第章比色法和分光光度法
- 格式:doc
- 大小:105.50 KB
- 文档页数:4
第三节 吸光光度法一、测定原理基于物质对光的选择性吸收而建立的分析方法称为吸光光度法,包括比色法、可见分光光度法及紫外分光光度法等。
本章重点讨论可见光区的吸光光度法。
有些物质的溶液是有色的,例如4KMnO 溶液呈紫红色,227K Cr O 水溶液呈橙色。
许多物质的溶液本身是无色或浅色的,但它们与某些试剂发生反应后生成有色物质,例如3Fe +与3Fe +生成血红色配合物; 2Fe +与邻二氮菲生成红色配合物。
有色物质溶液颜色的深浅与其浓度有关,浓度愈大,颜色愈深。
如果是通过与标准色阶比较颜色深浅的方法确定溶液中有色物质的含量,则称为目视比色法,如果是使用分光光度计,利用溶液对单色光的吸收程度确定物质含量,则称为分光光度法。
吸光光度法主要用于测定试样中的微量组分,具有以下特点:(1)灵敏度高。
常可不经富集用于测定质量分数为210-~510-。
的微量组分,甚至可测定低至质量分数为610-~810-的痕量组分。
通常所测试的浓度下限达510-~610-1mol L -⋅。
(2)准确度高。
一般目视比色法的相对误差为5%~l0%,分光光度法为2%~5%。
(3)应用广泛。
几乎所有的无机离子和许多有机化合物都可以直接或间接地用分光光度法进行测定。
不仅用于测定微量组分,也能用于高含量组分的测定及配合物组成、化学平衡等的研究。
如农业部门常用于品质分析、动植物生理生化及土壤、植株等的测定。
(4)仪器简单,操作方便,快速。
近年来,由于新的、灵敏度高、选择性好的显色剂和掩蔽剂的不断出现,以及化学计量学方法的应用,常常可以不经分离就能直接进行比色或分光光度测定。
(一)物质对光的选择性吸收1.光的基本性质光是一种电磁波,同时具有波动性和微粒性。
光的传播,如光的折射、衍射、偏振和干涉等现象可用光的波动性来解释。
描述波动性的重要参数是波长()m λ、频率()Z H υ,它们与光速c 的关系是:341310cc J sm s E h h λυυλ--=⨯==c λυ= (10.1)在真空介质中光速为2.9979810⨯1m s -,约等于81310m s -⨯还有一些现象,如光电效应、光的吸收和发射等,只能用光的微粒性才能说明,即把光看作是带有能量的微粒流。
分光光度比色法的原理
一、物质对光的吸收
分光光度比色法的基础是物质对光的吸收。
当光线穿过物质时,物质会吸收特定波长的光线,导致光的强度减弱。
物质对光的吸收程度与物质的浓度成正比,这是分光光度法进行定量分析的基础。
二、光的色散
光的色散是指光线通过棱镜或光栅等光学元件时,被分解成不同波长的光谱。
通过色散,我们可以将一束白光分解成不同颜色的光谱。
分光光度计利用这个原理,将物质吸收的光线分解成特定波长的光谱,从而确定物质对哪些波长的光线有吸收。
三、比色测定
比色测定是指在特定波长下测量物质对光的吸收程度。
通常,我们将待测物质与已知浓度的标准物质在相同条件下进行比色测定,然后根据标准曲线的斜率和截距计算出待测物质的浓度。
比色测定是分光光度比色法的重要步骤,通过它可以对物质进行定量分析。
四、定量分析
通过比色测定得到的数据,我们可以计算出待测物质的浓度。
在分光光度比色法中,我们通常使用标准曲线法或标准加入法来进行定量分析。
标准曲线法是通过绘制标准物质浓度与吸光度的关系曲线,然后根据待测物质的吸光度在曲线上找到对应的浓度。
标准加入法则是将已知浓度的标准物质加入待测样品中,然后根据吸光度的变化计算待测物质的浓度。
总之,分光光度比色法的原理主要包括物质对光的吸收、光的色散、比色测定和定量分析等方面。
通过这些原理的应用,我们可以快速、准确地测定物质的浓度,广泛应用于化学、生物学、医学等领域。
目视比色法和分光光度法的分析和比较2015年12月5日龙浪李珂璇王宇鑫李嘉浩程卫东王佳佳临床医学院指导教师:徐尧一、摘要本讨论报告通过分析和比较目视比色法和分光光度法两种比色法的主要优缺点,即目视比色法操作简便但精度较低,分光光度法精确度较高但对溶液的性质要求较高;并且结合实例说明两种比色法各自的适用范围和浓度限制,即两种比色方法分别在光的波长、物质的组分、以及对朗伯-比尔定律的符合情况上有不同的适用范围,并给出了适用的吸光度范围(0.2-0.8)和浓度范围。
