0、-1、-2中,最小的实数是( )A ・・2 B.・1 C. 1 D. 04.实数 1, - 1, -寺,0,四个数中,最小的数是(A. 0B. 1C. - 1 一 'I5.在实数-2, 0, 2, 3中 ,最小的实数是()A. -2B. 0C. 2D. 36. a, b 是两个连续整数, 若a<V7<b,则a, b 分别是A. 2, 3B. 3, 2C. 3, 4D. 6, 8 7.估算、‘悩・2的值( )()在4到5之间 ( )14. 如图,已知数轴上的点A、B、C、D分别表示数-2、1、2、3,则表示数3 - <5的点P应落在线15. 估计匹尸介于( )A. 0.4与0.5之间B. 0.5与0.6之间C. 0.6与0.7之间D. 0. 7与0. 8之间16. 若m=^-X ( -2),则有( )2A. 0<m<1B. - 1<m<0C. - 2<m< - 1D. - 3<m< - 217. 如图,表示衙的点在数轴上表示时,所在哪两个字母之间( )A B C D~6 1 ~~2~;5 3 "A. C 与DB. A 与BC. A 与CD. B 与C18. 与1+頁最接近的整数是( )A. 4B. 3C. 2D. 119. 在数轴上标注了四段范围,如图,则表示旋的点落在( )/ Y V *、、,2^3^A.段①B.段②C.段③D.段④20. 若a= ( -3) ,3 - ( - 3) 14, b= ( -0. 6) ,2 - ( - 0. 6) 14, c= ( - 1.5) 11 - ( - 1.5) 13,则下列有关a、b、c的大小关系,何者正确?( )A. a>b>cB. a>c>bC. b>c>aD. c>b>a21. 若k<V90<k+1 (k 是整数),则k二()A. 6B. 7C. 8D. 922. 估计舟履的运算结果应在哪两个连续自然数之间()A. 5 和6B. 6 和7C. 7 和8D. 8 和923. 估计用的值在( )A.在1和2之间B.在2和3之间C.在3和4之间D.在4和5之间二、填空题24. 把7的平方根和立方根按从小到大的顺序排列为_.25. 若a<V6<b,且a、b是两个连续的整数,贝lj申二_.26. 若两个连续整数x、y满足x<{j+1Vy,则x+y的值是J___ £(用“〉”、“二”填空)27. 黄金比妬28. 请将2、舟、码这三个数用“〉”连结起来—.29. 它元的整数部分是—.30. 实数履・2的整数部分是_・第11章数的开方参考答案与试题解析一、选择题1.在・3, 0, 4,頁这四个数中,最大的数是()A. -3B. 0C. 4D. V6【考点】实数大小比较.【分析】根据有理数大小比较的法则进行判断即可.【解答】解:在-3, 0, 4,真这四个数中,-3<0<V6<4,最大的数是4.故选C.【点评】本题考查了有理数大小比较的法则,解题的关键是牢记法则,正数都大于0;负数都小于0;正数大于一切负数;两个负数,绝对值大的其值反而小是本题的关键.2. 下列实数中,最小的数是()A. -3B. 3C. 4-D. 0 3【考点】实数大小比较.【分析】在数轴上表示出各数,再根据数轴的特点即可得出结论.【解答】解:如图所示:故选A.【点评】本题考查的是实数的大小比较,利用数形结合求解是解答此题的关键.3. 在实数1、0、-1、-2中,最小的实数是()A. -2B. -1C. 1D. 0【考点】实数大小比较.【分析】先在数轴上表示出各数,再根据数轴的特点进行解答即可.【解答】解:如图所示:• • ------ •0 ------- >■2 0 1 2・・•由数轴上各点的位置可知,- 2在数轴的最左侧,・••四个数中-2最小.故选A.【点评】本题考查的是实数的大小比较,熟知数轴上的任意两个数,右边的数总比左边的数大是解答此题的关键.4. 实数1,・1,・寺,0,四个数中,最小的数是()A. 0B. 1C. - 1D.-吉2【考点】实数大小比较.【专题】常规题型.【分析】根据正数>o>负数,几个负数比较大小时,绝对值越大的负数越小解答即可.【解答】解:根据正数>0>负数,几个负数比较大小时,绝对值越大的负数越小,可得1 >0> - *> - 1, 所以在1, -1, -寺,0中,最小的数是-1.故选:C.【点评】此题主要考查了正、负数、0和负数间的大小比较.几个负数比较大小时,绝对值越大的负数越小,5. 在实数-2, 0, 2, 3中,最小的实数是()A. -2B. 0C. 2D. 3【考点】实数大小比较.【专题】常规题型.【分析】根据正数大于0, 0大于负数,可得答案.【解答】解:-2<0<2<3,最小的实数是・2,故选:A.【点评】本题考查了实数比较大小,正数大于0, 0大于负数是解题关键.6. a, b是两个连续整数,若a<V7<b,则a, b分别是()A. 2, 3B. 3, 2C. 3, 4D. 6, 8【考点】估算无理数的大小.【分析】根据A/4<V7<V9,可得答案.【解答】解:根据题意,可知五<百<肩,可得a二2, 23.故选:A.【点评】本题考查了估算无理数的大小,V4<V7<V9是解题关键.7. 估算、历_2的值()A.在1到2之间B.在2到3之间C.在3到4之间D.在4到5之间【考点】估算无理数的大小.【分析】先估计何的整数部分,然后即可判断何・2的近似值.【解答】解:・・・5<何<6,A3<V27- 2<4,故选C.【点评】此题主要考查了无理数的估算能力,现实生活中经常需要估算,估算应是我们具备的数学能力,“夹逼法”是估算的一般方法,也是常用方法.8. 在已知实数:-1, 0,寺,-2中,最小的一个实数是()A. -1B. 0C. |D. -2【考点】实数大小比较.【专题】常规题型.【分析】正实数都大于0,负实数都小于0,正实数大于一切负实数,两个负实数绝对值大的反而小, 由此可得出答案.【解答】解:-2、-1、0、1中,最小的实数是-2.故选:D.【点评】本题考查了实数的大小比较,属于基础题,掌握实数的大小比较法则是关键.9. 下列四个实数中,绝对值最小的数是()A. - 5B.-伍C. 1D. 4【考点】实数大小比较.【分析】计算出各选项的绝对值,然后再比较大小即可.【解答】解:I -5|二5; | - *可也,|1|二1,⑷二4,绝对值最小的是1.故选C.