半导体二极管及其基本电路
- 格式:ppt
- 大小:729.00 KB
- 文档页数:40
二极管基本电路与分析方法二极管是一种最简单的半导体器件,具有只能单向导电的特点。
在电子电路中,二极管通常用于整流、限流、调制和混频等功能。
本文将介绍二极管的基本电路和分析方法。
一、二极管基本电路1.正向偏置电路正向偏置电路是将二极管的P端连接到正电压,N端连接到负电压的电路。
这种电路可以使二极管处于导通状态,实现电流流动。
2.逆向偏置电路逆向偏置电路是将二极管的P端连接到负电压,N端连接到正电压的电路。
这种电路可以使二极管处于截止状态,即不导电。
二、二极管分析方法1.静态分析静态分析是指在稳态条件下分析二极管的工作状态。
在正向偏置电路中,如果二极管被接入电路且正向电压大于二极管的正向压降时,二极管处于导通状态;反之,二极管处于截止状态。
在逆向偏置电路中,无论接入电路与否,二极管都处于截止状态。
2.动态分析动态分析是指在变化条件下分析二极管的工作状态。
例如,当正向电压瞬时增加时,二极管可能处于导通状态。
此时,需要考虑二极管的导通压降和电流变化情况。
三、常见二极管电路1.整流电路整流电路是将交流信号转换为直流信号的电路。
常见的整流电路有半波整流电路和全波整流电路。
半波整流电路只利用了交流信号的一半,而全波整流电路则利用了交流信号的全部。
整流电路中的二极管起到了只允许电流在一个方向上流动的作用。
2.限流电路限流电路是通过限制电流的大小来保护其他元件不受损坏的电路。
常见的限流电路有稳压二极管电路和过载保护电路。
稳压二极管电路利用二极管的电流-电压特性,使得二极管具有稳定的电流输出能力;过载保护电路则通过限制电流大小来保护负载电路。
3.调制电路调制电路是将低频信息信号调制到高频载波信号上的电路。
常见的调制电路有调幅电路和调频电路。
在调制电路中,二极管起到了快速改变电流或电压的作用,实现信号的调制效果。
4.混频电路混频电路是将两个不同频率的信号进行混合,得到新的频率信号的电路。
在混频电路中,二极管可以起到信号选择和调谐的作用,实现频率混合。
第二章半导体二极管及其基本电路2-1.填空(1)N型半导体是在本征半导体中掺入;P型半导体是在本征半导体中掺入。
(2)当温度升高时,二极管的反向饱和电流会。
(3)PN结的结电容包括和。
(4)晶体管的三个工作区分别是、和。
在放大电路中,晶体管通常工作在区。
(5)结型场效应管工作在恒流区时,其栅-源间所加电压应该。
(正偏、反偏)答案:(1)五价元素;三价元素;(2)增大;(3)势垒电容和扩散电容;(4)放大区、截止区和饱和区;放大区;(5)反偏。
2-2.判断下列说法正确与否。
(1)本征半导体温度升高后,两种载流子浓度仍然相等。
()(2)P型半导体带正电,N型半导体带负电。
()(3)结型场效应管外加的栅-源电压应使栅-源间的耗尽层承受反向电压,才能保证R GS大的特点。
()(4)只要在稳压管两端加反向电压就能起稳压作用。
()(5)晶体管工作在饱和状态时发射极没有电流流过。
()(6)在N型半导体中如果掺入足够量的三价元素,可将其改型为P型半导体。
()(7)PN结在无光照、无外加电压时,结电流为零。
()(8)若耗尽型N沟道MOS场效应管的U GS大于零,则其输入电阻会明显减小。
()答案:(1)对;温度升高后,载流子浓度会增加,但是对于本征半导体来讲,电子和空穴的数量始终是相等的。
(2)错;对于P型半导体或N型半导体在没有形成PN结时,处于电中性的状态。
(3)对;结型场效应管在栅源之间没有绝缘层,所以外加的栅-源电压应使栅-源间的耗尽层承受反向电压,才能保证R GS大的特点。
(4)错;稳压管要进入稳压工作状态两端加反向电压必须达到稳压值。
(5)错;晶体管工作在饱和状态和放大状态时发射极有电流流过,只有在截止状态时没有电流流过。
(6)对;N型半导体中掺入足够量的三价元素,不但可复合原先掺入的五价元素,而且可使空穴成为多数载流子,从而形成P型半导体。
(7)对;PN结在无光照、无外加电压时,处于动态平衡状态,扩散电流和漂移电流相等。
