污水处理中的脱氮除磷工艺
- 格式:doc
- 大小:26.50 KB
- 文档页数:4
污水脱氮除磷的原理及其工艺一、污水脱氮原理:污水中的氮主要以无机氮和有机氮两种形式存在,其中无机氮包括氨氮、亚硝酸盐氮和硝酸盐氮,有机氮主要包括蛋白质等有机物。
污水脱氮的主要原理是利用硝化反应和反硝化反应。
硝化反应是将氨氮转化为硝酸盐氮,该过程需利用到氨氧化细菌进行氧化作用,产生的硝酸盐氮可以被水中的反硝化细菌进一步还原为氮气释放到大气中。
这样就实现了对污水中氨氮的脱氮处理。
反硝化反应是将硝酸盐氮还原为氮气。
反硝化作用需要在无氧环境下进行,可通过添加外源电子供体(如甲烷、乙醇等)来提供反硝化细菌进行反硝化作用。
反硝化细菌利用硝酸盐氮作为电子受体进行还原,产生大量的氮气释放到大气中,实现了对污水中硝酸盐氮的脱氮处理。
二、污水除磷原理:污水中的磷主要以无机磷和有机磷两种形式存在,其中无机磷主要包括磷酸盐磷和亚磷酸盐磷,有机磷主要包括有机物中的磷酸酯等。
污水除磷的主要原理是利用化学沉淀法和生物吸附法。
化学沉淀法是通过给污水中添加适量的化学沉淀剂(如氯化铝、聚合氯化铝等)来与磷酸盐磷和亚磷酸盐磷反应生成难溶的沉淀物(如磷酸铝等),从而使磷被固定在沉淀物中,从而实现了对污水中无机磷的除磷处理。
生物吸附法是利用在废水生物处理系统中存在的一些微生物对磷进行吸附作用,这些微生物能将磷从废水中吸附到其细胞表面或胞囊中,从而实现了废水中磷的除磷处理。
三、污水脱氮除磷工艺:污水脱氮除磷工艺主要有一体化生物法、AO法和AB法等多种。
其中,一体化生物法比较常用,其工艺流程为:进水→除砂→调节池→好氧生物反应器(硝化反应)→缺氧生物反应器(反硝化反应)→二沉池(沉淀处理)→出水。
一体化生物法通过将硝化反应和反硝化反应合为一体,利用生物脱氮除磷技术处理污水。
系统中含有好氧区和缺氧区,其中好氧区负责氨氮的硝化反应,缺氧区则利用添加碳源(如甲醇、乙醇等)提供的外源电子供体来进行反硝化反应。
通过控制好氧区和缺氧区的进水比例,可实现对污水中的氮和磷的高效去除。
污水处理脱氮除磷工艺介绍及对比分析污水处理是保护环境、维护人类健康和可持续发展的重要措施之一、污水处理需要对其中的有害物质进行去除,其中包括氮和磷等营养物质。
脱氮除磷是其中一项重要的工艺,下面将对其进行介绍及比较分析。
脱氮工艺主要有生物脱氮工艺和物理化学脱氮工艺两种。
1.生物脱氮工艺:生物脱氮是利用污水处理系统中的微生物来将氨氮转化为氮气释放到大气中的过程。
其中常用的生物脱氮工艺包括硝化-反硝化法和硝化亚硝化法。
-硝化-反硝化法:该方法分为两个阶段,第一步是将氨氮通过硝化菌转化为亚硝酸盐,然后在缺氧条件下使用反硝化菌将亚硝酸盐转化为氮气。
该工艺具有能耗较低和无需额外药剂的优点,同时还可以降低化学消耗物。
-硝化亚硝化法:该方法将硝化菌和亚硝化菌结合在同一反应器中,通过控制氧气浓度和反应温度来实现硝化和亚硝化的联合作用。
该工艺节省了处理污水的时间,同时也减少了系统的占地面积。
2.物理化学脱氮工艺:物理化学脱氮工艺主要包括空气氧化剂法和化学沉淀法。
-空气氧化剂法:该方法是利用氧气或臭氧等氧化剂来氧化污水中的氨氮,使其转化为氮气释放。
该工艺适用于处理高氨氮浓度的废水,并且不需要添加额外的化学品。
-化学沉淀法:该方法通过添加化学药剂来使污水中的氨氮与其结合,形成不溶性的沉淀物进行去除。
常用的药剂包括氢氧化钙、氯化铁和磷酸铁等。
该工艺适用于处理低氨氮浓度的废水,但需要使用额外的化学药剂。
除磷工艺主要有生物除磷工艺和化学除磷工艺两种。
1.生物除磷工艺:生物除磷工艺主要是通过利用污水处理系统中的一些微生物来将废水中的磷元素转化为不溶性的磷酸钙沉淀物进行去除。
该工艺包括聚磷酸盐法、硝化反硝化除磷法和反硝化聚磷酸盐除磷法等。
-聚磷酸盐法:该方法通过添加一定剂量的磷源来诱导有利微生物的适应和繁殖,使其在系统中大量积累。
随后,在缺氧条件下,这些微生物将磷元素从水中去除,形成不溶性的磷酸钙沉淀物。
该工艺操作简单、不需要额外药剂,但容易受到外界环境的影响。
污水处理中的脱氮除磷工艺摘要:在陈述城市污水生物脱氮除磷机理的基础下,简单分析生物脱氮除磷的处理工艺。
关键词:脱氮除磷;机理;工艺1 前言城市污水中的氮、磷主要来自生活污水和部分工业废水。
氮、磷的主要危害:一是使受纳水体富营养化;二是影响水源水质, 增加给水处理成本;三是对人和生物产生毒害。
上述危害严重制约了城市水环境正常功能的发挥, 并使城市缺水状况加剧,而且随着人民生活水体的提高和环境的恶化,对水质的要求也越来越高。
