第二章半导体二极管及其基本电路
- 格式:doc
- 大小:184.50 KB
- 文档页数:14
二极管基本电路与分析方法二极管是一种最简单的半导体器件,具有只能单向导电的特点。
在电子电路中,二极管通常用于整流、限流、调制和混频等功能。
本文将介绍二极管的基本电路和分析方法。
一、二极管基本电路1.正向偏置电路正向偏置电路是将二极管的P端连接到正电压,N端连接到负电压的电路。
这种电路可以使二极管处于导通状态,实现电流流动。
2.逆向偏置电路逆向偏置电路是将二极管的P端连接到负电压,N端连接到正电压的电路。
这种电路可以使二极管处于截止状态,即不导电。
二、二极管分析方法1.静态分析静态分析是指在稳态条件下分析二极管的工作状态。
在正向偏置电路中,如果二极管被接入电路且正向电压大于二极管的正向压降时,二极管处于导通状态;反之,二极管处于截止状态。
在逆向偏置电路中,无论接入电路与否,二极管都处于截止状态。
2.动态分析动态分析是指在变化条件下分析二极管的工作状态。
例如,当正向电压瞬时增加时,二极管可能处于导通状态。
此时,需要考虑二极管的导通压降和电流变化情况。
三、常见二极管电路1.整流电路整流电路是将交流信号转换为直流信号的电路。
常见的整流电路有半波整流电路和全波整流电路。
半波整流电路只利用了交流信号的一半,而全波整流电路则利用了交流信号的全部。
整流电路中的二极管起到了只允许电流在一个方向上流动的作用。
2.限流电路限流电路是通过限制电流的大小来保护其他元件不受损坏的电路。
常见的限流电路有稳压二极管电路和过载保护电路。
稳压二极管电路利用二极管的电流-电压特性,使得二极管具有稳定的电流输出能力;过载保护电路则通过限制电流大小来保护负载电路。
3.调制电路调制电路是将低频信息信号调制到高频载波信号上的电路。
常见的调制电路有调幅电路和调频电路。
在调制电路中,二极管起到了快速改变电流或电压的作用,实现信号的调制效果。
4.混频电路混频电路是将两个不同频率的信号进行混合,得到新的频率信号的电路。
在混频电路中,二极管可以起到信号选择和调谐的作用,实现频率混合。
第二章半导体二极管及其基本电路2-1.填空(1)N型半导体是在本征半导体中掺入;P型半导体是在本征半导体中掺入。
(2)当温度升高时,二极管的反向饱和电流会。
(3)PN结的结电容包括和。
(4)晶体管的三个工作区分别是、和。
在放大电路中,晶体管通常工作在区。
(5)结型场效应管工作在恒流区时,其栅-源间所加电压应该。
(正偏、反偏)答案:(1)五价元素;三价元素;(2)增大;(3)势垒电容和扩散电容;(4)放大区、截止区和饱和区;放大区;(5)反偏。
2-2.判断下列说法正确与否。
(1)本征半导体温度升高后,两种载流子浓度仍然相等。
()(2)P型半导体带正电,N型半导体带负电。
()(3)结型场效应管外加的栅-源电压应使栅-源间的耗尽层承受反向电压,才能保证R GS大的特点。
()(4)只要在稳压管两端加反向电压就能起稳压作用。
()(5)晶体管工作在饱和状态时发射极没有电流流过。
()(6)在N型半导体中如果掺入足够量的三价元素,可将其改型为P型半导体。
()(7)PN结在无光照、无外加电压时,结电流为零。
()(8)若耗尽型N沟道MOS场效应管的U GS大于零,则其输入电阻会明显减小。
()答案:(1)对;温度升高后,载流子浓度会增加,但是对于本征半导体来讲,电子和空穴的数量始终是相等的。
(2)错;对于P型半导体或N型半导体在没有形成PN结时,处于电中性的状态。
(3)对;结型场效应管在栅源之间没有绝缘层,所以外加的栅-源电压应使栅-源间的耗尽层承受反向电压,才能保证R GS大的特点。
(4)错;稳压管要进入稳压工作状态两端加反向电压必须达到稳压值。
(5)错;晶体管工作在饱和状态和放大状态时发射极有电流流过,只有在截止状态时没有电流流过。
(6)对;N型半导体中掺入足够量的三价元素,不但可复合原先掺入的五价元素,而且可使空穴成为多数载流子,从而形成P型半导体。
(7)对;PN结在无光照、无外加电压时,处于动态平衡状态,扩散电流和漂移电流相等。