由此针对不同情况给出了不同的选择方案。
这对实际的研究和生产生活具有指导性的意义。
二、前言在确定有色溶液待测组分含量时,常常可以通过比较和测量溶液的颜色来进行,这种方法叫做比色法。
早在19世纪30-40年代,比色法就开始作为一种定量分析的方法被应用到研究和生产中。
常用的比色法有目视比色法和分光光度法两种,其中前者主要通过眼睛观察得出结论,后者借助光电比色计进行。
由于这两种比色方法的实际应用非常广泛,因此分析和比较两种方法对于方法的优化显得尤为重要。
三、内容(一)两种比色方法优缺点比较1.目视比色法1)优点(1)比色时操作简便,成本较低相比分光光度法,目视比色法不需要动用分光光度计,只需要几个比色管便可以完成测定,因此显得仪器设备简单,操作简便,使用成本低。
同时节省了电能,有利于能源的节约和保护。
在分析大批试样时,其优势就显得更加明显,大大节省了人力、物力、财力以及测定消耗时间。
在本实验中,我们仅需配置5个标准溶液,便可直接在比色管架上进行比较,与分光光度法中所需的多次清洗比色皿的操作要求相比比较简易。
(2)适用范围较广,可用于不严格符合Lambert-Beer定律的情况目视比色法是通过比较通过光的强度来测定组分含量,可以在白光下进行[2],因此对于有些不严格符合Lambert-Beer定律的显色反应也是适用的。
例如在用碘量比色法测定油脂中过氧化值时,碘和淀粉反应的特征蓝色只有在含碘量在2~10μg[6]时才较为严格地符合Lambert-Beer定律,因此只要反应产生的碘稍稍过量或不足,使用分光光度法测定就会产生较大误差,只能使用目视光度法。
分光光度法的原理是什么分光光度法是一种广泛应用于化学分析和生物化学领域的分析方法,它基于物质对特定波长的光的吸收或透射特性进行定量分析。
分光光度法的原理主要包括光的吸收和透射、比色法和分光光度计的工作原理等几个方面。
首先,我们来看光的吸收和透射原理。
在分光光度法中,我们通常会使用紫外-可见分光光度计来测量样品溶液对特定波长光的吸收或透射。
当样品溶液中的分子或离子处于基态时,它们会吸收特定波长的光,使得光子的能量被转化为激发态的能量。
而当处于激发态的分子或离子返回到基态时,它们会释放出吸收的光,这种现象被称为光的透射。
根据比尔-朗伯定律,物质对光的吸收或透射与其浓度成正比,因此可以利用这一特性来定量分析样品中的物质含量。
其次,比色法是分光光度法中常用的定量分析方法之一。
比色法通过将待测样品与标准溶液进行比较,利用它们在特定波长光下的吸光度差异来确定待测物质的浓度。
比色法通常需要使用分光光度计来测量样品溶液的吸光度,并通过构建标准曲线或使用已知浓度的标准溶液来进行定量分析。
最后,分光光度计是分光光度法的关键仪器。
分光光度计是一种能够测量样品溶液在不同波长光下吸光度的仪器,它通常由光源、单色器、样品室、检测器和数据处理系统等部分组成。
分光光度计能够选择特定波长的光进行照射样品溶液,并测量样品对光的吸收或透射情况,然后将吸光度转化为浓度信息,从而实现对待测物质的定量分析。
总的来说,分光光度法是一种基于物质对光的吸收或透射特性进行定量分析的方法,它包括光的吸收和透射、比色法和分光光度计的原理。
通过合理选择光源、单色器和检测器等参数,以及构建标准曲线或使用标准溶液,分光光度法能够准确、快速地对样品中的物质进行定量分析,因此在化学分析和生物化学领域得到了广泛的应用。
1、几个概念:分光光度法在分光光度计中,将不同波长的光连续地照射到一定浓度的样品溶液时,便可得到与众不同波长相对应的吸收强度。
如以波长(λ)为横坐标,吸收强度(A)为纵坐标,就可绘出该物质的吸收光谱曲线。
利用该曲线进行物质定性、定量的分析方法,称为分光光度法,也称为吸收光谱法。
用紫外光源测定无色物质的方法,称为紫外分光光度法;用可见光光源测定有色物质的方法,称为可见光光度法。
