污水处理厂A-A-O生物脱氮除磷工艺简介
- 格式:doc
- 大小:55.50 KB
- 文档页数:4
A2/O工艺、氧化沟、A/O工艺、SBR工艺、CAST工艺一、A2/O工艺1.基本原理A2/O工艺是Anaerobic-Anoxic-Oxic的英文缩写,它是厌氧-缺氧-好氧生物脱氮除磷工艺的简称。
该工艺处理效率一般能达到:BOD5和SS为90%~95%,总氮为70%以上,磷为90%左右,一般适用于要求脱氮除磷的大中型城市污水厂。
但A2/O工艺的基建费和运行费均高于普通活性污泥法,运行管理要求高,所以对目前我国国情来说,当处理后的污水排入封闭性水体或缓流水体引起富营养化,从而影响给水水源时,才采用该工艺。
2. A2/O工艺特点:(1)污染物去除效率高,运行稳定,有较好的耐冲击负荷。
(2)污泥沉降性能好。
(3)厌氧、缺氧、好氧三种不同的环境条件和不同种类微生物菌群的有机配合,能同时具有去除有机物、脱氮除磷的功能。
(4)脱氮效果受混合液回流比大小的影响,除磷效果则受回流污泥中夹带DO和硝酸态氧的影响,因而脱氮除磷效率不可能很高。
(5)在同时脱氧除磷去除有机物的工艺中,该工艺流程最为简单,总的水力停留时间也少于同类其他工艺。
(6)在厌氧—缺氧—好氧交替运行下,丝状菌不会大量繁殖,SVI 一般小于100,不会发生污泥膨胀。
(7)污泥中磷含量高,一般为2.5%以上。
3.A2/O工艺的缺点·反应池容积比A/O脱氮工艺还要大;·污泥内回流量大,能耗较高;·用于中小型污水厂费用偏高;·沼气回收利用经济效益差;·污泥渗出液需化学除磷。
二、氧化沟1氧化沟技术氧化沟(oxidation ditch)又名连续循环曝气池(Continuous loop reactor),是活性污泥法的一种变形。
氧化沟污水处理工艺是在20世纪50年代由荷兰卫生工程研究所研制成功的。
自从1954年在荷兰首次投入使用以来。
由于其出水水质好、运行稳定、管理方便等技术特点,已经在国内外广泛的应用于生活污水和工业污水的治理[1]。
A2-O工艺脱氮除磷及其优化控制的研究A2/O工艺脱氮除磷及其优化控制的研究摘要:本文主要研究了A2/O(Anoxic/Anaerobic/Oxic)工艺在废水处理中的应用,并对其脱氮除磷效果进行了探讨。
通过对A2/O工艺的原理、工艺流程和工艺优化控制方法进行分析,旨在为工程实践提供技术支持和参考。
一、引言废水中的氨氮和磷元素对自然生态环境具有一定的污染作用,因此废水处理工艺中必须考虑脱氮除磷工作。
A2/O工艺是一种通过增加缺氧区域和厌氧区域来实现同时脱氮除磷的工艺。
该工艺具有工艺简单、操作方便等优点,被广泛应用于污水处理厂。
二、A2/O工艺原理A2/O工艺是将缺氧区域引入A2/O反应池内,通过氨氧化细菌、反硝化细菌和同步硝化反硝化细菌协同作用,将废水中的氨氮转化为氮气的过程。
在A2/O反应池中,废水经过缺氧区、厌氧区和好氧区,分别进行脱氮、厌氧反硝化和好氧反硝化反应,从而达到脱氮除磷的效果。
三、A2/O工艺流程A2/O工艺的主要流程包括进水、预处理、A1区、A2区、M区、混凝沉淀、滤池和出水等。
在进水预处理阶段,可采用格栅污染物筛选和调节pH值等措施。
在A1区,废水与好氧污泥混合,并通过曝气装置增加溶解氧含量。
在A2区,废水与厌氧污泥混合,减少氧气的供应来实现缺氧条件。
在M区,通过混凝剂的加入,使沉淀物形成较大的颗粒,便于后续的沉淀。
最后,通过滤池和反洗等步骤,实现出水的净化。
四、A2/O工艺优化控制A2/O工艺的优化控制主要包括进水流量的控制、曝气量的控制、外加碳源的控制、内循环比的调整以及污泥回流比的控制等。