为了达到较好的脱氮除磷效果,环境工作者对一些传统工艺进行了改进或设计出新工艺,本文简单介绍一些脱氮除磷工艺。
2 生物脱氮原理【1】一般来说, 生物脱氮过程可分为三步: 第一步是氨化作用, 即水中的有机氮在氨化细菌的作用下转化成氨氮。
在普通活性污泥法中, 氨化作用进行得很快, 无需采取特殊的措施。
第二步是硝化作用, 即在供氧充足的条件下, 水中的氨氮首先在亚硝酸菌的作用下被氧化成亚硝酸盐, 然后再在硝酸菌的作用下进一步氧化成硝酸盐。
为防止生长缓慢的亚硝酸细菌和硝酸细菌从活性污泥系统中流失, 要求很长的污泥龄。
第三步是反硝化作用, 即硝化产生的亚硝酸盐和硝酸盐在反硝化细菌的作用下被还原成氮气。
这一步速率也比较快, 但由于反硝化细菌是兼性厌氧菌, 只有在缺氧或厌氧条件下才能进行反硝化, 因此需要为其创造一个缺氧或厌氧的环境( 好氧池的混合液回流到缺氧池) 。
反应方程式如下:( 1) 硝化反应:硝化反应总反应式为:( 2) 反硝化反应:另外, 由荷兰Delft 大学Kluyver 生物技术实验室试验确认了一种新途径, 称为厌氧氨( 氮) 氧化。
即在厌氧条件下,以亚硝酸盐作为电子受体,由自养菌直接将氨转化为氮, 因而不必额外投加有机底物。
反应式为:NH4+NO2→N2+2H2O3 生物除磷原理【1】所谓生物除磷, 是利用聚磷菌一类的微生物, 在厌氧条件下释放磷。
而在好氧条件下, 能够过量地从外部环境摄取磷, 在数量上超过其生理需要, 并将磷以聚合的形态储藏在菌体内, 形成高磷污泥排出系统, 达到从污水中除磷的效果。
污水处理方法之除磷、脱氮污水处理方法之除磷、脱氮:除磷:城市废水中磷的主要来源是粪便、洗涤剂和某些工业废水,以正磷酸盐、聚磷酸盐和有机磷的形式溶解于水中。
常用的除磷方法有化学法和生物法。
A、化学法除磷:利用磷酸盐与铁盐、石灰、铝盐等反应生成磷酸铁、磷酸钙、磷酸铝等沉淀,将磷从废水中排除。
化学法的特点是磷的去除效率较高,处理结果稳定,污泥在处理和处置过程中不会重新释放磷造成二次污染,但污泥的产量比较大。
B、生物法除磷:生物法除磷是利用微生物在好氧条件下,对废水中溶解性磷酸盐的过量吸收,沉淀分离而除磷。
整个处理过程分为厌氧放磷和好氧吸磷两个阶段。
含有过量磷的废水和含磷活性污泥进人厌氧状态后,活性污泥中的聚磷商在厌氧状态下,将体内积聚的聚磷分解为无机磷释放回废水中。
这就是“厌氧放磷”。
聚磷菌在分解聚磷时产生的能量除一部分供自己生存外,其余供聚磷菌吸收废水中的有机物,并在厌氧发酵产酸菌的作用下转化成乙酸背,再进一步转化为PHB (聚自-短基丁酸)储存于体内。
进入好氧状态后,聚磷菌将储存于体内的PHB进行好氧分解,并释放出大量能量,一部分供自己增殖,另一部分供其吸收废水中的磷酸盐,以聚磷的形式积聚于体内。
这就是“好氧吸磷”。
在此阶段,活性污泥不断增殖。
除了一部分含磷活性活泥回流到厌氧池外,其余的作为剩余污泥排出系统,达到除磷的目的。
脱氮:生活废水中各种形式的氮占的比例比较恒定:有机氮50%~60%,氨氮40%~50%,亚硝酸盐与硝酸盐中的氮占 0~5%。
它们均来源于人们食物中的蛋白质。
脱氮的方法有化学法和生物法两大类。
A、化学法脱氮:包括氨吸收法和加氯法。
a、氨吸收法:先把废水的pH值调整到10以上,然后在解吸塔内解吸氨b、加氯法:在含氨氮的废水中加氯。
通过适当控制加氯量,可以完全除去水中的氨氮。
为了减少氯的投加量,此法常与生物硝化联用,先硝化再除去微量的残余氨氮。
B、生物法脱氮:生物脱氮是在微生物作用下,将有机氮和氨态氮转化为氮气的过程,其中包括硝化和反硝化两个反应过程。
污水处理系统中的脱氮除磷工艺流程摘要:在新时期,社会经济发展加速了城市化进程,良好的污水处理对于城市的正常运作至关重要,必须优先考虑。
生物化学装置通常由有氧盆地、厌氧盆地回收多种组成,结合相应系统,可提供良好的去污和去磷酸化。
关键词:污水处理系统;脱氮除磷;工艺流程;前言:随着污水处理效率的提高,污水设施的质量和节能要求很难根据污水设施的管理和维护经验来适应污水设施的快速发展。
城市污水系统技术发展的趋势之一是从经验评估转变为定量分析。
根据对污水处理的理解,设计和使用积极污水处理的概念肯定会从简单的使用和规格经验转变为使用数学模型来指导建筑和生产。
一、污水处理系统中的脱氮除磷现状根据近年来的环境质量报告,水中的主要污染物是含氮的有机物质,这些污染物加剧了与缺水有关的争议,并对可持续发展战略的实施产生了严重的负面影响。
由于化学和物理化学方法成本高,易受二次环境污染,在中国,积极围攻的数学模型的应用必然会提高建筑的设计、运营和管理水平。