它们与比色法一样,都以Beer-Lambert定律为基础。
上述的紫外光区与可见光区是常用的。
但分光光度法的应用光区包括紫外光区,可见光区,红外光区。
比色法colorimetry以可见光作光源,比较溶液颜色深浅度以测定所含有色物质浓度的方法。
以生成有色化合物的显色反应为基础,通过比较或测量有色物质溶液颜色深度来确定待测组分含量的方法。
比色法作为一种定量分析的方法,开始于19世纪30~40年代。
比色分析对显色反应的基本要求是:反应应具有较高的灵敏度和选择性,反应生成的有色化合物的组成恒定且较稳定,它和显色剂的颜色差别较大。
选择适当的显色反应和控制好适宜的反应条件,是比色分析的关键。
常用的比色法有两种:目视比色法和光电比色法,两种方法都是以朗伯-比尔定律(A=εbc)为基础。
常用的目视比色法是标准系列法,即用不同量的待测物标准溶液在完全相同的一组比色管中,先按分析步骤显色,配成颜色逐渐递变的标准色阶。
试样溶液也在完全相同条件下显色,和标准色阶作比较,目视找出色泽最相近的那一份标准,由其中所含标准溶液的量,计算确定试样中待测组分的含量。
光电比色法是在光电比色计上测量一系列标准溶液的吸光度,将吸光度对浓度作图,绘制工作曲线,然后根据待测组分溶液的吸光度在工作曲线上查得其浓度或含量。
与目视比色法相比,光电比色法消除了主观误差,提高了测量准确度,而且可以通过选择滤光片来消除干扰,从而提高了选择性。
但光电比色计采用钨灯光源和滤光片,只适用于可见光谱区和只能得到一定波长范围的复合光,而不是单色光束,还有其他一些局限,使它无论在测量的准确度、灵敏度和应用范围上都不如紫外-可见分光光度计。
比色法与紫外分光光度法的异同比色法和紫外分光光度法,这俩听上去好像很复杂的科学名词,其实它们都跟“测量颜色”有关系。
嗯,简单说就是看东西的颜色,然后通过这个颜色来判断里面有什么成分。
你可能会想,这俩是不是差不多?是的,差不多,但细节上还是有点不同的,了解清楚了,能让你在实验室里也能像个小专家一样,得心应手。
比色法嘛,简单来说,就是通过溶液的颜色来判断它的浓度。
比方说,你往水里加了某种化学物质,水的颜色可能会变得更加浓烈。
你通过比较颜色的深浅,来推算浓度。
你觉得有点意思吧?其实这就像你平时看着一杯饮料的颜色,越深可能说明加糖多,越浅可能说明糖少,做化学实验也是一样。
可是,比色法有个小问题就是它受光线、溶液颜色、试剂浓度等各种因素的影响,哎,这就让它的准确性有点小小的波动。
紫外分光光度法呢,就像是比色法的“升级版”,有点像拿着超级显微镜来看问题。
它的原理是通过紫外线光源照射样品,然后测量样品吸收了多少光,最后得出结论。
简而言之,紫外线比可见光更“强”,它能穿透更多的东西。
所以,紫外分光光度法通常用来测量那些对紫外线有吸收的物质,比如药物中的有效成分,或者环境中的污染物。
这种方法不仅能量度颜色的深浅,还能更精确地定量物质的含量。
比色法和紫外分光光度法,最大的不同就体现在它们对光的“利用”上。
比色法主要依赖的是可见光,而紫外分光光度法则是通过紫外光去探测物质的特性。
就像你用手电筒和紫外线手电筒照东西,两者照出来的效果完全不一样。
比色法的测量范围一般限制在了肉眼能看到的颜色范围内,所以它适合一些比较简单的、颜色鲜明的实验;紫外分光光度法就不一样了,紫外光波长比可见光短,能“看到”更深层的东西,能测量更多“看不见”的物质。
所以,紫外分光光度法在处理一些微量物质或者需要高精度测量的场合,表现得更有“压倒性优势”。
不过,说到优缺点,它们俩也各有千秋。
比色法简单易用,设备不复杂,花费也相对便宜。
你只需要准备一个比色皿,把样品放进去,然后在一定的波长下对比颜色,就可以得出浓度。
第20章比色法和分光光度法
【20-1】将下列百分透光度值换算为吸光度:
(1)1% (2)10% (3)50% (4)75% (5)99%
解:A=2-lg T%
(1)A=2-lg 1 = 2.000
(2)A=2-lg 10 = 1.000
(3)A=2-lg 50 = 0.301
(4)A=2-lg 75 = 0.125