其中,进水流量的控制要根据实际情况进行调整,以保证污水处理出水的稳定性。
曝气量的控制应根据废水的COD浓度和溶解氧的含氧量进行调整,以提高好氧污泥的活性和效果。
外加碳源的控制主要是根据废水的C/N比进行投加,以促进脱氮除磷反应的进行。
内循环比的调整可以通过增加或减少回流水量,来实现系统中不同区域的溶解氧浓度和污泥浓度的调节。
A2/O工艺、氧化沟、A/O工艺、SBR工艺、CAST工艺一、A2/O工艺1.基本原理A2/O工艺是Anaerobic-Anoxic-Oxic的英文缩写,它是厌氧-缺氧-好氧生物脱氮除磷工艺的简称。
该工艺处理效率一般能达到:BOD5和SS为90%~95%,总氮为70%以上,磷为90%左右,一般适用于要求脱氮除磷的大中型城市污水厂。
但A2/O工艺的基建费和运行费均高于普通活性污泥法,运行管理要求高,所以对目前我国国情来说,当处理后的污水排入封闭性水体或缓流水体引起富营养化,从而影响给水水源时,才采用该工艺。
2. A2/O工艺特点:(1)污染物去除效率高,运行稳定,有较好的耐冲击负荷。
(2)污泥沉降性能好。
(3)厌氧、缺氧、好氧三种不同的环境条件和不同种类微生物菌群的有机配合,能同时具有去除有机物、脱氮除磷的功能。
(4)脱氮效果受混合液回流比大小的影响,除磷效果则受回流污泥中夹带DO和硝酸态氧的影响,因而脱氮除磷效率不可能很高。
(5)在同时脱氧除磷去除有机物的工艺中,该工艺流程最为简单,总的水力停留时间也少于同类其他工艺。
(6)在厌氧—缺氧—好氧交替运行下,丝状菌不会大量繁殖,SVI 一般小于100,不会发生污泥膨胀。
(7)污泥中磷含量高,一般为2.5%以上。
3.A2/O工艺的缺点·反应池容积比A/O脱氮工艺还要大;·污泥内回流量大,能耗较高;·用于中小型污水厂费用偏高;·沼气回收利用经济效益差;·污泥渗出液需化学除磷。
二、氧化沟1氧化沟技术氧化沟(oxidation ditch)又名连续循环曝气池(Continuous loop reactor),是活性污泥法的一种变形。
氧化沟污水处理工艺是在20世纪50年代由荷兰卫生工程研究所研制成功的。
自从1954年在荷兰首次投入使用以来。
由于其出水水质好、运行稳定、管理方便等技术特点,已经在国内外广泛的应用于生活污水和工业污水的治理[1]。
A2/O工艺A2/O工艺亦称A-A-O工艺,是英文Anaerobic-Anoxic-Oxic 第一个字母的简称(生物脱氮除磷)。
按实质意义来说,本工艺称为厌氧-缺氧-好氧法,生物脱氮除磷工艺的简称。
A2/O工艺是流程最简单,应用最广泛的脱氮除磷工艺。
污水首先进入厌氧池,兼性厌氧菌将污水中的易降解有机物转化成VFAs。
回流污泥带入的聚磷菌将体内的聚磷分解,此为释磷,所释放的能量一部分可供好氧的聚磷菌在厌氧环境下维持生存,另一部分供聚磷菌主动吸收VFAs,并在体内储存PHB。
进入缺氧区,反硝化细菌就利用混合液回流带入的硝酸盐及进水中的有机物进行反硝化脱氮,接着进入好氧区,聚磷菌除了吸收利用污水中残留的易降解BOD外,主要分解体内储存的PHB产生能量供自身生长繁殖,并主动吸收环境中的溶解磷,此为吸磷,以聚磷的形式在体内储存。
污水经厌氧,缺氧区,有机物分别被聚磷菌和反硝化细菌利用后浓度已很低,有利于自养的硝化菌的生长繁殖。
最后,混合液进入沉淀池,进行泥水分离,上清液作为处理水排放,沉淀污泥的一部风回流厌氧池,另一部分作为剩余污泥排放。
本工艺在系统上可以称为最简单的同步脱氮除磷工艺,总的水力停留时间少于其他同类工艺。