废水的生物酸化和磷酸化是成本效益高的处理方法,它是由美国和南非的水处理专家在代根据化学、生物权利具有广泛应用、投资和使用成本低、稳定效果强、综合处理能力强等优点分析了城市废水中氮磷暴露增加的途径和方向。
废水溶解和磷酸化通过角色发展方向;随着废水总量的增加和广泛使用,合成洗涤剂和杀虫剂中的营养物质浓度继续增加,氮和磷是水的主要原因之一。
催化和生物研究提出的。
微生物脱氮和脱磷酸技术可根据系统中的微生物状态分为活性沉积物和生物膜技术。
硝化、反硝酸盐、磷释放和磷酸化是通过创造有氧物质来实现的。
在实际工程设计中,根据压力水和其他实际条件,生物柴油和脱磷酸过程可分为以下水平:首先旨在去除有机物、氨和氮的过程。
可以使用仿生工艺、仿生工艺和传统的活化工艺,但只能使用缓慢的活化工艺。
其次,是去除有机物和整个氮包括有机氮、氨和硝酸盐的工艺。
要去除整个氮必须使用仿生工艺。
需要在反应池前添加一个缺氧段,以便在良好氧段中含有硝酸盐的混合物返回缺氧段,硝酸盐在缺氧条件下转化为氮气。
脱氮除磷的水污染处理工艺近几十年来,水污染问题日益严重。
其中,氮和磷的排放是造成水体富营养化的主要原因之一。
为了解决这个问题,脱氮除磷的水污染处理工艺被广泛应用。
本文将对脱氮除磷的工艺进行详细介绍。
一、脱氮工艺1.生物法生物法是目前广泛使用的脱氮工艺。
主要包括生物硝化脱氮和生物反硝化技术两种方式。
生物硝化脱氮:通过硝化作用将氨氮先转化为亚硝酸盐,然后进一步转化为硝酸盐,最终转化成氮气释放。
生物硝化脱氮技术适合于高温和中温条件下的工业和城市污水处理。
生物反硝化技术:通过微生物将污水中的硝态氮还原成分子态氮。
生物反硝化技术在低温条件下和含有高浓度有机物或有毒物质的废水中有着较好的效果。
2.生物化学联合法生物化学联合法是将化学脱氮和生物脱氮相结合的方法。
将化学氮移除和Nitrifier-Denitrifier反应器相结合,可以同时去除废水中的氨氮、硝酸盐和有机氮。
二、除磷工艺1.生物法生物法反应器中添加特定的微生物种类,通过细胞内聚磷体的形成来去除废水中的磷。
生物法可以采用常温条件下的生物除磷法和PRB(磷酸根还原菌)方法。
生物除磷法:将一部分有机质转化为聚磷体,降低了废水中的磷浓度。
其中产生的胞外聚磷体通过化学加药破坏,从而将磷元素移除。
PRB技术:利用磷酸酯酶降解废水中的聚磷体,释放出其身上的磷元素,然后在还原本身成为无磷物质。
2.化学法化学法是使用化学物质来去除废水中的磷。
包括化学沉淀法和吸附法。
化学沉淀法:添加化学药剂,生成难溶的沉淀物,从而使废水中的磷以沉淀物的形式存在,达到去除的效果。
吸附法:利用化学吸附剂吸附废水中的磷元素,将其移除。
在吸附剂表面形成的吸附床与污水中的磷发生交换,达到去除的效果。
三、联合工艺脱氮除磷联合工艺是将脱氮和除磷相结合的工艺。
其中包括生物化学联合法、化学-生物工艺和物理化学-生物工艺。
联合工艺相比于单纯的脱氮或除磷工艺,具有去除效率高、运行稳定等优势。
综上所述,脱氮除磷是解决水污染的重要手段之一。
污水处理脱氮除磷工艺介绍及对比分析2020年9月6日星期日目录一、生物脱氮 (3)1、硝化过程 (3)2、反硝化过程 (4)3、生物脱氮的基本条件 (5)4、废水生物脱氮处理方法 (6)二、化学脱氮 (7)1、吹脱法 (7)2、化学沉淀法(磷酸铵镁沉淀法) (8)3、低浓度氨氮工业废水处理技术 (9)4、不同浓度工业含氨氮废水的处理方法比较 (11)三、化学法除磷 (11)1、石灰除磷 (12)2、铝盐除磷 (12)3、铁盐除磷 (13)四、生物除磷 (13)1、生物除磷的原理 (13)2、生物除磷的影响因素: (14)3、废水生物除磷的方法有哪些 (15)4、除磷设施运行管理的注意事项 (15)一、生物脱氮脱氮技术包括化学法和生物法,由于化学法会产生二次污染,而且成本高,所以一般使用生物脱氮技术。
污水生物处理脱氮主要是靠一些专性细菌实现氮形式的转化。
含氮有机化合物在微生物的作用下首先分解转化为氨态氮NH4+或NH3,这一过程称为“氨化反应”。
硝化菌把氨氮转化为硝酸盐,这一过程称为“硝化反应”;反硝化菌把硝酸盐转化为氮气,这一反应称为“反硝化反应”。
含氮有机化合物最终转化为氮气,从污水中去除。
1、硝化过程硝化菌把氨氮转化为硝酸盐的过程称为硝化过程,硝化是一个两步过程,分别利用了两类微生物——亚硝酸盐菌和硝酸盐菌。
这两类细菌统称为硝化菌,这些细菌所利用的碳源是CO32-、HCO3-和CO2等无机碳。
第一步由亚硝酸盐菌把氨氮转化为亚硝酸盐,第二步由硝酸盐菌把亚硝酸盐转化为硝酸盐。