(5)A=2-lg 99 = 0.0044
【20-2】将下列吸光度值换算为百分透光度:
(1)0.01 (2)0.10 (3)0.50 (4)1.00
解:lgT%=2-A
(1)lgT1%=2-0.01 = 1.99 T1%=97.7 %
(2)lgT2%=2-0.10 = 1.90 T2%=79.4 %
(3)lgT3%=2-0.50 = 1.50 T3%=31.6 %
(4)lgT4% =2-1.00 =1.00 T4%=10.0 %
【20-3】有一有色溶液,用1.0 cm 吸收池在527 nm 处测得其透光度T = 60%,如果浓度加倍,则(1)T值为多少?
(2)A 值为多少?
(3)用5.0 cm 吸收池时,要获得T = 60%,则溶液的浓度为原来浓度的多少倍?
解:A=-lg T =εbc -lg 0.60 = 0.222
浓度增倍时:
(1)lg T =-0.444 T= 36 %
(2)A=-lg T = 0.444
(3)1.0cm时:c1 = 0.222 5.0cm时:c2 = 0.222
c2/c1= 1.0 /5.0 = 0.2倍
【20-4】有两种不同浓度的KMnO4溶液,当液层厚度相同时,在527nm处透光度T分别为(1)65.0%,(2)41.8%。
求它们的吸光度A各为多少?若已知溶液(1)的浓度为6.51×10-4mol·L-1,求出溶液(2)的浓度为多少?
解:(1)A=εbc =-lgT=-lg 0.650 = 0.187
(2)A=-lg 0.418 = 0.379
(3)当c1= 6.51×10-4 mol • L-1时,
b = 0.187∕6.51×10-4 = 287 mol -1 • L
c 2= 0.379∕287 = 1.32×10-3 mol • L -1
【20-5】在pH=3时,于655 nm 处测得偶氮胂Ⅲ与镧的紫蓝色配合物的摩尔吸光系数为4.50×104。
如果在25mL 容量瓶中有30g La 3+,用偶氮胂Ⅲ显色,用2.0cm 吸收池在655 nm 处测量,其吸光度应为多少? 解:A =εbc
= (4.50×104×2.0×30×10-6)∕(138.9×0.025) = 0.78
【20-6】有一含有0.088 mgFe 3+的溶液用SCN -显色后,用水稀释到50.00 mL ,以1.0 cm 的吸收池在480 nm 处测得吸光度为0.740,计算Fe(SCN)2+配合物的摩尔吸光系数。
解:ε= A∕bc
= (0.740×55.85×50.00)∕(1.0×0.088) = 2.35 × 104 cm -1 • mol -1 • L
【20-7】当光度计的透光度测量的读数误差△T = 0.01时,测得不同浓度的某吸光溶液的吸光度为 0.010,0.100,0.200,0.434,0.800,1.20。
利用吸光度与浓度成正比以及吸光度与透光度的关系,计算由仪器读数误差引起的浓度测量的相对误差。
解:T = 10-A lg T =-A
0.434 c T
c T lg T
=V V 当 A = 0.010 时, T = 10-0.010 ,lg T =-0.010 , 又△T = 0.01
c
c
V = 0.434 ×0.01∕10-0.010×(-0.01 0 ) =-44.4 % 同理,当A = 0.100 、0.200、0.434、0.800、1.20时,
c
V =-5.46% ,-3.44 %,-2.72 % ,-3.42 % ,-5.73%
【20-8】设有 X 和 Y 两种组分的混合物。
X 组分在波长1λ和2λ处的摩尔吸光系数分别为1.98 × 103 cm -1 • mol -1 • L 和2.80 × 104cm -1 • mol -1 • L 。
Y 组分在波长1λ和2λ处的摩尔吸光系数分别为2.04×104 cm -1• mol -1•L 和3.13×102cm -1•mol -1•L 。
液层厚度相同,在1λ处测得总吸光度为0.301,在2λ处为0.398。
求算X 和Y 两组分的浓度是多少?