而且在厌氧-缺氧-好养交替运行条件下,不易发生污泥膨胀。
运行中无须投药,厌氧池和缺氧池只需轻缓搅拌,运行费用低。
该工艺处理效率一般能达到:BOD5和SS为90%~95%,总氮为70%以上,磷为90%左右,一般适用于要求脱氮除磷的大中型城市污水厂。
但A2/O工艺的基建费和运行费均高于普通活性污泥法,运行管理要求高,所以对目前我国国情来说,当处理后的污水排入封闭性水体或缓流水体引起富营养化,从而影响给水水源时,才采用该工艺。
本工艺具有如下特点:(1)本工艺在系统上可以称为最简单的同步脱氮除磷工艺,总的水力停留时间少于其他同类工艺(2)在厌氧(缺氧)、好氧交替运行条件下,丝状菌不能大量增殖,无污泥膨胀之虞,SVI 值一般均小于100 (3)污泥中含磷浓度高,具有很高的肥效(4)运行中勿需投药,两个A断只用轻缓搅拌,并不增加溶解氧浓度,运行费用低本法也存在如下各项的待解决问题(1)除磷效果难于再行提高,污泥增长有一定的限度,不易提高,特别是当P/BOD值高时更是如此(2)脱氮效果也难于进一步提高,内循环量一般以2Q为限,不宜太高(3)进入沉淀池的处理水要保持一定浓度的溶解氧,减少停留时间,防止产生厌氧状态和污泥释放磷的现象出现、但溶解氧浓度也不宜过高,以防循环混合液对缺氧反应器的干扰1.A2O池的检测与控制参数的确定A2O生物除磷脱氮工艺处理污水效果与DO、内回流比r、外回流比R、泥龄SRT、污水温度及PH值等有关。
生物脱氮除磷工艺简介1、生物脱氮除磷工艺的进展从20世纪60年代开始,美国曾系统地进行了脱氮除磷物化方法研究,结果认为该法的主要缺点是药耗量大,产生的污泥多,特别对处理大量城市污水时,处理成本高。
因此,转入研究生物脱氮除磷工艺。
从20世纪70年代开始,在活性污泥法脱氮工艺(A/0工艺)逐步实现工业化,并在此基础上研究开发出了生物脱氮除磷工艺(如A2/0工艺等)。
以后,随着微生物学和细胞学在污水生化处理上的新应用,又不断出现了多种变形的生物脱氮除磷工艺,如MSBR等。
我国从20世纪80年代初开始生物脱氮除磷研究,80年代后期实现了工业化流程。
污水脱氮除磷可供选择的工艺通常有生物处理和物理化学处理两大类。
后者由于需要投加相当数量的化学药剂,存在运行费用高,残渣量大和运行管理难度大等缺陷,因此,城市污水处理中一般不推荐采用。
而一般生物处理又分为活性污泥和生物膜法两种。
目前对城市污水的生物脱氮除磷工艺,指的是活性污泥生物脱氮除磷工艺。
目前已实用的几种生物脱氮除磷工艺有:A2/O、氧化沟、SBR工艺以及以上三种工艺的系列改良工艺。
2、生物脱氮除磷的工艺原理简述(1)生物脱氮首先,污水中的蛋白质和尿素等在水解酶和尿素酶的作用下转化为氨氮,而后在有氧条件下和在硝化菌的作用下,氨氮被氧化为硝酸盐,这阶段称为硝化(即氨氮转化为硝酸盐)。
再以后,在缺氮条件和反硝化菌的参与作用,并有外加碳源提供能量,硝酸盐还原成气态氮(N2)逸出,这阶段称为反硝化(即硝酸盐的氮转化为氮气)。
整个脱氮过程就是氮的分解还原反应,反应能量从有机物中获取。
在脱氮过程中,硝化菌增长速度较缓慢,所以要有足够的污泥泥龄。
反硝化菌的生长主要在缺氧条件下进行,还要有充裕的碳源提供能量,才可能使反硝化作用顺利进行。
除上述条件以外,影响脱氮效率的因素还有溶解氧,温度和PH 值等。
硝化阶段,应有足够的溶解氧,其值一般应大于2g/L。
反硝化阶段为缺氧条件,溶解氧值宜为0.4mg/L左右。
污水处理A/O工艺脱氮除磷一般的活性污泥法以去除污水中可降解有机物和悬浮物为主要目的,对污水中氮、磷的去除有限。