这两个过程释放能量,硝化菌就是利用这些能量合成新细胞和维持正常的生命活动,氨氮转化为硝态氮并不是去除氮而是减少了它的需氧量。
氧化1g氨氮大约需要消耗4.3gO2和8.64gHCO3-(相当于7.14gCaCO3碱度)。
硝化过程的影响因素:1)温度:硝化反应最适宜的温度范围是30~35℃,温度不但影响硝化菌的比增长速率,而且会影响硝化菌的活性。
《污水生物脱氮除磷工艺的现状与发展》篇一一、引言随着城市化进程的加速和工业的迅猛发展,大量生活污水和工业废水被排放到水环境中,造成了严重的环境问题。
为了有效减少污水对环境的危害,人们研发了多种污水处理技术。
其中,污水生物脱氮除磷工艺因具有较好的处理效果和较低的运行成本,得到了广泛的应用。
本文将就污水生物脱氮除磷工艺的现状及其发展进行详细探讨。
二、污水生物脱氮除磷工艺的现状1. 工艺概述污水生物脱氮除磷工艺是一种基于微生物作用,利用活性污泥法等生物处理技术,将污水中的氮、磷等营养元素去除的工艺。
该工艺主要利用微生物的代谢作用,将污水中的氮、磷转化为无害物质,从而达到净化水质的目的。
2. 国内外应用现状目前,国内外广泛应用的污水生物脱氮除磷工艺主要包括A/O法、A2/O法、氧化沟法等。
这些工艺在我国污水处理领域得到了广泛应用,特别是在城市污水处理厂和工业废水处理中。
此外,一些新型的生物脱氮除磷技术,如MBR(膜生物反应器)技术、超声波强化生物脱氮除磷技术等也在逐步推广应用。
三、工艺运行机制与原理污水生物脱氮除磷工艺主要依靠活性污泥中的微生物完成。
在反应过程中,微生物通过吸附、吸收、代谢等作用,将污水中的氮、磷等营养元素转化为无害物质。
具体来说,脱氮过程主要通过氨化、硝化和反硝化等步骤实现;除磷过程则主要通过聚磷菌的过量摄磷和释磷实现。
四、工艺发展及挑战1. 技术发展随着科技的不断进步,污水生物脱氮除磷工艺也在不断发展和完善。
新型的生物反应器、高效的微生物菌剂、智能化的控制系统等技术手段的应用,使得污水处理效率得到了显著提高。
同时,一些新型的污水处理理念和技术,如低碳、低能耗、资源化等也得到了广泛关注。
2. 面临的挑战尽管污水生物脱氮除磷工艺取得了显著的成果,但仍面临一些挑战。
如:如何进一步提高处理效率、降低运行成本;如何解决污泥处理与处置问题;如何应对复杂多变的水质等。
此外,一些新兴污染物(如微塑料、新型有机污染物等)也对传统污水处理技术提出了新的挑战。
污水处理中的脱氮除磷工艺
通常污水处理设备的外壳都是金属材质(碳钢、不锈钢)或者玻璃钢材质制作。
不同的污水处理设备对污染水的敏感度处理工艺和处理后的排放标准都不相同。
污水中95%以上的氨氮(HN3-N)以NH4的形式存在。
通过鼓风曝气,亚硝酸菌首先将氨氮转化为亚硝酸盐:
(亚硝酸菌)NH4+1.5O2NO2-+2H+H2O。
然后将亚硝酸盐转化为硝酸盐:硝酸菌No2总体反应为:NH4+2O2NO3+2H+H2O。
污水处理设备
以上反应在好氧部分进行。
在厌氧部分,硝酸盐和亚硝酸盐通过兼氧微生物或厌氧微生物(如碱生产菌、假单胞菌、无色杆菌等)进行反硝化和脱氮。
反消化菌利用NO3中的氧(又称化合态氧或硝化氧)继续分解代谢有机污染物,去除BOD5,同时将NO3中的氮转化为氮N2这个过程可以用以下方式表示:
反消化菌NO3-+有机物N2+N2O+OH。
除磷原理:
厌氧段优势的非丝状储磷菌分解储存的聚磷酸盐,提供能量,吸收水中大量的BOD5,释放正磷酸盐,降低厌氧段的BOD5,提高磷含量。
公厕污水进入好氧段后,好氧微生物利用氧化分解获得的能量,吸收原水中释放的大量正磷和磷,完成磷的过渡积累,达到去除BOD5和除磷的目的。
污水处理脱氮除磷工艺原理。
污水处理中的氮与磷的去除技术比较一、氮与磷的来源及处理意义氮和磷是污水中的重要污染物之一,主要来源包括生活污水、农业污水、工业废水等。
其中,氮和磷在水体中浓度高、易造成富营养化,导致藻类繁殖过度,严重影响水生态环境。
因此,氮和磷的去除成为了污水处理工艺的重要环节之一。
二、传统氮磷去除技术综述1、生化方法通过好氧、厌氧的生化反应,使氮和磷通过生物过程转化为氧化亚氮、氨和磷酸盐等形态,达到去除的目的。
其中,常用的生化方法有A2/O法、SBR法等。
生化方法的优点是处理效果稳定,但缺点也十分明显,处理时间长、占地面积大、运行成本高等。
2、化学方法通过加入化学药剂如聚合铝等,使氮和磷与化学药剂发生化学反应,达到去除的目的。
化学方法的优点是处理效果较好,但药剂的投加量有限制、可能存在副作用等。
3、物理方法通过物理方法如沉淀、超滤等,使氮和磷被沉淀或过滤,达到去除的目的。