解:A 1X =ε1X bc X 、A 1Y =ε1Y bc Y
A 1总= A 1X + A 1Y =ε1X bc X +ε1Y bc (1) 同理A 2总= A 2X + A 2Y =ε2X bc X +ε2Y bc (2)
由(1) c X =( A 1总-ε1Y bc Y )∕ε1X b
代入(2) c Y =( ε1X A 2总-ε2X A 1总)∕( ε1X 2Y b -2X 1Y b ) 设 b =1.0 cm ,
c Y =( 1.98×103×0.398-2.80×104×0.301 )∕(1.98×103×3.13×102×1.0-2.80×104×2.04×104×1.0) = 1.34×10-
5 mol • L -
1
c X = ( 0.301-2.04×104×1.0×1.34×10-
5)∕(1.98×103×1.0) = 1.40×10
-5
mol • L -
1
【20-9】某有色配合物的0.0010%水溶液在510nm 处,用2cm 吸收池测得透光度T 为0.420,已知
510κ=2.5×103L·mol -1·cm -1。
试求此有色配合物的摩尔质量。
解:A=-lgT=-lg0.42=0.376,
c=A/bε=0.376/(2.5×103×2)=7.52×10-5 mol/L
因此,1000mL 中含有色物7.52×10-5×Mg 。
已知含量为0.001%, 故1000/(7.52×10-5M )=100/0.0010,M=131.5g/mol
【20-10】浓度为2.0×10-4mol·L -1的甲基橙,在不同pH 的缓冲溶液中,于520nm 波长处,用1cm 吸收池测得吸光度值。
计算甲基橙的p K a 值。
pH 0.88 1.17 2.99 3.41 3.95 4.89 5.50 A 0.890
0.890
0.692
0.552
0.385
0.260
0.260
解:设甲基橙酸式组分和碱式组分在波长520nm 处的吸光度分别为A HL 和A L -,由已知数据
可知A HL =0.890,A L -=0.260。
所以: 311HL -41
0.890
=
4.4510L mol cm 1cm 2.010mol L
κ---=⨯⋅⋅⨯⨯⋅,
-311
-41
L 0.260= 1.3010L mol cm 2cm 10mol L
κ---=⨯⋅⋅⨯⋅ (1)用代数法求K a 。
根据HL L =
[H ]a A A A A K -
+
--计算不同pH 值时的K a 值:
pH=2.99时,K a =4.7×10-4;pH=3.41时,K a =4.5×10-4;pH=3.95时,K a =4.5×10-4。
取以上三个K a 的平均值,有K a =4.6×10-4,得到p K a =3.34。
(2)用图解法求K a :
按已知条件A L -=0.260,A HL =0.890,计算相关数据,填入表中:
pH 0.88 1.17 2.99 3.41 3.95 4.89 5.50 A
0.890 0.890 0.692 0.552 0.385 0.260 0.260 L HL lg
A A
B A A
--=-
0.339
-0.064
-0.606
以pH 值为横坐标,L HL lg
A A
B A A
--=-为纵坐标绘图,如图所示。
直线与横坐标交点处对应的值(或与纵坐标交点处对应的值)即为p K a 。
从图中可得p K a =3.33,K a =4.7×10-4。