【点评】本题考查了实数的大小比较,属于基础题,注意先运算出各项的绝对值.10. 在-2, 0, 3,頁这四个数中,最大的数是()A. -2B. 0C. 3D.【考点】实数大小比较.【专题】常规题型.【分析】根据正数大于0, 0大于负数,可得答案.【解答】解:-2V0V低V3,故选:C.【点评】本题考查了实数比较大小,血<3是解题关键.11•在1, -2, 4, 这四个数中,比0小的数是()A. -2B. 1C. V3D. 4【考点】实数大小比较.【专题】常规题型.【分析】根据有理数比较大小的法则:负数都小于0即可选出答案.【解答】解:・2、1、4、yW这四个数中比0小的数是・2,故选:A.【点评】此题主要考查了有理数的比较大小,关键是熟练掌握有理数大小比较的法则:①正数都大于0;②负数都小于0;③正数大于一切负数;④两个负数,绝对值大的其值反而小.12. 四个实数-2, 0, -V2, 1中,最大的实数是()A・・ 2 B. 0 C.・ V2D. 1【考点】实数大小比较.【分析】根据正数大于0, 0大于负数,正数大于负数,比较即可.【解答】解:J -2<-伍V0V1,・・・四个实数中,最大的实数是1.故选:D.【点评】本题考查了实数大小比较,关键要熟记:正实数都大于0,负实数都小于0,正实数大于一切负实数,两个负实数绝对值大的反而小.13. 与无理数何最接近的整数是()A. 4B. 5C. 6D. 7【考点】估算无理数的大小.【分析】根据无理数的意义和二次根式的性质得出履无転,即可求出答案.【解答】解:・・•履<俑<负,・••何最接近的整数是仮,V36=6,故选:C.【点评】本题考查了二次根式的性质和估计无理数的大小等知识点,主要考查学生能否知道负在5和6之间,题目比较典型.14. 如图,已知数轴上的点A、B、C、D分别表示数・2、1、2、3,则表示数3 ■爸的点P应落在线段()4 9 兮9 £,-3 -1 0 ^2 3 4A. A0±B. 0B±C. BC±D. CD ±【考点】估算无理数的大小;实数与数轴.【分析】根据估计无理数的方法得出0<3-丽<1,进而得出答案.【解答】解:・・・2<馅<3,A0<3 - V5<b故表示数3 -頁的点P应落在线段OB上.故选:B.【点评】此题主要考查了估算无理数的大小,得出后的取值范围是解题关键.15. 估计茫1丄介于( )A. 0.4与0.5之间B. 0.5与0.6之间C. 0. 6与0. 7之间D. 0. 7与0. 8之间【考点】估算无理数的大小.【分析】先估算旋的范围,再进一步估算圣丄,即可解答・【解答】解:V2. 22=4. 84, 2. 32=5, 29,:.2, 2<V5<2. 3,2.2-1 2.3-1・.・一-—=0. 6, ―-— =0. 65, 2 2V5 _ 1AO. 6<———<0. 65.2A/E _ 1所以' 7介于0. 6与0. 7之间.£故选:C.【点评】本题考查了估算有理数的大小,解决本题的关键是估算、‘用的大小.16. 若( -2),则有( )2A. 0<m<1B. - 1<m<0C. - 2<m< - 1D. - 3<m< - 2【考点】估算无理数的大小.【分析】先把m化简,再估算任大小,即可解答.【解答】解;m半X ( -2)二■伍,・・・1<V2<2,A■ 2< -近 V - 1,故选:C.【点评】本题考查了公式无理数的大小,解决本题的关键是估算迈的大小.17. 如图,表示衙的点在数轴上表示时,所在哪两个字母之间()一 4 B C D0 1 ~L5~2~25 3A. C 与DB. A 与BC. A 与CD. B 与C【考点】估算无理数的大小;实数与数轴.【专题】计算题.【分析】确定出7的范围,利用算术平方根求出的范围,即可得到结果.【解答】解:V6.25<7<9,・・・2. 5<A/7<3,则表示听的点在数轴上表示时,所在C和D两个字母之间.故选A【点评】此题考查了估算无理数的大小,以及实数与数轴,解题关键是确定无理数的整数部分即可解决问题.18. 与1朋最接近的整数是()A. 4B. 3C. 2D. 1【考点】估算无理数的大小.【分析】由于4<5<9,由此根据算术平方根的概念可以找到5接近的两个完全平方数,再估算与1+葩最接近的整数即可求解.【解答】解:・・・4<5<9,A2<V5<3.又5和4比较接近,・・・葩最接近的整数是2,・••与1+真最接近的整数是3,故选:B.【点评】此题主要考查了无理数的估算能力,估算无理数的时候,“夹逼法”是估算的一般方法,也是常用方法.19. 在数轴上标注了四段范围,如图,则表示近的点落在()「②、: Y V 7、、,22―2728~Z9 VA.段①B.段②C.段③D.段④【考点】估算无理数的大小;实数与数轴.【分析】根据数的平方,即可解答.【解答】解:2. 6^6. 76, 2. 72=7. 29, 2. 82=7. 84, 2. 92=8. 41, 32=9,V7. 84<8<8.41,・・・2・8<V8<2. 9,・•・仮的点落在段③,故选:C.【点评】本题考查了估算无理数的大小,解决本题的关键是计算出各数的平方.20. 若a二(・3)"・(・ 3) ", b二(・0. 6) 12・(・ 0. 6) 14, c=(・ 1.5) 11・(-1.5) 13,则下列有关a、b、c的大小关系,何者正确?( )A. a>b>cB. a>c>bC. b>c>aD. c>b>a【考点】实数大小比较.【分析】分别判断出a・b与c・b的符号,即可得出答案.【解答】解:Ta - b二(-3) ” - ( -3) 14 - ( -0. 6) 12+ ( -0.6) 14= - 313 - 314 -些寻V0,5 5a < b,•/c - b=(・ 1.5) 11 - (- 1.5) 13・(・ 0.6) 12+ (・ 0.6) 14=(・ 1.5) n+1.5,3・ 0. 61Jo. 6“>0,・ \ c > b,c > b > a.故选D.【点评】此题考查了实数的大小比较,关键是通过判断两数的差,得出两数的大小.21 ・若k<V90<k+1 (k 是整数),则k二( )A. 6B. 7C. 8D. 9【考点】估算无理数的大小.【分析】根据勺示9, {而二10,可知9<価<10,依此即可得到k的值.【解答】解:TkvJ亦Vk+1 (k是整数),9<A/90<10,・•・k=9.