物理去除方法的处理速度快,但需要使用大量能源和化学药剂,运行成本高。
三、新型氮磷去除技术综述1、生物除磷技术生物除磷技术用于去除污水中的磷,主要采用生物处理法,将污水中的磷通过微生物代谢释放出来,之后再利用沉淀或过滤等技术去除。
这种方法具有投资少、运行成本低等优点。
2、同步脱氮脱磷技术同步脱氮脱磷技术是一种生物方法,通过好氧、厌氧反应的结合,内循环、反硝化等环节使氮、磷同步被去除,彻底解决了传统方法中氮、磷去除效率低的问题,运行成本低廉。
3、局部缺氧除氮技术局部缺氧除氮技术是一种通过在污水处理系统中设置局部缺氧区域来实现生物硝化反应和同时进行反硝化反应,从而去除污水中的氮的方法。
该方法处理效果好,适用于对氮去除效率要求较高的污水处理工程。
四、氮磷去除技术的比较生化方法、化学方法和物理方法虽然是常用的氮磷去除技术,但由于其存在诸多缺点,近年来新型的氮磷去除技术逐渐被开发出来。
新型的氮磷去除技术具有处理效率高、运营成本低等显著优势,尤其是局部缺氧除氮技术、同步脱氮脱磷技术具有更好的效果,因此未来可能会成为主流的技术选择。
脱氮除磷工艺汇总MBR工艺脱氮除磷MBR是一种结合膜分离和微生物降解技术的高效污水处理工艺。
在反应器内,一方面,膜组件将泥水高效分离,促使出水水质改善;另一方面,污泥停留时间(SRT)与水力停留时(HRT)在反应器内相互独立,可提高污泥浓度;此外,反应器内较长的SRT可使增殖缓慢的某些特殊菌(如自养硝化菌等)在活性污泥中出现,而膜组件又能将这些菌持留,从而使MBR处理效果得以改善.MBR工艺具有一定局限性,对于生活污水,其仅依靠MBR本身其脱氮除磷能力只能达到40%至60%左右的去除率;对于工业废水,其对难降解有机物的去除率并没有得到太大改善.所以MBR工艺一般和SBR系列/AAO等工艺组合使用. 五种常见组合工艺:SBR—MBR工艺A2O—MBR工艺3A—MBR工艺A2O/A-MBR工艺A(2A)O—MBR工艺SBR—MBR工艺:将SBR与MBR相结合形成的SBR-MBR工艺,除了具有一般MBR的优点外,对于膜组件本身和SBR工艺两种程序运行都互有帮助。
由于膜组件的截留过滤作用,反应中的微生物能最大限度地增长,利于世代时间较长的硝化及亚硝化细菌的生长繁殖,因此,污泥的生物活性高,吸附和降解有机物的能力较强,同时也具有较好的硝化能力.此外,SBR式的工作方式为除磷菌的生长创造了条件,同时也满足了脱氮的需要,使得单一反应器内实现同时高效去除氮磷及有机物成为可能。
与传统SBR系统相比,SBR-MBR在反应阶段利用膜分离排水,可以减少传统SBR的循环时间;同时,序批式的运行方式可以延缓膜污染。
A2O-MBR工艺:由A2O工艺与MBR膜分离技术结合而成的具有同步脱氮除磷功能的A2O—MBR工艺,可进一步拓展MBR的应用范畴。
在该工艺中设置有两段回流,一段是膜池的混合液回流至缺氧池实现反硝化脱氮,另一段是缺氧池的混合液回流至厌氧池,实现厌氧释磷。
A2O—MBR工艺中高浓度的MLSS、独立控制的水力停留时间和污泥停留时间、回流比及污泥负荷率等都会产生与传统A2O工艺不同的影响,具有较好的脱氮除磷效率。
污水处理中的脱氮除磷工艺摘要:阐述城市污水生物脱氮除磷机理,简单分析生物脱氮除磷的处理工艺关键词:脱氮除磷;SBR工艺;A²/O工艺;立体循环一体化氧化沟;CAST 工艺1、引言城市污水中的氮、磷主要来自城市生活污水,来自农业施肥(氮)和喷洒农药(磷等),来自工业废水。
氮、磷的主要危害:氮和磷能够使湖泊等缓流封闭或半封闭的水体产生富营养化,而水体富营养化已成为全球的重大环境问题。
生物脱氮除磷作为解决水体富营养化的主要手段成为污水处理领域的重中之重。
为了达到较好的脱氮除磷效果,环境工作者对一些传统工艺进行了改进或设计出新工艺,本文简单介绍一些脱氮除磷工艺。
2、生物脱氮除磷机理2.1 脱氮机理脱氮首先利用设施内好氧段,由亚硝化细菌和硝化细菌的硝化作用,将转化为。
再利用缺氧段经反硝化细菌将反硝化还原为氮(),溢出水面释放到大气,参与自然界物质循环。
水中含氮物质大量减少,降低出水潜在危险性,从而达到从废水中脱氮的目的。
2.2 除磷原理在普通废水生物处理过程中,微生物除碳的同时吸收磷元素用以合成细胞物质和合成ATP等,但只去除污水中约19%左右的磷。
残留在出水中的磷还相当高。
故需用除磷工艺处理。
所谓的除磷就是把水中溶解性磷转化为颗粒性磷,达到磷水分离的效果。
聚磷菌成为生物除磷过程中最重要的菌群,其是一种高能化合物,水解时能放出能量。
在厌氧池中聚磷菌利用这些能量摄取有机物并释放出水解产生的磷酸,造成厌氧池中磷浓度的升高,废水中的有机物减少。