二极管原理及其基本电路二极管是一种最简单的半导体器件,它具有非常重要的功能和应用。
本文将介绍二极管的原理以及其基本电路。
一、二极管的原理二极管是由一种带有p型半导体和n型半导体的材料组成的。
在p-n 结的区域内,因为半导体的材料特性,会形成一个电势垒。
当外加电压的极性与电势垒形成的方向相反时,电势垒将变得更大,称为反向偏置;当外加电压的极性与电势垒形成的方向一致时,电势垒将变得更小,称为正向偏置。
在二极管的工作中,主要有以下几个重要的特性。
1.正向电压特性:当二极管处于正向偏置状态时,在两端加上正向电压时,电势垒逐渐缩小,直到消失。
在这个过程中,二极管的导电性变得很好。
正向电压越大,二极管导通越好。
2.反向电压特性:当二极管处于反向偏置状态时,在两端加上反向电压时,电势垒逐渐增加。
当反向电压超过反向击穿电压时,二极管就会发生击穿,电流急剧增大,此时二极管就会损坏。
3.导通和截止特性:当二极管处于正向偏置状态时,正向电压不超过一定限制时,二极管会导通。
当正向电压超过这个限制时,二极管截止,不导通。
而当二极管处于反向偏置状态时,无论外加电压的大小,其表现都是开路状态,不导通。
二、二极管的基本电路二极管广泛地应用于各种电路中,下面介绍几个常见的二极管基本电路。
1.正向电压特性测试电路:这是一个测试二极管正向电压特性的电路。
它由一个电压源、一个限流电阻和一个二极管组成。
通过改变电压源的电压,可以测量二极管在不同电压下的电流。
当电压逐渐增加时,电流也逐渐增加,直到达到二极管的最大电流。
2.整流电路:整流电路主要用于将交流电转换为直流电。
它由一个二极管和负载组成。
当二极管处于正向偏置状态时,它允许正向电流通过,从而将正半周期的交流信号变为直流信号。
而当二极管处于反向偏置状态时,它阻止反向电流通过。
3.限流电路:限流电路主要用于限制电流的大小。
它由一个电压源、一个电阻和一个二极管组成。
二极管起到了稳压和限流的作用。
电工学第七版下册电子技术课后练习题含答案前言作为一名电子技术专业的学习者,掌握电工学知识是基础中的基础。
而掌握电工学知识的最好方法,就是不断练习。
本文提供了电工学第七版下册的课后练习题及其答案。
希望能够对大家在学习电工学的过程中提供一定的帮助。
第一章电子技术基础1. 有一只20kΩ,±5%的电阻,求它允许误差的范围?答案允许误差的范围为: 20kΩ × 5% = 1kΩ所以这只电阻的阻值范围为: 20kΩ±1kΩ2. 什么是三极管?答案三极管是一种半导体器件,也叫做双极型晶体管。
它由三个掺杂浓度不同的半导体材料构成(一般为PNP或NPN),分别称为发射极、基极和集电极。
三极管是一种电流控制器件,通过控制基极电流来控制集电极电流。
三极管在电子技术中广泛应用,尤其是在放大器、开关电路和振荡电路中使用较为广泛。
第二章半导体二极管1. 硅板在常温下引入施主原子,会发生什么变化?答案硅板在常温下引入施主原子(如磷原子),会使其变成N型半导体。
引入施主原子的过程叫做掺杂。
在N型半导体中,掺有大量的自由电子,这些自由电子会带负电荷。
由于施主原子掺入的电子不会和晶体中的晶格原子结合,因此其自由电子是比导带中的电子能量更低的电子,即位于导带下方。
2. 硅板在常温下引入受主原子,会发生什么变化?答案硅板在常温下引入受主原子(如硼原子),会使其变成P型半导体。
引入受主原子的过程叫做掺杂。
在P型半导体中,掺有大量的空穴,空穴带正电荷。
由于受主原子掺入的空穴缺少了一个电子,因此其空穴的能量比空穴带中的能量更高,即位于空穴带上方。
第三章晶体管及其基本电路1. 晶体管的三个引脚分别代表什么?答案晶体管的三个引脚分别代表:1.发射极(E):用来连接基极和集电极之间的导体,主要负责发射电子。
2.基极(B):设置在发射极与集电极之间的控制电极,主要控制电流。
3.集电极(C):负责接受发射极电子,主要负责放大电流。