故选:D.【点评】本题考查了估算无理数的大小,解题关键是估算的取值范围,从而解决问题.22. 估计后需+伍的运算结果应在哪两个连续自然数之间()A. 5 和6B. 6 和7C. 7 和8D. 8 和9【考点】估算无理数的大小;二次根式的乘除法.【分析】先把各二次根式化为最简二次根式,再进行计算.占 +届=2 后平+3逅二2+3個【解答】解:••・・6V2+3@V7,•I、矽養应的运算结果在6和7两个连续自然数之间,故选:B.【点评】本题考查的是二次根式的混合运算,在进行此类运算时一般先把二次根式化为最简二次根式的形式后再运算.最后估计无理数的大小.23. 估计的值在()A.在1和2之间B.在2和3之间C.在3和4之间D.在4和5之间【考点】估算无理数的大小.【专题】计算题.【分析】由于9<11<16,于是翻<届<岳,从而有3<VTi<4.【解答】解:V9<11<16,/. Va< V T L< V16,A3<V11<4.故选c.【点评】本题考查了无理数的估算,解题关键是确定无理数的整数部分即可解决问题.二、填空题24. 把7的平方根和立方根按从小到大的顺序排列为_ -街<需<听_.【考点】实数大小比较.【专题】计算题.【分析】先分别得到7的平方根和立方根,然后比较大小.【解答】解:7的平方根为-衍,^7; 7的立方根为2厅,所以7的平方根和立方根按从小到大的顺序排列为-听<需<衔.故答案为:■衔<齿<衔.【点评】本题考查了实数大小比较:正数大于0,负数小于0;负数的绝对值越大,这个数越小.25. 若a<V6<b,且a、b是两个连续的整数,贝I] J二8 .【考点】估算无理数的大小.【分析】先估算出航的范围,即可得出a、b的值,代入求出即可.【解答】解:・・・2<低V3,3—2, b—3,r.a b=8.故答案为:&【点评】本题考查了估算无理数的大小的应用,解此题的关键是求出、用的范围.26. 若两个连续整数x、y满足xV徧1Vy,则x+y的值是7 .【考点】估算无理数的大小.【分析】先估算的范围,再估算叮g+1,即可解答.【解答】解:・・・2<妬<3,・・・3<岳+1<4,Vx<V5+Ky,x—3, y—4,A x+y=3+4=7.故答案为:7.【点评】本题考查了估算无理数的大小,解决本题的关键是估算的范围.A/R - 1 127. 黄金比一> 4 (用“〉”、y“二”填空)2【考点】实数大小比较.【分析】根据分母相同,比较分子的大小即可,因为2<^5<3,从而得出伍-1>1,即可比较大小.【解答】解:・・・2<爸<3,A 1 < V5 ・ 1<2,•后1、1■■I• •r "八'2 2故答案为:>.【点评】本题考查了实数的大小比较,解题的关键是熟练掌握、用在哪两个整数之间,再比较大小.28. 请将2、号、低这三个数用“〉”连结起来号”斥>2・【考点】实数大小比较.【专题】存在型.【分析】先估算出馅的值,再比较出其大小即可.【解答】解:・・・、念2.236, "1=2.5, ••寺 >后>2.故答案为:-|>V5>2.【点评】本题考查的是实数的大小比较,熟记A/5^2. 236是解答此题的关键.29. 皿的整数部分是3 .【考点】估算无理数的大小.【分析】根据平方根的意义确定负的范围,则整数部分即可求得.【解答】解:V9<13<16,/.V13的整数部分是3.故答案是:3.【点评】本题主要考查了无理数的估算,解题关键是确定无理数的整数部分即可解决问题.30. 实数728-2的整数部分是3 .【考点】估算无理数的大小.【分析】首先得出姮的取值范围,进而得出姬・2的整数部分.【解答】解:・・・5<履<6,AV28 - 2的整数部分是:3.故答案为:3.【点评】此题主要考查了估计无理数大小,得出履的取值范围是解题关键.。
第11章 数的开方 班级 姓名 第一卷 (选择题 共30分) 一、选择题(每题3分,共30分)1.以下运算正确的选项是( D )A.〔-3〕2=-3 B .-144=12C.62+82=6+8=14 D .±324=±182.-3的绝对值是( C )A.33 B .-33 C. 3 D.13 3.与31最接近的整数是( C )A .4B .5C .6D .74.在实数-227,9,π,38中,是无理数的是( C ) A .-227B.9 C .π D.38 5.如图是一个数值转换机,假设输入的数a 为4,那么输出的结果应为( D )A .2B .-2C .1D .-16.如图,在数轴上点A 表示的数为3,点B 表示的数为6.2,点A 、B 之间表示整数的点共有( C )个A .3B .4C .5D .67.下面实数大小比较正确的选项是( B )A .3>7 B.3> 2C .0<-2D .22<38.3≈1.732,30≈5.477,那么300000≈( C )A .173.2B .±173.2C .547.7D .±547.79.点A 、B 在数轴上的位置如下列图,其对应的数分别是a 和b.对于以下结论:甲:b -a<0;乙:a +b>0;丙:|a|<|b|;丁:b a>0. 其中正确的选项是( C )A .甲、乙B .丙、丁C .甲、丙D .乙、丁10.假设a 2=9,3b =-2,那么a +b =( C )A .-5B .-11C .-5或-11D .5或11第二卷 (非选择题 共70分)二、填空题(每题3分,共18分)11.4的算术平方根是__2__,9的平方根是__±3__,-27的立方根是__-3__.12.在1,-2,-3,0,π这五个数中,最小的数是__-2__.13.计算:9-14+38-||-2=__212__. 14.3-5的相反数为__5-3__,4-17的绝对值为__17-4__,绝对值为327的数为__±3__.15.观察分析以下数据,寻找规律:0,3,6,3,12,15,18,…,那么第13个数据是__6__.16.用“*〞表示一种新运算:对于任意正实数a 、b ,都有a*b =b +1,例如8*9=9+1=4,那么15*196=__15__.三、解答题(共52分)17.(10分)求以下各数的平方根和算术平方根:(1)49;(2)1625; (3)279; (4)0.36;(5)⎝ ⎛⎭⎪⎫-382.18.(6分)求以下各数的平方根:(1)256; (2)(-6)2.19.