随着对水体环境质量要求的提高,对污水处理厂出水的氮、磷有控制也越来越严格,因此有必要采取脱氮除磷的措施。
一般来说,对污水中氮、磷的处理有物化法和生物法,而生物法脱氮除磷具有高效低成本的优势,目前出现了许多采用生物脱氮除磷的新工艺。
一、生物脱氮除磷工艺的选择按生物脱氮除磷的要求不同,生物脱氮除磷分为以下五个层次:(1)去除有机氮和氨氮;(2)去除总氮;(3)去除磷;(4)去除氨氮和磷;(5)去除总氮和磷。
对于不同的脱氮除磷要求,需要不同的处理工艺来完成,下表列出了生物脱氮除磷5个层次对工艺的选择。
生物脱氮除磷5个层次对工艺的选择对于不同的TN出水水质要求,需要选择不同的脱氮工艺,不同的TN出水水质要求与脱氮工艺的选择见下表。
不同TN出水水质要求对脱氮工艺的选择生物除磷工艺所需B0D5或COD与TP之间有一定的比例要求,生物除磷工艺所需BOD5或COD与T比例P的要求见下表。
生物除磷工艺所需BOD5或COD与TP的比例要求二、A/O工艺生物脱氮工艺(一)工艺流程A/0工艺以除氮为主时,基本工艺流程如下图1。
图1 缺氧/好氧工艺流程A/O工艺有分建式和合建式工艺两种,分别见图2、图3。
分建式即硝化、反硝化与BOD 的去除分别在两座不同的反应器内进行;合建式则在同一座反应器内进行。
更多污水处理技术文章参考易净水网合建式反应器节省了基建和运行费用以及容易满足处理工程对碳源和碱度等条件的要求,但受以下闲素影响:溶解氧(0.5~1.5mg/L)、污泥负荷[0. 1~ 0.15kgBOD5/ (kgMLVSS•d)]、C/N 比(6 -7)、pH值( 7. 5~8.0) ,而不易控制。
对于pH值,分建式A/O工艺中,硝化液一部分回流至反硝化池,池内的反硝化脱氮菌以原污水中的有机物作碳源,以硝化液中NOx-N中的氧作为电子受体,将NOz-N还原成N2 ,不需外加碳源。
A-A-O生物脱氮除磷工艺相当多的污水处理厂在去除BOD和SS的同时,还要求脱氮并去除磷。
此时,应采用A-A-O生物脱氮除磷工艺。
1、工艺原理及过程A-A-O生物脱氮除磷工艺是传统活性污泥工艺、生物硝化及反硝化工艺和生物除磷工艺的综合。
在该工艺流程内,BOD、SS和以各种形式存在的氮和磷将一并被去除。
该系统的活性污泥中,菌群主要由硝化菌、反硝化菌和聚磷菌组成,专性厌氧和一般专性好氧菌群均基本被工艺过程所淘汰。
在好氧段,硝化细菌将入流中的氨氮及由有机氮氨化成的氨氮,通过生物硝化作用,转化成硝酸盐;在缺氧段,反硝化细菌将内回流带入的硝酸盐通过生物反硝化作用,转化成氮气逸入大气中,从而达到脱氮的目的;在厌氧段,聚磷菌释放磷,并吸收低级脂肪酸等易降解的有机物;而在好氧段,聚磷菌超量吸收磷,并通过剩余污泥的排放,将磷去除。
2、工艺参数和影响因素A-A-O生物脱氮除磷的功能是有机物去除、脱氮、除磷三种功能的综合,因而其工艺参数应同时满足各种功能的要求。
如能有效去除脱氮或除磷,一般也能同时高效地去除BOD,但除磷和脱氮往往是相互矛盾的,具体体现在某些参数上,使这些参数只能局限在某一狭窄的范围内,这是A-A-O系统工艺控制较为复杂的主要原因。
(1)F/M和SRT完全的生物硝化,是高效生物脱氮的前提,因而F/M越低SRT越高,脱氮效率越高,而生除磷则要求高F/M低SRT。
A-A-O生物脱氮除磷是运行较灵活的一种工艺,可以以脱氮为重点,也可以以除磷为重点,当然也可以二者兼顾。
如果既要求一定的脱氮效果,也要求一定的除磷效果,F/M一般控制在0.1~0.18kgBOD5/(kgMLVSS•d),SRT一般应控制在8~15天。
(2)水力停留时间水力停留时间与进水浓度、温度等因素有关。