半导体二极管及其基本应用电路1.1 PN结的基本知识1.1.1 N型半导体和P型半导体在物理学中已知,常用的四价元素硅和锗等纯净半导体(称本征半导体)中的载流子,为自由电子(带负电荷)和空穴(带正电荷),是在常温下激发出来的,(称为热激发或本征激发),其数量很少,故导电能力微弱,介于导体和绝缘体之间。
在本征半导体中,自由电子和空穴总是成对出现,因此两种载流子的浓度是相等的。
本征半导体中的载流子浓度除了与半导体材料的性质有关外,还与温度密切相关,而且随着温度的升高基本上按指数规律增加。
所以,本征载流子浓度对温度十分敏感。
在本征半导体桂或锗中渗入微量五价元素,如磷或砷,(称为杂质)等,可使自由电子的浓度大大增加,自由电子成为多数载流子,(简称多子),空穴成为少数载流子(简称少子)。
这种以电子为导电为主的半导体成为N型半导体。
由于离子不能移动,故不能参与导电,整体半导体仍然呈电中性。
在本征半导体硅或锗中渗入微量三价元素杂质,如硼或铟等,则空穴浓度大大增加,空穴成为多子,而电子成为少子。
这种以空穴为主的半导体成为P型半导体。
N型半导体和P型半导体统称为杂质半导体,掺杂后半导体的导电能力将显著增加,有理论计算可知,在本征半导体中掺入百分之一的杂质,可使载流子浓度增加近一万倍。
在杂质半导体中,多子的浓度主要取决于杂质的含量;少子的浓度主要与本征激发有关,如前所述,他对温度的变化非常敏感,因此,温度是影响半导体器件性能的一个重要因素。
1.1.2 PN结的形成若在一种类型杂质半导体的基片上,用特定的掺杂工艺加入另一种类型杂质元素,这样在所形成的P型半导体和N 型半导体的交界两侧,P区的空穴(多子)和N区的电子(多子)浓度远大于另一区的同类少子浓度,因而多子通过交界处扩散各自向对方运动,这种由于浓度差而引起的载流子运动成为扩散运动。
载流子扩散运动的结果是使电子和空穴复合载流子消失,在交界面N区一侧失去电子而留下正离子,P区一侧失去空穴而留下负离子。
第二章半导体二极管及其基本电路学习要求:(1)了解半导体器件中扩散与漂移的概念、PN结形成的原理。
(2)掌握半导体二极管的单向导电特性和伏安特性。
(3)掌握二极管基本电路及其分析方法。
(4)熟悉硅稳压管的稳压原理和主要参数。
第一节半导体的基本知识多数现代电子器件是由性能介于导体与绝缘体之间的半导体材料制成的。
为了从电路的观点理解这些器件的性能,首先必须从物理的角度了解它们是如何工作的。
一、半导体材料从导电性能上看,物质材料可分为三大类:导体:电阻率ρ < 10-4 Ω·cm绝缘体:电阻率ρ > 109 Ω·cm半导体:电阻率ρ介于前两者之间。
目前制造半导体器件的材料用得最多的有:硅和锗两种二、本征半导体及本征激发1、本征半导体没有杂质和缺陷的半导体单晶,叫做本征半导体。
2、本征激发当温度升高时,电子吸收能量摆脱共价键而形成一对电子和空穴的过程,称为本征激发。
三、杂质半导体在本征半导体中掺入微量的杂质,就会使半导体的导电性能发生显著的变化。
因掺入杂质不同,杂质半导体可分为空穴(P)型半导体和电子(N)型半导体两大类。
1、P型半导体在本征半导体中掺入少量的三价元素杂质就形成P型半导体,P型半导体的多数载流子是空穴,少数载流子是电子。
2、N型半导体在本征半导体中掺入少量的五价元素杂质就形成N型半导体。
N型半导体的多数载流子是电子,少数载流子是空穴。
第二节PN结的形成及特性一、PN结及其形成过程在杂质半导体中,正负电荷数是相等的,它们的作用相互抵消,因此保持电中性。
1、载流子的浓度差产生的多子的扩散运动在P型半导体和N型半导体结合后,在它们的交界处就出现了电子和空穴的浓度差,N 型区内的电子很多而空穴很少,P型区内的空穴很多而电子很少,这样电子和空穴都要从浓度高的地方向浓度低的地方扩散,因此,有些电子要从N型区向P型区扩散,也有一些空穴要从P型区向N型区扩散。
2、电子和空穴的复合形成了空间电荷区电子和空穴带有相反的电荷,它们在扩散过程中要产生复合(中和),结果使P区和N 区中原来的电中性被破坏。
P区失去空穴留下带负电的离子,N区失去电子留下带正电的离子,这些离子因物质结构的关系,它们不能移动,因此称为空间电荷,它们集中在P区和N区的交界面附近,形成了一个很薄的空间电荷区,这就是所谓的PN结。