(6分)求以下各式中x 的值:(1)(x +25)3=-729;(2)25(x -4)2=64.20.(6分)计算:(1)0.09-0.36+1-7 16;(2)-3-8+3125+〔-2〕2.21.(8分)在图中数轴上表示以下各数,并解答问题.-2,|-2.5|,-9,(-2)2.(1)将上面几个数用“<〞连接起来;(2)求数轴上表示|-2.5|和-9的这两点之间的距离.22.(8分)芳芳同学手中有一块长方形纸板和一块正方形纸板,其中长方形纸板的长为3dm,宽为2dm,且两块纸板的面积相等.(1)求正方形纸板的边长(结果保存根号);(2)芳芳能否在长方形纸板上截出两个完整的且面积分别为2dm2和3dm2的正方形纸板?判断并说明理由.(提示:2≈1.414,3≈1.732)(1)正方形的边长为6dm.(2)不能.因为两个正方形的边长的和约为 3.1dm,面积为3dm2的正方形的长约为1.732dm,可得3.1>3,1.732<3,所以不能在长方形纸板上截出两个完整的且面积分别为2dm2和3dm2的正方形纸板.23.(8分)阅读下面的文字,解答问题:大家知道2是无理数,而无理数是无限不循环小数,因此2的小数局部我们不可能全部地写出来,于是小明用2-1来表示2的小数局部,你同意小明的表示方法吗?事实上,小明的表示方法是有道理的,因为2的整数局部是1,将这个数减去其整数局部,差就是小数局部.又例如:∵22<(7)2<32,即2<7<3,∴7的整数局部为2,小数局部为(7-2).请解答:(1)10的整数局部是__3__,小数局部是__10-3__;(2)如果5的小数局部为a,37的整数局部为b,求a+b-5的值.4.。
2020-2021学年华东师大新版八年级上册数学《第11章数的开方》单元测试卷一.选择题1.下列算式中错误的是()A.B.C.D.2.下列实数中的无理数是()A.0.7B.C.πD.3.下列判断中,你认为正确的有()(1);(2)是分数;(3)0的倒数是0;(4)的值是±3.A.3个B.2个C.1个D.0个4.一个正数的两个平方根分别是2a﹣1与﹣a+2,则这个正数是()A.1B.﹣1C.9D.﹣35.的立方根是()A.±B.C.D.6.利用如图所示的计算器进行计算,按键操作不正确的是()A.按键即可进入统计算状态B.计算的值,按键顺序为:C.计算结果以“度”为单位,按键可显示以“度”“分”“秒”为单位的结果D.计算器显示结果为时,若按键,则结果切换为小数格式0.333333333 7.已知m是的整数部分,n是的小数部分,则m2﹣n的值是()A.6﹣B.6C.12﹣D.138.已知=0,则(a﹣b)2020的值为()A.1B.﹣1C.±1D.09.下列说法正确的是()A.任何实数都有平方根B.无限小数是无理数C.负数没有立方根D.﹣8的立方根是﹣210.若规定,f(x)表示最接近x的整数(x≠n+0.5,n整数)例如:f(0.7)=1,f(2.3)=2,f(5)=5,则f(1)+f()+f()+…+f()的值()A.16B.17C.18D.19二.填空题11.的绝对值是.12.若利用计算器求得=2.573,=8.136,则根据此值估计6619的算术平方根是.13.定义新运算※,对于任意实数a,b都有a※b=a2+ab,如果3※4=32+3×4=9+12=21,那么方程x※5=0的解为.14.已知x为整数,且满足﹣≤x≤,则x=.15.若|3﹣a|+=0,则a+b的立方根是.16.若实数m在数轴上对应的点到原点的距离为2,实数n是最大的负整数,则代数式(m+n)(m﹣n)的值是.17.已知实数﹣,0.16,,,,,其中为分数的是.18.已知:一个正数的两个平方根分别是2a﹣3和a﹣2,则a的值是.19.面积为S的正方形的边长为.20.若(x﹣1)3=﹣64,则x=.三.解答题21.一个正数的两个平方根为2n+1和n﹣4,2n是2m+4的立方根,的小数部分是k,求的平方根.22.解方程:(1)25x2﹣169=0;(2)8(x+1)3=﹣125.23.作图:在数轴上作出表示﹣、3﹣的点(保留作图痕迹,不写作法).24.如图,AB∥CD,E为线段CD上一点,∠BAD=n°,n=15xy,且+(y﹣3)2=0.(1)求n的值.(2)求证:∠PEC﹣∠APE=135°.(3)若P点在射线DA上运动,直接写出∠APE与∠PEC之间的数量关系.(不考虑P 与A、D重合的情况)25.用计算器探索.已知按一定规律排列的一组数:1,,,…,,,如果从中选择出若干个数,使它们的和大于3,那么至少要选几个数?26.已知实数x,y满足关系式+|y2﹣1|=0.(1)求x,y的值;(2)判断是有理数还是无理数?并说明理由.参考答案与试题解析一.选择题1.解:A、﹣=﹣0.8,正确,不合题意;B、±=±1.4,正确,不合题意;C、=﹣,正确,不合题意;D、=,原式计算错误,符合题意.故选:D.2.解:A、0.7是有限小数,属于有理数;B、是分数、属于有理数;C、π是无理数;D、,是整数,属于有理数.故选:C.3.解:(1),正确;(2)是无理数,不是分数,错误;(3)0没有倒数,错误;(4)=3,错误;故选:C.4.解:∵一个正数的两个平方根分别是2a﹣1与﹣a+2,∴2a﹣1﹣a+2=0,解得:a=﹣1,故2a﹣1=﹣3,则这个正数是:(﹣3)2=9.故选:C.5.解:的立方根是;故选:D.6.解:A、按键即可进入统计算状态是正确的,故选项A不符合题意;B、计算的值,按键顺序为:,故选项B符合题意;C、计算结果以“度”为单位,按键可显示以“度”“分”“秒”为单位的结果是正确的,故选项C不符合题意;D、计算器显示结果为时,若按键,则结果切换为小数格式0.333333333是正确的,故选项D不符合题意;故选:B.7.解:∵3<<4,∴m=3;又∵3<<4,∴n=﹣3;则m2﹣n=9﹣+3=12﹣.故选:C.8.解:∵+=0,∴a=0,b=0,∴(a﹣b)2020=02020=0,故选:D.9.解:A、只有正数和0有平方根,原说法错误,故本选项不符合题意;B、无限不循环小数才是无理数,原说法错误,故本选项不符合题意;C、任何实数都有立方根,原说法错误,故本选项不符合题意;D、﹣8的立方根是﹣2,原说法正确,故本选项符合题意;故选:D.10.