到了好氧池,聚磷菌将体内积蓄的有机物通过好氧呼吸氧化分解合成ATP,用这部分能量进行菌体的增殖和聚磷酸的合成,在此过程中不断完成磷的过度累积和最后的奢量吸收从而达到去除污水中磷的目的。
反应方程式如下:( 1) 聚磷菌摄取磷:ADP++能量→ATP+( 2) 聚磷菌的放磷:ATP+→ADP++能量3、生物脱氮除磷工艺3.1 SBR工艺SBR工艺由于操作灵活,脱氮除磷效果较好成为了新近发展起来的新型处理废水的工艺,得到广泛的应用。
a2o工艺脱氮除磷原理A2O工艺是一种常见的污水处理工艺,它通过生物反应器中的微生物对污水中的氮和磷进行去除,是一种高效、节能的污水处理方法。
在A2O工艺中,脱氮除磷是其中的重要环节,本文将就A2O工艺脱氮除磷原理进行详细介绍。
首先,我们来了解一下A2O工艺的基本原理。
A2O工艺是指“Anaerobic-Anoxic-Oxic”工艺,即厌氧-缺氧-好氧工艺。
在A2O工艺中,污水首先进入厌氧区,通过厌氧菌的作用,有机物质被分解成有机酸和氨氮。
然后,污水进入缺氧区,有机酸和氨氮被进一步氧化成无机物质。
最后,污水进入好氧区,通过好氧菌的作用,氨氮和有机物质被氧化成硝态氮和亚硝态氮,最终通过硝化反应和反硝化反应完成氮的去除。
在A2O工艺中,脱氮除磷是通过生物反应器中的微生物完成的。
在好氧区,硝态氮和亚硝态氮会被硝化细菌氧化成硝酸盐,完成氮的去除。
而在缺氧区,硝酸盐会被反硝化细菌还原成氮气,从而实现氮的彻底去除。
这样,A2O工艺通过厌氧、缺氧和好氧三个区域内的微生物协同作用,实现了对污水中氮的高效去除。
除了氮的去除,A2O工艺也可以实现对磷的去除。
在厌氧区,磷会和有机物质结合成为无机磷,然后在缺氧区和好氧区,无机磷会被微生物吸附并沉淀,从而实现了对磷的去除。
这样,A2O工艺不仅可以高效去除污水中的氮,还可以实现对磷的去除,达到了污水处理的双重效果。
总的来说,A2O工艺脱氮除磷原理是通过生物反应器中的厌氧、缺氧和好氧三个区域内的微生物协同作用,实现了对污水中氮和磷的高效去除。
这种工艺不仅能够高效处理污水,还具有节能、环保的特点,是目前污水处理领域中被广泛应用的一种工艺方法。
希望通过本文的介绍,能够让大家对A2O工艺脱氮除磷原理有更深入的了解,为污水处理工作提供一定的参考和帮助。
污水处理脱氮除磷工艺的研究进展污水处理脱氮除磷工艺的研究进展导论随着工业化和城市化的快速发展,城市污水处理被视为环保的关键环节之一。
污水中的氮和磷是造成水体富营养化和水质污染的主要因素,对环境和人类健康造成了极大的危害。
因此,研究和开发高效的污水处理脱氮除磷工艺,具有重要的理论和实际意义。
本文将综述污水处理脱氮除磷工艺的研究进展,包括生物方法、化学方法和物理方法等。
一、生物方法生物方法是目前最常用的污水处理脱氮除磷工艺之一。
其中,厌氧-好氧(A/O)工艺和序批式生物反应器(SBR)工艺是较为常见的两种方式。
1.1 厌氧-好氧(A/O)工艺A/O工艺是通过厌氧区和好氧区交替处理,利用好氧区的硝化和反硝化作用,使污水中的氮化合物发生变化。
该工艺具有操作简便、处理效果稳定的优点。
但对于高浓度氮、磷水平的处理效率较低。
1.2 序批式生物反应器(SBR)工艺SBR工艺是将厌氧、好氧和静置等过程合并到一个单元中进行操作。
它的优点是适用于不同负荷和工艺变化、容易控制操作和维护,以及对氮和磷的去除效果较好。
然而,该工艺需要较大占地面积,造价较高。
二、化学方法化学方法是利用化学试剂对污水中的氮和磷进行去除。
常用的化学方法包括化学沉淀法和化学氧化法。
2.1 化学沉淀法化学沉淀法是利用化学试剂与污水中的磷结合形成不溶性盐类,通过沉淀将磷去除。
常用的化学试剂包括铝盐和铁盐等。
该方法具有处理效果稳定、去除效率较高的优点。
然而,由于化学试剂的使用和废物处理问题,导致了一定程度上的资源浪费和环境污染。
2.2 化学氧化法化学氧化法是利用化学试剂将污水中的氮化合物氧化成无害产物。
常用的化学试剂包括高锰酸钾、过硫酸盐和臭氧等。
该方法具有较高的氮去除效果,并且可以同时进行磷的去除。
然而,该方法需要化学试剂的不断投加,操作复杂,造成了一定的经济和环境成本。
三、物理方法物理方法是利用物理过程对污水中的氮和磷进行去除。
常用的物理方法包括离子交换法和吸附法等。
污水脱氮除磷工艺氨氮、总氮、总磷超标原因及控制一、氨氮超标原因及控制措施1、污泥负荷与污泥龄生物硝化属低负荷工艺,F/M一般在0.05~0.15kgBOD/ kgMLVSS•d。
负荷越低,硝化进行得越充分,NH-N向NO--N转化的效率就越高。