3、空间电荷区产生的内电场E又阻止多子的扩散运动在空间电荷区后,由于正负电荷之间的相互作用,在空间电荷区中形成一个电场,其方向从带正电的N区指向带负电的P区,由于该电场是由载流子扩散后在半导体内部形成的,故称为内电场。
因为内电场的方向与电子的扩散方向相同,与空穴的扩散方向相反,所以它是阻止载流子的扩散运动的。
综上所述,PN结中存在着两种载流子的运动。
一种是多子克服电场的阻力的扩散运动;另一种是少子在内电场的作用下产生的漂移运动。
因此,只有当扩散运动与漂移运动达到动态平衡时,空间电荷区的宽度和内建电场才能相对稳定。
由于两种运动产生的电流方向相反,因而在无外电场或其他因素激励时,PN结中无宏观电流。
二、PN结的单向导电性PN结在外加电压的作用下,动态平衡将被打破,并显示出其单向导电的特性。
1、外加正向电压当PN结外加正向电压时,外电场与内电场的方向相反,内电场变弱,结果使空间电荷区(PN结)变窄。
同时空间电荷区中载流子的浓度增加,电阻变小。
这时的外加电压称为正向电压或正向偏置电压用V F表示。
在V F作用下,通过PN结的电流称为正向电流I F。
外加正向电压的电路如图所示。
2、外加反向电压当PN结外加反向电压时,外电场与内电场的方向相同,内电场变强,结果使空间电荷区(PN结)变宽, 同时空间电荷区中载流子的浓度减小,电阻变大。
这时的外加电压称为反向电压或反向偏置电压用V R表示。
在V R作用下,通过PN结的电流称为反向电流I R或称为反向饱和电流I S。
如下图所示。
3、PN结的伏安特性根据理论分析,PN结的伏安特性可以表达为:式中i D为通过PN结的电流,v D为PN结两端的外加电压;V T为温度的电压当量=kT/q=T/11600=0.026V,其中k为波尔慈曼常数(1.38×10-23J/K),T为绝对温度(300K),q为电子电荷(1.6×10-19C);e为自然对数的底;I S为反向饱和电流。
第三节半导体二极管一、半导体二极管的结构半导体二极管按其结构的不同可分为点接触型和面接触型两类。
点接触型二极管是由一根很细的金属触丝(如三价元素铝)和一块半导体(如锗)的表面接触,然后在正方向通过很大的瞬时电流,使触丝和半导体牢固地熔接在一起,三价金属与锗结合构成PN结,并做出相应的电极引线,外加管壳密封而成,如图 2.7所示。
由于点接触型二极管金属丝很细,形成的PN结面积很小,所以极间电容很小,同时,也不能承受高的反向电压和大的电流。
这种类型的管子适于做高频检波和脉冲数字电路里的开关元件,也可用来作小电流整流。
如2APl是点接触型锗二极管,最大整流电流为16mA,最高工作频率为15OMHz。
面接触型或称面结型二极管的PN结是用合金法或扩散法做成的,其结构如图2.7 所示。
由于这种二极管的PN结面积大,可承受较大的电流,但极间电容也大。
这类器件适用于整流,而不宜用于高频电路中。
如2CPl为面接触型硅二极管,最大整流电流为40OmA,最高工作频率只有3kHz。
图2.7中的硅工艺平面型二极管结构图,是集成电路中常见的一种形式。
代表二极管的符号也在图2.7中示出。
部分二极管实物如图2.8所示。
二、极管的伏安特性实际的二极管的V-I特性如图2.9所示。
由图可以看出,二极管的V-I特性和PN结的V-I特性(图2.6)基本上是相同的。
下面对二极管V-I特性分三部分加以说明:1、正向特性:二极管外加正向偏置电压时的V-I特性对应于图2.9(b)的第①段为正向特性,此时加于二极管的正向电压只有零点几伏,但相对来说流过管子的电流却很大,因此管子呈现的正向电阻很小。
但是,在正向特性的起始部分,由于正向电压较小,外电场还不足以克服PN结的内电场,因而这时的正向电流几乎为零,二极管呈现出一个大电阻,好像有一个门坎。
硅管的门坎电压V th(又称死区电压)约为0·5V,锗管的V th约为0·lV,当正向电压大于V th时,内电场大为削弱,电流因而迅速增长。
2、反向特性:二极管外加反向偏置电压时的V-I特性P型半导体中的少数载流子(电子)和N型半导体中的少数载流子(空穴),在反向电压作用下很容易通过PN结,形成反向饱和电流。