二极管原理及其基本电路二极管是一种最简单的半导体器件,它具有非常重要的功能和应用。
本文将介绍二极管的原理以及其基本电路。
一、二极管的原理二极管是由一种带有p型半导体和n型半导体的材料组成的。
在p-n 结的区域内,因为半导体的材料特性,会形成一个电势垒。
当外加电压的极性与电势垒形成的方向相反时,电势垒将变得更大,称为反向偏置;当外加电压的极性与电势垒形成的方向一致时,电势垒将变得更小,称为正向偏置。
在二极管的工作中,主要有以下几个重要的特性。
1.正向电压特性:当二极管处于正向偏置状态时,在两端加上正向电压时,电势垒逐渐缩小,直到消失。
在这个过程中,二极管的导电性变得很好。
正向电压越大,二极管导通越好。
2.反向电压特性:当二极管处于反向偏置状态时,在两端加上反向电压时,电势垒逐渐增加。
当反向电压超过反向击穿电压时,二极管就会发生击穿,电流急剧增大,此时二极管就会损坏。
3.导通和截止特性:当二极管处于正向偏置状态时,正向电压不超过一定限制时,二极管会导通。
当正向电压超过这个限制时,二极管截止,不导通。
而当二极管处于反向偏置状态时,无论外加电压的大小,其表现都是开路状态,不导通。
二、二极管的基本电路二极管广泛地应用于各种电路中,下面介绍几个常见的二极管基本电路。
1.正向电压特性测试电路:这是一个测试二极管正向电压特性的电路。
它由一个电压源、一个限流电阻和一个二极管组成。
通过改变电压源的电压,可以测量二极管在不同电压下的电流。
当电压逐渐增加时,电流也逐渐增加,直到达到二极管的最大电流。
2.整流电路:整流电路主要用于将交流电转换为直流电。
它由一个二极管和负载组成。
当二极管处于正向偏置状态时,它允许正向电流通过,从而将正半周期的交流信号变为直流信号。
而当二极管处于反向偏置状态时,它阻止反向电流通过。
3.限流电路:限流电路主要用于限制电流的大小。
它由一个电压源、一个电阻和一个二极管组成。
二极管起到了稳压和限流的作用。
半导体二极管及其应用习题解答Document number:NOCG-YUNOO-BUYTT-UU986-1986UT第1章半导体二极管及其基本电路教学内容与要求本章介绍了半导体基础知识、半导体二极管及其基本应用和几种特殊二极管。
教学内容与教学要求如表所示。
要求正确理解杂质半导体中载流子的形成、载流子的浓度与温度的关系以及PN结的形成过程。
主要掌握半导体二极管在电路中的应用。
表第1章教学内容与要求内容提要1.2.1半导体的基础知识1.本征半导体高度提纯、结构完整的半导体单晶体叫做本征半导体。
常用的半导体材料是硅(Si)和锗(Ge)。
本征半导体中有两种载流子:自由电子和空穴。
自由电子和空穴是成对出现的,称为电子空穴对,它们的浓度相等。
本征半导体的载流子浓度受温度的影响很大,随着温度的升高,载流子的浓度基本按指数规律增加。
但本征半导体中载流子的浓度很低,导电能力仍然很差,2.杂质半导体(1) N 型半导体 本征半导体中,掺入微量的五价元素构成N 型半导体,N 型半导体中的多子是自由电子,少子是空穴。
N 型半导体呈电中性。
(2) P 型半导体 本征半导体中,掺入微量的三价元素构成P 型半导体。
P 型半导体中的多子是空穴,少子是自由电子。
P 型半导体呈电中性。
在杂质半导体中,多子浓度主要取决于掺入杂质的浓度,掺入杂质越多,多子浓度就越大。
而少子由本征激发产生,其浓度主要取决于温度,温度越高,少子浓度越大。
1.2.2 PN 结及其特性1.PN 结的形成在一块本征半导体上,通过一定的工艺使其一边形成N 型半导体,另一边形成P 型半导体,在P 型区和N 型区的交界处就会形成一个极薄的空间电荷层,称为PN 结。
PN 结是构成其它半导体器件的基础。
2.PN 结的单向导电性PN 结具有单向导电性。
外加正向电压时,电阻很小,正向电流是多子的扩散电流,数值很大,PN 结导通;外加反向电压时,电阻很大,反向电流是少子的漂移电流,数值很小,PN 结几乎截止。
第1章半导体二极管及其基本电路1.1 教学内容与要求本章介绍了半导体基础知识、半导体二极管及其基本应用和几种特殊二极管。