与低负荷相对应,生物硝化系统的SRT般较长,因为硝化细菌世代周期较长,若生物系统的污泥停留时间过短,污泥浓度较低时,硝化细菌就培养不起来,也就得不到硝化效果。
SRT控制在多少,取决于温度等因素。
对于以脱氮为主要目的生物系统,通常SRT可取11~23d。
2、回流比与水力停留时间生物硝化系统的回流比一般较传统活性污泥工艺大,主要是因为生物硝化系统的活性污泥混合液中已含有大量的硝酸盐,若回流比太小,活性污泥在二沉池的停留时间就较长,容易产生反硝化,导致污泥上浮。
通常回流比控制在50~100%。
生物硝化曝气池的水力停留时间也较活性污泥工艺长,至少应在8h以上。
这主要是因为硝化速率较有机污染物的去除率低得多,因而需要更长的反应时间。
3、BOD5/TKNBOD5/TKN越大,活性污泥中硝化细菌所占的比例越小,硝化速率就越小,在同样运行条件下硝化效率就越低;反之,BOD5/TKN越小,硝化效率越高。
很多城市污水处理厂的运行实践发现,BOD5/ TKN值最佳范围为2~3左右。
4、溶解氧硝化细菌为专性好氧菌,无氧时即停止生命活动,且硝化细菌的摄氧速率较分解有机物的细菌低得多,如果不保持充足的氧量,硝化细菌将“争夺”不到所需要的氧。
因此,需保持生物池好氧区的溶解氧在2mg/L以上,特殊情况下溶解氧含量还需提高。
5、温度与pH硝化细菌对温度的变化也很敏感,当污水温度低于15℃时,硝化速率会明显下降,当污水温度低于5℃时,其生理活动会完全停止。
因此,冬季时污水处理厂特别是北方地区的污水处理厂出水氨氮超标的现象较为明显。
硝化细菌对pH反应很敏感,在pH为8~9的范围内,其生物活性最强,当pH<6.0或>9.6时,硝化菌的生物活性将受到抑制并趋于停止。
《污水生物脱氮除磷工艺的现状与发展》篇一一、引言随着工业化和城市化的快速发展,污水处理问题日益突出。
其中,氮、磷等营养物质的排放对水环境造成了严重污染。
污水生物脱氮除磷工艺作为一种高效、经济的污水处理技术,得到了广泛的应用和关注。
本文将介绍污水生物脱氮除磷工艺的现状,并探讨其未来的发展趋势。
二、污水生物脱氮除磷工艺的现状1. 工艺原理污水生物脱氮除磷工艺主要利用微生物的作用,通过一系列的生化反应,将污水中的氮、磷等营养物质转化为无害物质,从而达到净化水质的目的。
该工艺主要包括硝化、反硝化、厌氧释磷和好氧吸磷等过程。
2. 常见工艺目前,常见的污水生物脱氮除磷工艺包括A/O(厌氧/好氧)工艺、A2/O(厌氧-缺氧-好氧)工艺、MBBR(移动床生物反应器)工艺等。
这些工艺在不同领域得到了广泛应用,取得了显著的成效。
3. 现状分析(1)优点:污水生物脱氮除磷工艺具有处理效率高、运行成本低、污泥产量少等优点,能够有效地去除污水中的氮、磷等营养物质。
(2)挑战:然而,该工艺在应用过程中也面临一些挑战,如硝化菌和反硝化菌的生长条件差异大、运行管理复杂等。
此外,某些工业废水中的特殊成分可能对微生物产生抑制作用,影响处理效果。
三、污水生物脱氮除磷工艺的发展趋势1. 技术创新随着科技的不断进步,新的污水处理技术不断涌现。
未来,污水生物脱氮除磷工艺将更加注重技术创新,通过优化工艺参数、改进设备结构、提高微生物活性等方式,提高处理效率,降低运行成本。
2. 组合工艺为了进一步提高处理效果,未来将更加注重将不同的污水处理工艺进行组合。
例如,将物理、化学和生物处理方法相结合,形成组合工艺,以适应不同类型污水的处理需求。
3. 智能化管理随着信息技术的发展,污水处理行业的智能化管理将成为未来发展的重要方向。
通过引入物联网、大数据、人工智能等技术手段,实现对污水处理过程的实时监控、远程控制和智能调度,提高运行管理的效率和准确性。
4. 资源化利用为了实现污水的资源化利用,未来将更加注重对污水处理过程中产生的污泥进行资源化利用。
污水处理中的脱氮除磷工艺
摘要:阐述城市污水生物脱氮除磷机理,简单分析生物脱氮除磷的处理工艺
关键词:脱氮除磷;SBR工艺;A²/O工艺;立体循环一体化氧化沟;CAST 工艺
1、引言
城市污水中的氮、磷主要来自城市生活污水,来自农业施肥(氮)和喷洒农药(磷等),来自工业废水。
氮、磷的主要危害:氮和磷能够使湖泊等缓流封闭或半封闭的水体产生富营养化,而水体富营养化已成为全球的重大环境问题。
生物脱氮除磷作为解决水体富营养化的主要手段成为污水处理领域的重中之重。
为了达到较好的脱氮除磷效果,环境工作者对一些传统工艺进行了改进或设计出新工艺,本文简单介绍一些脱氮除磷工艺。
2、生物脱氮除磷机理
2.1 脱氮机理
脱氮首先利用设施内好氧段,由亚硝化细菌和硝化细菌的硝化作用,将转化为。