厌氧段水力停留时间一般在1~2小时范围;缺氧段水力停留时间1.5~2小时;好氧段水力停留时间一般应在6小时。
(3)内回流与外回流内回流比r一般在200~500%之间,具体取决于进水TKN浓度,以及所要求脱氮效率,一般认为,300~500%时脱氮效率最佳。
ANAO工艺简介一、工艺简介ANAO工艺是一套新型污水深度脱氮除磷工艺。
ANAO工艺作为A2O的深度改良工艺,与传统活性污泥法相比在除磷脱氮效果、工艺稳定性、污泥产量、能降/药耗、运行成本等方面具有显著的优势。
因此,是一种低费高效的水处理技术。
二、工艺流程ANAO工艺是对传统A2O工艺的改进和优化,流程见下图。
传统A2O工艺包括格栅、厌氧池、缺氧池、好氧池和沉淀池,ANAO工艺的改进包括:1)在缺氧段前端设置快速沉淀池,实现泥水的快速分离,上清液先后进入化学除磷池、硝化池,底部污泥进入缺氧池;2)快速沉淀池上清液中磷含量高,可用石灰或铁盐实现低成本除磷;除磷后的上清液进入硝化池,硝化池与好氧池分开,安装有曝气系统和生物填料,通过生物膜法实现硝化;3)快速沉淀池底部污泥进入缺氧池,与回流硝化液一起完成反硝化,实现脱氮和除磷。
本工艺的特点之一是利用缺氧池进行反硝化除磷,反硝化除磷是一种先进的除磷脱氮技术,处理效率高。
3)缺氧池出水进入好氧池进一步硝化和除磷,好氧池硝化液与硝化池硝化液一起回流至缺氧池。
此外,为达到再生水的浊度和微生物指标,在二沉池后设置纤维过滤池,去除污水中的SS,在纤维过滤池后设置紫外消毒单元。
三、各项指标稳定达标原理1. CODANAO工艺中COD分两部分去除厌氧池中,微生物会吸收一部分COD进入体内储存,缺氧段的反硝化除磷使用消耗,比例约为40-60%,剩余的过多COD都会在好氧池被曝气氧化消耗。
2. 总磷AAO工艺出水总磷通常可达到一级B(1mg/L)。
为降低出水总磷,需要增加排泥量,但是又会导致氨氮和总氮达标困难。
ANAO工艺提高总磷的去除,主要通过以下途径。
(1)富磷上清液侧流除磷从12mg/L降至1mg/L,与尾水1mg/L减至0.5mg/L,除磷药剂的利用率得以大幅度提高。
除磷剂可采用硫酸亚铁,成本低。
而且,当进水总磷短期异常升高时,常规AAO工艺无能为力,而ANAO工艺可以通过增加化学除磷池的进水量,从而提高化学除磷量,保证出水达标。
AAO处理工艺简介AAO法又称A2O法,是英文Anaerobic-Anoxic-Oxic第一个字母的简称(厌氧-缺氧-好氧法),是一种常用的污水处理工艺,可用于二级污水处理或三级污水处理,以及中水回用,具有良好的脱氮除磷效果。
通过厌氧过程使废水中的部分难降解有机物得以降解去除,进而改善废水的可生化性,并为后续的缺氧段提供适合于反硝化过程的碳源,最终达到高效去除COD、BOD、N、P的目的。
优点:1、本工艺在系统上可以称为最简单的同步脱氮除磷工艺,总水力停留时间少于其他类工艺;2、在厌氧(缺氧)、好氧交替运行条件下,丝状菌不能大量增殖,不易发生污泥丝状膨胀,SVI值一般小于100;3、污泥含磷高,具有较高肥效;4、运行中勿需投药,两个A段只用轻轻搅拌,以不增加溶解氧为度,运行费用低;缺点:1、除磷效果难再提高,污泥增长有一定限度,不易提高,特别是P/BOD 值高时更是如此;2、脱氮效果也难再进一步提高,内循环量一般以2Q为限,不宜太高;(内循环范围为2Q-4Q)3、进入沉淀池的处理水要保持一定浓度的溶解氧,减少停留时间,防止产生厌氧状态和污泥释放磷的现象出现,但溶解氧浓度也不宜过高,以防循环混合液对缺氧反应器的干扰。