解:f(x)表示的意义可得,f(1)=1,f()=1,f()=2,f()=2,f()=2,f()=2,f()=3,f()=3,f()=3,∴f(1)+f()+f()+…+f()=1+1+2+2+2+2+3+3+3=19,故选:D.二.填空题11.解:∵4<<5,∴2<<,则﹣>0,∴﹣的绝对值是:﹣.故答案为:﹣.12.解:被开方数每扩大为原来的100倍,其算术平方根相应的扩大为原来的10倍,∵,∴.故答案为:81.36.13.解:x※5=0,则x2+5x=0,x(x+5)=0,解得:x=0或﹣5.故答案为:0或﹣5.14.解:∵﹣2<﹣<﹣1,1<<2,∴x应在﹣2和2之间,则x=﹣1,0,1.故答案为:﹣1,0,1.15.解:∵|3﹣a|+=0,∴3﹣a=0且2﹣b=0,解得a=3,b=2,则a+b的立方根===,故答案为:.16.解:∵实数m在数轴上对应的点到原点的距离为2,∴m=2或m=﹣2、∵实数n是最大的负整数,∴n=﹣1,∴当m=2,n=﹣1时,(m+n)(m﹣n)=1×3=3;当m=﹣2,n=﹣1时,(m+n)(m﹣n)=﹣3×(﹣1)=3.故答案为:3.17.解:=1.1,在实数﹣,0.16,,,,中,分数有﹣,0.16,.故答案为:﹣,0.16,.18.解:∵一个正数的两个平方根分别是2a﹣3和a﹣2,∴2a﹣3+a﹣2=0,解得:a=,故答案为:.19.解:面积为S的正方形的边长表示为,故答案为:.20.解:∵(﹣4)3=﹣64,(x﹣1)3=﹣64,∴x﹣1=﹣4,解得x=﹣3.故答案为:﹣3.三.解答题21.解:∵一个数的平方根为2n+1和n﹣4,∴2n+1+n﹣4=0,∴n=1,∴2n=2,∵2n是2m+4的立方根,∴2m+4=8,解得m=2;∵,的小数部分是k,∴k=,∴=2+1﹣(﹣6)+=2+1﹣+6+=9.22.解:(1)25x2﹣169=0,则x2=,解得:x=±;(2)8(x+1)3=﹣125,则(x+1)3=﹣,解得:x=﹣.23.解:因为10=9+1,则首先作出以1和3为直角边的直角三角形,则其斜边的长即是.再以原点为圆心,以为半径画弧,和数轴的负半轴交于一点,这点表示的数即为;作出一条线段等于OB=,再以O为圆心,BC的长为半径画弧交数轴于E即可,则点E为所求的点.24.(1)解:∵+(y﹣3)2=0,∴x﹣1=0,y﹣3=0,∴x=1,y=3,∴n=15×1×3=45;(2)证明:如图1,过P作PF∥AB,则∠APF=180°﹣∠BAD=135°,∵AB∥CD,∴CD∥PF,∴∠PEC=∠FPE,∴∠PEC﹣∠APE=∠APF=135°;(3)解:分两种情况:①当P在线段AD上时,如图2,∵AB∥CD,∴∠ADC=∠BAD=45°,∴∠DPE+∠DEP=180°﹣45°=135°,∴∠PEC+∠APE=360°﹣135°=225°;③当P在A点左边时,如图3,∵∠PEC=∠APE+∠PDE,∴∠PEC﹣∠APE=∠PDE=45°.25.解:左边第一个数是1,第二个是=≈0.7,第三个数是=≈0.57,第四个数是==0.5,第五个数是=≈0.44,第六个数是=≈0.41,1++++=1+0.7+0.56+0.5+0.44=3.2,所以可以把这些数加起来,得出至少要5个数和才大于3.26.解:(1)由题意,得,解得:;(2)当x=2,y=1时,=,是无理数.当x=2,y=﹣1时,==2,是有理数.。
第11章数的开方数学八年级上册-单元测试卷-华师大版(含答案)一、单选题(共15题,共计45分)1、的算术平方根是()A. B. C. D.±42、的平方根是()A. B. C. D.3、下列命题中是假命题的是()A.若,则B.若,则x是一个无理数C.若,则 D.若,则4、在下列四个实数,-0.5,0,中,最小的是()A. B.- 0.5 C.0 D.5、已知a,b在数轴上的位置如图所示,则a﹣b的结果的符号为()A.正B.负C.0D.无法确定6、下列各式中,正确的个数是()①②③的平方根是-3④的算术平方根是-5 ⑤是的平方根A.1个B.2个C.3个D.4个7、下列计算正确的是()A. B. C. D.8、下列说法:①有理数和数轴上的点一一对应;②成轴对称的两个图形是全等图形;③- 是17的平方根;④等腰三角形的高线、中线及角平分线重合.其中正确的有()A.0个B.1C.2个D.3个9、计算的结果是()A.3B.27C.D.10、下列各数中,比-2小的数是()A.-1B.C.0D.111、有下列说法:①有理数和数轴上的点一一对应;②不带根号的数一定是有理数;③负数没有立方根;④是7的平方根;其中正确的说法有( )A.0个B.1个C.2个D.3个12、如图,被阴影覆盖的可能是下面哪一个数()A.﹣B.C.D.以上都不对13、下列计算不正确的是()A. =±2B. = =9C. =0.4D. =﹣614、下列计算正确的是()A.2a+3b=5abB. =±6C.a 2b÷2ab= a 2D.(2ab 2)3=8a 3b 615、给出四个数0,- ,,-1,其中最小的数是( )A.-1B.-C.0D.二、填空题(共10题,共计30分)16、 =________.17、计算:﹣|﹣2|+()﹣1=________.18、与原点的距离为 2 个单位的点所表示的有理数是________.19、在下列语句中:①实数不是有理数就是无理数;②无限小数都是无理数;③无理数都是无限小数;④根号的数都是无理数;⑤两个无理数之和一定是无理数;⑥所有的有理数都可以在数轴上表示,反过来,数轴上所有的点都表示有理数.正确的是________(填序号).20、已知,则________.21、已知有理数a在数轴上的位置如图,则a+|a﹣1|=________.22、计算:2﹣1﹣=________ .23、的算术平方根是________,=________.24、-2是________的立方根,81的平方根是________.25、一个正数的两个平方根分别是与,则这个正数是________.三、解答题(共5题,共计25分)26、计算:.27、已知2a-1的平方根是±3,3a+b-9的立方根是2,c是的整数部分,求a+b+c的平方根.28、已知:x﹣2的平方根是±2,2x+y+7的立方根是3,求x2+y2的算术平方根.29、已知a <b,a,b为相邻的两个正整数,c﹣3是400的算术平方根,求.30、如图,某玩具厂要制作一批体积为100 000cm3的长方体包装盒,其高为40cm.按设计需要,底面应做成正方形.求底面边长应是多少?参考答案一、单选题(共15题,共计45分)2、D3、D4、A5、B6、A7、D8、C9、D10、B11、B12、B13、A14、D15、B二、填空题(共10题,共计30分)16、17、18、20、21、22、23、24、25、三、解答题(共5题,共计25分)26、27、29、30、。