教学内容与教学要求如表1.1所示。
要求正确理解杂质半导体中载流子的形成、载流子的浓度与温度的关系以及PN结的形成过程。
主要掌握半导体二极管在电路中的应用。
表1.1 第1章教学内容与要求1.2 内容提要1.2.1半导体的基础知识1.本征半导体高度提纯、结构完整的半导体单晶体叫做本征半导体。
常用的半导体材料是硅(Si)和锗(Ge)。
本征半导体中有两种载流子:自由电子和空穴。
自由电子和空穴是成对出现的,称为电子空穴对,它们的浓度相等。
本征半导体的载流子浓度受温度的影响很大,随着温度的升高,载流子的浓度基本按指数规律增加。
但本征半导体中载流子的浓度很低,导电能力仍然很差,2.杂质半导体(1) N型半导体本征半导体中,掺入微量的五价元素构成N型半导体,N型半导体中的多子是自由电子,少子是空穴。
N型半导体呈电中性。
(2) P型半导体本征半导体中,掺入微量的三价元素构成P型半导体。
P型半导体中的多子是空穴,少子是自由电子。
P型半导体呈电中性。
在杂质半导体中,多子浓度主要取决于掺入杂质的浓度,掺入杂质越多,多子浓度就越大。
而少子由本征激发产生,其浓度主要取决于温度,温度越高,少子浓度越大。
1.2.2 PN结及其特性1.PN结的形成在一块本征半导体上,通过一定的工艺使其一边形成N型半导体,另一边形成P型半导体,在P 型区和N 型区的交界处就会形成一个极薄的空间电荷层,称为PN 结。
PN 结是构成其它半导体器件的基础。
2.PN 结的单向导电性PN 结具有单向导电性。
外加正向电压时,电阻很小,正向电流是多子的扩散电流,数值很大,PN 结导通;外加反向电压时,电阻很大,反向电流是少子的漂移电流,数值很小,PN 结几乎截止。
3. PN 结的伏安特性PN 结的伏安特性: )1(TS -=U U eI I式中,U 的参考方向为P 区正,N 区负,I 的参考方向为从P 区指向N 区;I S 在数值上等于反向饱和电流;U T =KT /q ,为温度电压当量,在常温下,U T ≈26mV 。
半导体二极管及其基本应用电路1.1 PN结的基本知识1.1.1 N型半导体和P型半导体在物理学中已知,常用的四价元素硅和锗等纯净半导体(称本征半导体)中的载流子,为自由电子(带负电荷)和空穴(带正电荷),是在常温下激发出来的,(称为热激发或本征激发),其数量很少,故导电能力微弱,介于导体和绝缘体之间。
在本征半导体中,自由电子和空穴总是成对出现,因此两种载流子的浓度是相等的。
本征半导体中的载流子浓度除了与半导体材料的性质有关外,还与温度密切相关,而且随着温度的升高基本上按指数规律增加。
所以,本征载流子浓度对温度十分敏感。
在本征半导体桂或锗中渗入微量五价元素,如磷或砷,(称为杂质)等,可使自由电子的浓度大大增加,自由电子成为多数载流子,(简称多子),空穴成为少数载流子(简称少子)。
这种以电子为导电为主的半导体成为N型半导体。
由于离子不能移动,故不能参与导电,整体半导体仍然呈电中性。
在本征半导体硅或锗中渗入微量三价元素杂质,如硼或铟等,则空穴浓度大大增加,空穴成为多子,而电子成为少子。
这种以空穴为主的半导体成为P型半导体。
N型半导体和P型半导体统称为杂质半导体,掺杂后半导体的导电能力将显著增加,有理论计算可知,在本征半导体中掺入百分之一的杂质,可使载流子浓度增加近一万倍。
在杂质半导体中,多子的浓度主要取决于杂质的含量;少子的浓度主要与本征激发有关,如前所述,他对温度的变化非常敏感,因此,温度是影响半导体器件性能的一个重要因素。
1.1.2 PN结的形成若在一种类型杂质半导体的基片上,用特定的掺杂工艺加入另一种类型杂质元素,这样在所形成的P型半导体和N 型半导体的交界两侧,P区的空穴(多子)和N区的电子(多子)浓度远大于另一区的同类少子浓度,因而多子通过交界处扩散各自向对方运动,这种由于浓度差而引起的载流子运动成为扩散运动。
载流子扩散运动的结果是使电子和空穴复合载流子消失,在交界面N区一侧失去电子而留下正离子,P区一侧失去空穴而留下负离子。