兴业县城区污水处理厂AAO工艺流程图:泵房:主要是收集从污水管网进来的生活污水,利用潜水泵将污水提升至处理单元。
粗格栅:粗格栅是用来去除可能堵塞水泵机组及管道阀门的较粗大悬浮物,并保证后续处理设施能正常运行。
粗格栅是由一组相平行的金属栅条与框架组成,倾斜安装在进水的渠道,以拦截污水中粗大的悬浮物及杂质。
细格栅:一种可连续清除流体中杂物的固液分离设备,主要去除水中一些细小的颗粒及悬浮物。
曝气沉砂池:去除污水中的无机颗粒,通过水的旋流运动,增加了无机颗粒之间的相互碰撞与摩擦的机会,使粘附在砂粒上的有机物得以去除。
AAO池(生物反应池):利用活性污泥法生物脱氮除磷的过程。
由3个池子组成的,按顺序是厌氧池,缺氧池,好氧池这三个,所有的池子都具有除去BOD的作用,也就是有机污染物。
污水处理厂A-A-O生物脱氮除磷工艺简介
作者:孟永进
来源:《硅谷》2009年第15期
中图分类号:X7文献标识码:A文章编号:1671-7597(2009)0810007-01
在城市生活污水处理厂,传统活性污泥工艺能有效去除污水中的BOD5和SS,但不能有效地去除污水中的氮和磷。
如果含氮、磷较多的污水排放到湖泊或海湾等相对封闭的水体,则会产生富营养化导致水体水质恶化或湖泊退化,影响其使用功能。
因此,在对污水中的BOD5和SS进行有效去除的同时,还应根据需要,考虑污水的脱氮除磷。
其中A-A-O(厌氧-缺氧-好氧)为同步生物脱氮除磷工艺的一种。
一、工艺原理及过程
A-A-O生物脱氮除磷工艺是活性污泥工艺,在进行去除BOD、COD、SS的同时可生物脱氮除磷,其工艺流程如图1所示。
在好氧段,硝化细菌将入流污水中的氨氮及由有机氮氨化成的氨氮,通过生物硝化作用,转化成硝酸盐;在缺氧段,反硝化细菌将内回流带入的硝酸盐通过生物反硝化作用,转化成氮气逸入大气中,从而达到脱氮的目的;在厌氧段,聚磷菌释放磷,并吸收低级脂肪酸等易降解的有机物;而在好氧段,聚磷菌超量吸收磷,并通过剩余污泥的排放,将磷去除。
以上三类细菌均具有去除BOD5的作用,但BOD5的去除实际上以反硝化细菌为主。
污水进入曝气池以后,随着聚磷菌的吸收、反硝化菌的利用及好氧段的好氧生物分解,BOD5浓度逐渐降低。
在厌氧段,由于聚磷菌释放磷,TP浓度逐渐升高,至缺氧段升至最高。
在缺氧段,一般认为聚磷菌既不吸收磷,也不释放磷,TP 保持稳定。
在好氧段,由于聚磷菌的吸收,TP迅速降低。
在厌氧段和缺氧段,NH3-N浓度稳中有
降,至好氧段,随着硝化的进行,NH3-N逐渐降低。
在缺氧段,由于内回流带入大量NO3-N,NO3-N 瞬间升高,但随着反硝化的进行,NO3-N浓度迅速降低。
在好氧段,随着硝化的进行,NO3-N浓度逐渐升高。
二、A-A-O脱氮除磷系统的工艺参数及控制
A-A-O生物脱氮除磷的功能是有机物去除、脱氮、除磷三种功能的综合,因而其工艺参数应同时满足各种功能的要
求。
如能有效地脱氮或除磷,一般也能同时高效地去除BOD5。
但除磷和脱氮往往是相互矛盾的,具体体现的某些参数上,使这些参数只能局限在某一狭窄的范围内,这也是A-A-O系统工艺系统控制较复杂的主要原因。
1.F/M和SRT。
完全生物硝化,是高效生物脱氮的前提。
因而,F/M(污泥负荷)越低,SRT(污泥龄)越高。
脱氮效率越高,而生物除磷则要求高F/M低SRT。
A-A-O生物脱氮除磷是运行较灵活的一种工艺,可以以脱氮为重点,也可以以除磷为重点,当然也可以二者兼顾。
如果既要求一定的脱氮效果,也要求一定的除磷效果,F/M一般应控制在0.1-0.18㎏BOD5/(kgMLVSS·d),SRT一般应控制在8-15d。