第11章数的开方数学八年级上册-单元测试卷-华师大版(含答案)一、单选题(共15题,共计45分)1、±2是4的()A.平方根B.相反数C.绝对值D.算术平方根2、下列说法正确的是()A.|-2|=-2B.0的倒数是0C.4的平方根是2D.-3的相反数是33、下列实数中最大的是()A. B. C. D.4、实数的值在( )A.0和1之间B.1和2之间 C.2和3之间 D.3和4之间5、下列各式运算中正确的是()A. B. C. D.6、下列有关平方根的叙述,正确的个数是()①如果a存在平方根,那么a>0;②如果a有两个不同的平方根,那么a>0;③如果a没有平方根,那么a<0;④如果a>0,那么a的平方根也大于0.A.1B.2C.3D.47、下列命题中,为真命题的是()A. 是13的算术平方根B.三角形的一个外角大于任何一个内角C. 是最简二次根式D.两条直线被第三条直线所截,内错角相等8、估计()的值应在()A.1和2之间B.3和4之间C.4和5之间D.5和6之间9、实数的值在()A.1和2之间B.2和3之间C.3和4之间D.4和5之间10、计算的结果为( )A.3B.C.D.11、下列说法中正确的是()A.10的平方根是100B.-2不是4的平方根C. 的平方根是D.0.01的算术平方根是0.112、下列计算正确的是()A. =3B.﹣=9C.﹣=1 D.|﹣3|=﹣313、下列说法中正确的是()A. 的平方根是B. 的算术平方根是C. 与相等 D. 的立方根是14、下列说法错误的是 ( )A.无理数的相反数还是无理数B.无理数都是无限小数C.正数、负数统称有理数D.实数与数轴上的点一一对应15、计算﹣()2+(+π)0+(﹣)﹣2的结果是()A.1B.2C.D.3二、填空题(共10题,共计30分)16、-2的倒数是________,4的算术平方根是________.17、计算:= ________。
第11章数的开方数学八年级上册-单元测试卷-华师大版(含答案)一、单选题(共15题,共计45分)1、两个有理数,,并且,则下列各式正确的是().A. B. C. D.2、下列说法正确的是()A. 是有理数B.5的平方根是C.2<<3D.数轴上不存在表示的点3、下列实数中,最大的是()A.-2B.0C.D.4、正数5的算术平方根是()A. B. C. D.5、36的平方根是()A.6B.-6C.±6D.6、下列说法正确的是()A.无限小数都是无理数B.9的立方根是3C.数轴上的每一个点都对应一个有理数D.平方根等于本身的数是07、实数在数轴上的位置如图所示,化简的结果是()A. B. C. D.8、已知n是正数,并且n-1<3+ <n,则n的值为()A.7B.8C.9D.109、在算式2□(﹣3)﹣1的□中填上运算符号,使结果最小,这个运算符号是()A.加号B.减号C.乘号D.除号10、实数4的算术平方根是()A.-2B.2C.±2D.±411、化简的值为()A.9B.±3C.±9D.312、的值是()A. B. C. D.13、下列算式①=±3;②=9;③26÷23=4;④=2016;⑤a+a=a2.运算结果正确的概率是()A. B. C. D.14、估算的值 ( )A.在和之间B.在和之间C.在和之间D.在和之间15、如图,在数轴上标有O,A,B,C,D五个点,根据图中各点所表示的数,判断应该在下列线段的()A.OA上B.AB上C.BC上D.CD上二、填空题(共10题,共计30分)16、的平方根是________;64的立方根为________.17、实数27的立方根是________.如果点P(4,﹣5)和点Q(a,b)关于原点对称,则a的值为________.18、计算:________.19、-64的立方根是________,的平方根是________.20、的平方根是________.21、方程=3的根是________22、比较大小:﹣________﹣(填“>”或“<”或“=”).23、已知n为正整数,且n<<n+1,则(﹣n)(n+ )的值是________.24、的平方根是________.25、有三个数,,,其中没有平方根,,则这三个数按照从小到大的顺序排列应为:________ ________ ________.三、解答题(共5题,共计25分)26、计算:27、计算:(1)+(精确到0.01)(2)+2.34﹣π(精确到十分位)28、有理数、、在数轴上的点如图所示:化简:.29、求满足下列式子的x的值:(1)4x2﹣16=0(2)﹣8(x+1)3=27.30、已知有理数a、b互为相反数且a≠0,c、d互为倒数,有理数m和﹣2在数轴上表示的点相距3个单位长度,求|m|﹣﹣cd的值.参考答案一、单选题(共15题,共计45分)1、B2、C3、D4、C5、C6、D8、C9、D10、B11、A12、B13、B14、C15、C二、填空题(共10题,共计30分)16、17、18、19、20、21、23、24、25、三、解答题(共5题,共计25分)26、27、28、30、。
