知识点3 在Rt △ABC中,∠C=90°,
sinA=cosB
定义中应该注意的几个问题:1.sinA,cosA,tanA是在直角三角形中定义的,∠A是锐角(注意数形结合,构造直角三角形).2.sinA,cosA,tanA是一个完整的符号,分别表示∠A的正弦,余弦,正切 (习惯省去“∠”号).3.sinA,cosA,tanA 是一个比值.注意比的顺序.且sinA,cosA,tanA均﹥0,无单位.4.sinA,cosA,tanA的大小只与∠A的大小有关,而与直角三角形的边长无关.5.角相等,则其三角函数值相等;两锐角的三角函数值相等,则这两个锐角相等.
第23章 解直角三角形
23.1 锐角的三角函数
第2课时 正弦和余弦
学习目标
学习重难点
重点
难点
1.理解锐角正弦、余弦的定义.2.会求直角三角形中锐角的正弦、余弦值.
理解锐角正弦、余弦的意义.用正弦Biblioteka 、余弦值表示直角三角形中两边的比.
回顾复习
什么叫锐角的正切?什么叫坡度?如何表示? 在Rt△ABC中,锐角A的对边与邻边的比叫做∠A的正切,记作tanA,坡面的垂直高度h和水平长度l的比叫做坡面的坡度;记作:i,即i= .
问题2:在图中,由于∠C=∠C′=90°,∠A=∠A'=α,所以Rt△ABC∽Rt△A'B'C',那么 与 有什么关系.你能试着分析一下吗?
这就是说,在直角三角形中,当锐角A的度数一定时,不管三角形的大小如何,∠A的邻边与斜边的比也是一个固定值.
知识点2 ∠A的邻边与斜边的比叫做∠A的余弦(cosine),记作cosA,即
问题引入
问题1:在图中,由于∠C=∠C'=90°,∠A=∠A'=α,所以Rt△ABC∽Rt△A'B'C',那么 与 有什么关系.你能试着分析一下吗?