2.水力停留时间。
水力停留时间与进水浓度、温度等因素有关。
厌氧段水力停留时间一般在1-2h范围内,缺氧段水力停留时间1.5-2.0h,好氧段水力停留时间一般应在6h。
3.内回流与外回流。
内回流比r一般在200-500%之间,具体取决于进水TKN浓度,以及所要求的脱氮效率。
一般认为,300-500%时脱氮效率最佳。
内回流比r与除磷关系不大,因而r的调节完全与反硝化工艺一致。
4.溶解氧(DO)。
厌氧段DO应控制在0.2mg/L以下,缺氧段DO应控制在0.5mg/L以下,而好氧DO应控制在2-3mg/L之间。
因生物除磷本身并不消耗氧,所以A-A-O脱氮除磷工艺曝气系统的控制与生物反硝化系统一致。
5.BOD5/TKN与BOD5/TP。
对于生物脱氮来说,BOD5/TKN至少应大于4.0,而生物除磷则要求BOD5/TP﹥20。
运行中应定期核算入流污水水质是否满足BOD5/TKN﹥4.0,BOD5/TP﹥20。
如果其中之一不满足,则应投加有机物补充碳源。
为了提高BOD5/TKN值,宜投加甲醇做补充碳源。
为了提高BOD5/TP值,则宜投加乙酸等低级脂肪酸。
6.PH控制及碱度核算。
A-A-O生物除磷脱氮系统中,污泥混合液的PH应控制在
7.0之上;如果PH﹤6.5,应外加石灰,补充碱度不足。
三、工艺运行异常问题的分析与排除
传统活性污泥工艺的故障诊断及排除技术,一般均适用于A-A-O脱氮除磷系统。
如果某处理厂控制水质目标为:BOD5≦25mg/L;SS≦25mg/L;NH3-N≦3mg/L;NO3-
N≦7mg/L;TP≦2mg/L。
则当实际水质偏离以上数值时,属异常情况。
现象一:TP﹤2mg/L,NH3-N﹤2mg/L,NO3N﹥7mg/L。
其原因及解决对策如下:
1.内回流比太小。
增大内回流。
2.缺氧段DO太高。
如果DO﹥0.5mg/L,则首先检查内回流比r是否太大。
如果太大,则适当降低。
另外,还应检查缺氧段搅拌强度是否太大,形成涡流,产生空气复氧。
现象二:TP﹤2mg/L,NH3-N﹥3mg/L,NO3-N﹥5mg/L,BOD5﹤25mg/L。
其原因及解决对策如下:
1.好氧段DO不足。
如果1.5﹤DO﹤
2.0mg/L,则可能只满足BOD5分解的需要,而不满足硝化的需要,应增大供气量,使DO处于2-3mg/L。
2.存在硝化抑制物质。
检查入流中工业废水的成分,加强上游污染源管理。
现象三:TP﹥2mg/L,NH3-N﹤3mg/L,NO3-N﹥5mg/L,BOD5﹤25mg/L。
其原因及解决对策如下:
1.入流BOD5不足。
检查BOD5/TKN是否大于4,BOD5/TP是否大于20,否则应采取增加入流BOD5的措施,如跨越初沉池或外加碳源。
2.外回流比太小,缺氧段DO太高。
检查缺氧段DO值,如果DO﹥0.5mg/L,则应采取措施,见“现象一”。
外回流比太大,把过量的NO3-N带入了厌氧段,应适当降低回流比。
现象四:TP﹥2mg/L,NH3-N﹤3mg/L,NO3-N﹤5mg/L,BOD5﹤25mg/L。
其原因及解决对策如下:
1.泥龄太长。
可适当增大排泥,降低SRT。
2.厌氧段DO太高。
如果DO﹥0.2mg/L,则应寻找DO升高的原因并予以排除。
首先检查是否搅拌强度太大,造成空气复氧,否则检查回流污泥中是否有DO带入。
3.入流BOD5不足。
检查BOD5/TP值。
如果BOD5/TP﹤20,则应外加碳源。
参考文献:
[1]顾魁声,污水生物处理技术,大连理工大学出版社,2004.
[2]钱易,现代废水处理新技术,中国科学技术出版社,1992.。