华师大版八年级上册第11章《数的开方》单元测试卷(满分100分)姓名:___________班级:___________学号:___________成绩:___________ 一.选择题(共8小题,满分24分,每小题3分)1.在﹣1,0,π,这四个数中,最大的数是()A.﹣1B.0C.πD.2.等于()A.﹣4B.4C.±4D.2563.实数﹣2,0.3,,﹣,﹣π中,无理数的个数是()A.2B.3C.4D.54.实数a,b,c在数轴上的对应点的位置如图所示,若|a|=|b|,则下列结论中错误的是()A.a+b=0B.a+c<0C.b+c>0D.ac<05.利用教材中的计算器依次按键如下:则计算器显示的结果与下列各数中最接近的一个是()A.2.5B.2.6C.2.8D.2.96.下列说法,其中正确说法的个数是()①﹣64的立方根是4 ②49的算术平方根是±7③的立方根是④的平方根是A.1B.2C.3D.47.在实数范围内定义运算“☆”:a☆b=a+b﹣1,例如:2☆3=2+3﹣1=4.如果2☆x=1,则x的值是()A.﹣1B.1C.0D.28.利用计算器计算出的下表中各数的算术平方根如下:………0.250.7906 2.57.9062579.06250…根据以上规律,若≈1.30,≈4.11,则≈()A.13.0B.130C.41.1D.411二.填空题(共6小题,满分24分,每小题4分)9.(4分)我们规定:相等的实数看作同一个实数.有下列六种说法:①数轴上有无数多个表示无理数的点;②带根号的数不一定是无理数;③每个有理数都可以用数轴上唯一的点来表示;④数轴上每一个点都表示唯一一个实数;⑤没有最大的负实数,但有最小的正实数;⑥没有最大的正整数,但有最小的正整数.其中说法错误的有(注:填写出所有错误说法的编号)10.(4分)规定用符号[m]表示一个实数m的整数部分,例如[]=0,[π]=3,按此规定,[+1]=.11.(4分)若m,n为实数,且|m+3|+=0,则()2020的值为.12.(4分)甲同学利用计算器探索.一个数x的平方,并将数据记录如表:x16.216.316.416.516.616.716.816.917.0 x2262.44265.69268.96272.25275.56278.89282.24285.61289请根据表求出275.56的平方根是.13.(4分)的立方根是.14.(4分)比较大小:52.三.解答题(共8小题,满分52分)15.(5分)计算:(﹣1)2020﹣(+)+.16.(6分)求出下列x的值:(1)﹣27x3+8=0;(2)3(x﹣1)2﹣12=0.17.(6分)已知4a+7的立方根是3,2a+2b+2的算术平方根是4.(1)求a,b的值;(2)求6a+3b的平方根.18.(6分)(1)求出下列各数:①﹣27的立方根;②3的平方根;③的算术平方根.(2)将(1)中求出的每一个数准确地表示在数轴上,并用<连接大小.19.(6分)有一种用“☆”定义的新运算,对于任意实数a,b,都有a☆b=b2+2a+1.例如7☆4=42+2×7+1=31.(1)已知﹣m☆3的结果是﹣4,则m=.(2)将两个实数2n和n﹣2用这种新定义“☆”加以运算,结果为9,则n的值是多少?20.(7分)“比差法”是数学中常用的比较两个数大小的方法,即:.例如:比较﹣2与2的大小:∵﹣2﹣2=﹣4,又∵<<,则4<<5,∴﹣2﹣2=﹣4>0,∴﹣2>2.请根据上述方法解答以下问题:比较2﹣与﹣3的大小.21.(8分)阅读下面的文字,解答问题.大家知道是无理数,而无理数是无限不循环小数,因此的小数部分我们不可能全部地写出来,于是小明用﹣1来表示的小数部分,你同意小明的表示方法吗?事实上,小明的表示方法是有道理,因为的整数部分是1,将这个数减去其整数部分,差就是小数部分.请解答:(1)若的整数部分为a,小数部分为b,求a2+b﹣的值.(2)已知:10+=x+y,其中x是整数,且0<y<1,求x﹣y的值.22.(8分)(1)用“<““>“或“=“填空:,;(2)由以上可知:①|1﹣|=,②||=(3)计算:|1﹣|+|﹣|+|﹣+…+|﹣|.(结果保留根号)参考答案一.选择题(共8小题,满分24分,每小题3分)1.解:根据实数比较大小的方法,可得﹣1<0<<π,∴在这四个数中,最大的数是π.故选:C.2.解:=4.故选:B.3.解:﹣,﹣π是无理数,共有2个无理数,故选:A.4.解:∵|a|=|b|,∴实数a,b在数轴上的对应点的中点是原点,∴a<0<b<c,且c>﹣a,∴a+b=0,A不符合题意;∴a+c>0,B符合题意;∴b+c>0,C不符合题意;∴ac<0,D不符合题意.故选:B.5.解:∵≈2.646,∴与最接近的是2.6,故选:B.6.解:①﹣64的立方根是﹣4,故此选项错误;②49的算术平方根是7,故此选项错误;③的立方根是,正确;④的平方根是:±,故此选项错误;故选:A.7.解:由题意知:2☆x=2+x﹣1=1+x,又2☆x=1,∴1+x=1,∴x=0.故选:C.8.解:由表格可以发现:被开方数的小数点(向左或者右)每移动两位,其算术平方根的小数点相应的向相同方向移动一位.∵16.9×100=1690,∴=×10=41.1.故选:C.二.填空题(共6小题,满分24分,每小题4分)9.解:①数轴上有无数多个表示无理数的点是正确的;②带根号的数不一定是无理数是正确的,如=2;③每个有理数都可以用数轴上唯一的点来表示是正确的;④数轴上每一个点都表示唯一一个实数是正确的;⑤没有最大的负实数,也没有最小的正实数,原来的说法错误;⑥没有最大的正整数,有最小的正整数,原来的说法正确.故答案为:⑤.10.解:∵3<<4,∴4<<5,∴[+1]=4.故答案为:411.解:∵|m+3|+=0,∴m+3=0,n﹣3=0,解得m=﹣3,n=3,则()2020=()2020=(﹣1)2020=1,故答案为:1.12.解:观察表格数据可知:=16.6所以275.56的平方根是±16.6.故答案为±16.6.13.解:的立方根是,故答案为:14.解:∵5=,2=,∴>,∴5>2.故答案为:>.三.解答题(共8小题,满分52分)15.解:原式=1﹣(6+)+3=1﹣7+3=﹣3.16.解:(1)∵﹣27x3+8=0,∴﹣27x3=﹣8,则x3=,解得:x=;(2)∵3(x﹣1)2﹣12=0,∴3(x﹣1)2=12,∴(x﹣1)2=4,则x﹣1=±2解得:x=3或x=﹣1.17.解:(1)∵4a+7的立方根是3,2a+2b+2的算术平方根是4,∴4a+7=27,2a+2b+2=16,∴a=5,b=2;(2)由(1)知a=5,b=2,∴6a+3b=6×5+3×2=36,∴6a+3b的平方根为±6.18.解:(1)①﹣27的立方根是﹣3;②3的平方根是±;③的算术平方根是3;(2)将(1)中求出的每个数表示在数轴上如下:用“<”连接为:﹣3<﹣<<3.19.解:(1)根据题意可得:﹣m☆3=32﹣2m+1=﹣4,解得:m=7;故答案为:7;(2)根据题意可得:2n☆(n﹣2)=9,即(n﹣2)2+4n+1=9,解得:n=2或﹣2,(n﹣2)☆2n=4n2+2(n﹣2)+1=9,解得:n=﹣2或,则n=﹣2或或2.20.解:2﹣﹣(﹣3)=2﹣+3=5﹣,∵<<,∴4<<5,∴5﹣>0,∴2﹣>﹣3.21.解:(1)∵3<<4,∴a=3,b=﹣3,∴a2+b﹣=32+﹣3﹣=6;(2)∵1<<2,又∵10+=x+y,其中x是整数,且0<y<1,∴x=11,y=﹣1,∴x﹣y=11﹣(﹣1)=12﹣.22.解:(1)∵1<2,2<3,∴<,<;故答案为:<;<;(2)∵1﹣<0,﹣<0,∴①|1﹣|=﹣1;②|﹣|=﹣;故答案为:﹣1;﹣;(3)原式=﹣1+﹣+﹣+…+﹣=﹣1.。