但由于少数载流子的数目很少,所以反向电流是很小的,如图2.9(b)的第②段所示,一般硅管的反向电流比锗管小得多,其数量级为:硅管nA级,锗管大mA级。
温度升高时,由于少数载流子增加,反向电流将随之急剧增加。
3、反向击穿特性:二极管击穿时的V-I特性当增加反向电压时,因在一定温度条件下,少数载流子数目有限,故起始一段反向电流没有多大变化,当反向电压增加到一定大小时,反向电流剧增,这叫做二极管的反向击穿,对应于图2.9的第③段,其原因与PN结击穿相同。
三、二极管的主要参数1、最大整流电流I F:是指管子长期运行时,允许通过的最大正向平均电流。
因为电流通过PN结要引起管子发热,电流太大,发热量超过限度,就会使PN结烧坏。
例如2APl 最大整流电流为16mA。
2、反向击穿电压V BR:指管子反向击穿时的电压值。
击穿时,反向电流剧增,二极管的单向导电性被破坏,甚至因过热而烧坏。
一般手册上给出的最高反向工作电压约为击穿电压的一半,以确保管子安全运行。
例如2APl最高反向工作电压规定为2OV,而反向击穿电压实际上大于40V。
3、反向电流I R:指管子末击穿时的反向电流,其值愈小,则管子的单向导电性愈好。
由于温度增加,反向电流会急剧增加,所以在使用二极管时要注意温度的影响。
4、极间电容C J:二极管的极间电容包括势垒电容和扩散电容,在高频运用时必须考虑结电容的影响。
二极管不同的工作状态,其极间电容产生的影响效果也不同。
二极管的参数是正确使用二极管的依据,一般半导体器件手册中都给出不同型号管子参数。
使用时,应特别注意不要超过最大整流电流和最高反向工作电压,否则将容易损坏管子。
第四节二极管基本电路及其分析方法在电子技术中,二极管电路得到广泛的应用。
本节只介绍几种基本的电路,如限幅电路、开关电路、低电压稳压电路等。
二极管是一种非线性器件,因而二极管电路一般要采用非线性电路的分析方法。
这里主要介绍比较简单理想模型和恒压模型分析法。
一、二极管正向特性的数学模型1、理想模型--理想的开关图2.10表示理想二极管的VI特性和符号,其中的虚线表示实际二极管的VI特性。
由图中可见,在正向偏置时,其管压降为OV,而当二极管处于反向偏置时,认为它的电阻为无穷大,电流为零。
在实际的电路中,当电源电压远比二极管的管压降大时,利用此法来近似分析是可行的。
2、恒压模型--其正向压降为0.7V(硅管)这个模型如图2.11所示,其基本思想是当二极管导通后,其管压降认为是恒定的,且不随电流而变,典型值为0.7V,不过,这只有当二极管的电流i D近似等于或大于1mA时才是正确的。
该模型提供了合理的近似,因此应用也较广。
二、模型分析法应用举例1、静态工作点分析电路如图2.12所示,请分别用二极管的理想模型和恒压模型分析其静态工作点。
(1)使用理想模型得:V D=0V,I D=V DD/R(2)使用恒压模型得:V D=0.7V,I D=(V DD-V D)/R上述的计算结果表明:V DD>>V D时,使用恒压模型较好,因此,根据实际情况选择合适的模型是关键。
2、模型分析法应用举例例题1:如果图示电路(a)中设二极管为恒压模型。
求电路中输出的电压Vo值说明二极管处于何种状态?解:假设先将A、B断开,则VA = -10V, VB = -5V,∴VAB= VA-VB= -5V,可见重新接入后二极管将处于反向截止状态:电路中电流为0(反向电阻无穷大),∴电阻R上的压降为0,Vo = -5V成立。
例题2:如果图2.13所示电路(b)中设二极管为恒压模型。
求电路中输出的电压Vo值说明二极管处于何种状态?解:∵将D1、D2断开,VB1A=9V,VB2A= -12-(-9)=-3V ∴将D1、D2接入后,D1导通,D2截止,V A被D1箝位在-0.7V上。
∴V o= V A= -0.7V成立。
第五节特殊二极管除前面所讨论的普通二极管外,还有若干种特殊二极管,如齐纳二极管、变容二极管、光电子器件(包括光电二极管、发光二极管和激光二极管)等,本节主要讨论齐纳二极管及其应用。