华东师大版八年级上册第11章《数的开方》单元测试卷本试卷三个大题共22个小题,全卷满分120分,考试时间120分钟。
题号 一 二 三全卷总分总分人 17 18 19 20 21 22 得分注意事项:1、答题前,请考生务必将自己姓名、考号、班级等写在试卷相应的位置上;2、选择题选出答案后,用钢笔或黑色水笔把答案标号填写在选择题答题卡的相应号上。
一、选择题(本大题共12个小题,每小题4分,共48分.以下每小题都给出了A 、B 、C 、D 四个选项,其中只有一个是符合题目要求的。
)1 2 3 4 5 6 7 8 9 10 11 12 BBADCBCBCCBA1、16的平方根是( B ) A 、4B 、4±C 、16D 、16±2、下列各数中,无理数是( B )A 、3−B 、18C 、3.14D 、25 3、下列叙述错误的是( A )A 、4−是16的算术平方根B 、5是25的算术平方根C 、3是9的算术平方根D 、0.04的算术平方根是0.24、一个正数的平方根分别为:62+a 与3−a ,则这个正数是( D )A 、1B 、4C 、9D 、165、若a 、b 为实数,且满足012=−+−b a ,则ba的值为( C ) A 、2− B 、21 C 、2 D 、21−6、下列说法中错误的是( B )A 、3.0−是0.09的一个平方根B 、16的平方根是4±C 、0的立方根是0D 、1−的立方根是1−7、下列选项正确的是( C ) A 、39±= B 、()22− C 、51253−=− D 、416=±8、估算340−的值在( B ) A 、2到3之间B 、3到4之间C 、4到5之间D 、5到6之间9、下列说法:①无限小数是无理数;②负数的立方根仍是负数;③9的平方根是3±;④1的平方根与立方根都是1;⑤互为相反数的两个数的立方根仍为相反数。
数的开方单元测试题
班级: 姓名:__________
一、选择题:(每题3分,共30分)
1、在数-5,0,7
22,2006,20.80中,有平方根的数有( )
A 、1个
B 、2个
C 、3个
D 、4个
2、在数-27,-1.25,0,7
24
中,立方根为正的数有( )
A 、1个
B 、2个
C 、3个
D 、0个 3、下面的运算中,是开平方运算的是( )
A 、4069)64(2=-
B 、864=
C 、864±=±
D 、4643= 4、下列各数中:5,-3,0,34,722,-1.732,25,2
π
-,293+,无理数的个数有( )
A 、1个
B 、2个
C 、3个
D 、4个
5、下列说法中,正确的有( )①无限小数是无理数;②无理数是无限小数;③两个无理数的和是无理数;④对于实数a 、b,如果22b a =,那么a=b ;⑤所有的有理数都可以用数轴上的点来表示,反过来,数轴上的所有点都表示有理数。
A 、②④ B 、①②⑤ C 、② D 、②⑤
6、下列各式正确的是( )
A 、981±=
B 、14.314.3-=-ππ
C 、3927-=-
D 、235=- 7、a 、b 是两个实数,在数轴上的位置如图所示,下面结论正确的是( ) A 、a 、b 互为相反数 B 、b+a 〉0 C 、零和负有理数 D 、 b-a 〉0 8、下列式子正确的是( )
A 、55〈
B 、23-〉-
C 、3223-〈-
D 、230-〈
9一个自然数的算术平方根为a ,则与这个自然数相邻的下一个自然数的算术平方根为
( )A 、22+a B 、12+a C 、1+a D 、1+a
10、若x -有意义,则x x -一定是( )A 、正数 B 、非负数 C 、负数 D 、非正数
二、填空题:(每空3分,共24分) 11、若a 的算术平方根为
2
1
,则a= 如果68.28,868.26.2333==x ,那么x= 12、若0125=-++--y x y x ,则=x y 13、若2
992
2--+-=
x x x y +1,则y x 43+=
14、比较大小:
112,
11-6-
15、38的平方根是 ,2)4(-的算术平方根是 ,81的平方根是 16、若一个正数的两个平方根为2m-6与3m+1,则这个数是 ;若a+3与2a-15是m 的平方根,则m=
17、绝对值最小的实数是 ,21-的绝对值是 ,21-的相反数是 18、若实数满足
1-=a
a
,则a 是 ;若40≤≤a ,则a 的取值范围是 三、解答题:(,共66分)
19、求下列各式的值:(每题4分,共24分)
(1)41
2± (2)3027.0
(3)31512
169
-- (4) 222129-
(5)31000511003631- (6)1691691271943--+
20、求下列各式中的x 值:(每题4分,共16分) (1)641212=x (2)02433=-x
(3)22)7()5(-=-x (4)32)4()12(25-=--x
21.按照从小到大的顺序,用“<”把下列各数连接起来(5分) 14
.31
,1,5.0,)1(,8722005-
----π
22、若2+-b a 与1-+b a 互为相反数,求22a+2b 的立方根(6分)
23、青云学府新建了一个面积为16平方米的传达室,计划用100块正方形的地板砖来铺设地面,那么所需要的正方形的地板砖的边长是多少?(7分)
24、若a 和b 互为相反数,c 与d 互为倒数,m 的倒数等于它本身,试化简:
m
cd
b a m 233222-
---+(8分)。