再利用缺氧段经反硝化细菌将反硝化还原为氮(),溢出水面释放到大气,参与自然界物质循环。
水中含氮物质大量减少,降低出水潜在危险性,从而达到从废水中脱氮的目的。
2.2 除磷原理
在普通废水生物处理过程中,微生物除碳的同时吸收磷元素用以合成细胞物质和合成ATP等,但只去除污水中约19%左右的磷。
残留在出水中的磷还相当高。
故需用除磷工艺处理。
所谓的除磷就是把水中溶解性磷转化为颗粒性磷,达到磷水分离的效果。
聚磷菌成为生物除磷过程中最重要的菌群,其是一种高能化合物,水解时能放出能量。
在厌氧池中聚磷菌利用这些能量摄取有机物并释放出水解产生的磷酸,造成厌氧池中磷浓度的升高,废水中的有机物减少。
到了好氧池,聚磷菌将体内积蓄的有机物通过好氧呼吸氧化分解合成ATP,用这部分能量进行菌体的增殖和聚磷酸的合成,在此过程中不断完成磷的过度累积和最后的奢量吸收从而达到去除污水中磷的目的。
反应方程式如下:
( 1) 聚磷菌摄取磷:ADP++能量→ATP+
( 2) 聚磷菌的放磷:ATP+→ADP++能量
3、生物脱氮除磷工艺
3.1 SBR工艺
SBR工艺由于操作灵活,脱氮除磷效果较好成为了新近发展起来的新型处理废水的工艺,得到广泛的应用。
a、脱氮是在适当条件下进行的,即含氮化合物利用氨化菌进行氨化,然后在硝化菌作用下进行硝化,最后利用反硝化菌进行反硝化,将、还原为释放到大气中。
b、除磷是利用聚磷菌能过量地从外部摄取磷并以聚合物形式贮藏于菌体内形成高磷污泥,从而通过定期除泥而去除磷。
SBR工艺在去除有机物的同时,可以完成脱氮除磷。
SBR工艺流程图:
图1SBR生物脱氮除磷工艺流程
3.2 A²/O工艺
传统A²/O 法即厌氧→缺氧→好氧活性污泥法。
污水经过三个不同功能分区的过程中,在不同微生物菌群作用下,使污水中的有机物、氮和磷得到去除。
污水和从二沉池回流的活性污泥进入首段厌氧池,聚磷菌在厌氧条件下释磷,同时转化易降解COD、VFA为PHB,部分含氮有机物进行氨化。
在缺氧池中,反硝化菌利用污水中的有机物作为碳源,将回流混合液带入的大量、还原为释放到大气中,浓度降低,浓度降低,磷变化较小。
在好氧池中,混合液中的COD浓度已基本接近排放标准,主要进行氨氮的硝化和磷的吸收,混合液中硝态氮回流至缺氧反应区,污泥中过量吸收的磷通过剩余污泥排除。
A²/O工艺可用于处理工业废水比重较大城市污水,也较容易应用于生物法处理的老污水厂的改造。
A²/O工艺流程图:
图2生物脱氮除磷工艺流程
3.3 立体循环一体化氧化沟
氧化沟工艺是一种延时曝气的活性污泥法,由于负荷很低,耐冲击负荷强,出水水质较好,污泥产量少且稳定,构筑物少,特别是用于污水脱氮,氧化沟比其他生物脱氮工艺费用低、TN去除效率高。
但是与活性污泥相比较氧化沟存在着占地面积过大的缺点,这使得在土地资源较紧张的地区受到局限。
近几年来,国内对各种类型氧化沟工艺的除磷脱氮效果、设计、充氧设备及运行控制等方面进行了大量的研究。
对多种氧化沟都进行了一定的革新,成功研究出立体循环一体化氧化沟。
其具有以下的优点:
(1)在循环过程中完成降解有机物和脱氮过程,与现有氧化沟相比,占地面积可减少50%。
(2)沉淀区和氧化沟合建,沉淀的污泥可自动回流到氧化沟内,节约投资和能源消耗。
(3)结构更加紧密,运行操作简便。
既保留氧化沟设备和运行操作简单的优点,同时节约
了占地面积。
3.4CAST工艺
CAST工艺实际上是SBR工艺的一种变型,是可变容积活性污泥法过程和生物选择器原理的有机集合,整个工艺为一间歇式反应器, 主反应器前端有一个生物选择器, 主反应器中活性污泥进行着不断重复曝气和非曝气过程,生物反应和泥水分离在同一池内完成,CAST方法是一种“充水和排水”活性污泥法系统, 废水按一定的周期和阶段得到处理。
4、结语
随着污水处理事业的发展,已有多种污水处理工艺在我国污水处理厂中得到了应用,除以上几种工艺的介绍,脱氮除磷工艺还包括AB法、MSBR工艺、OCO工艺等。
随着环境保护者对脱氮除磷工艺的不断研究和探索,将来还会有更多新工艺的出现为生物脱氮除磷工艺指引方向。
但是社会的可持续发展给污水脱氮除磷处理提出了越来越高的要求,污水处理已不仅限于满足排放标准,更要考虑污水的资源化和能源化的问题。
综上所述,选择一种好的城市污水处理工艺,无论是对国民经济的发展还是对环境保护、资源再利用都有着不同寻常的意义,好的工艺具有工艺简单、设备可靠、管理方便、投资省、占地少、效率高、运行成本低、污水处理能达标排放并可回用等优点。
相信在不久的将来生物学及其技术的发展,能使生物脱氮除磷工艺得到更大的发展。
参考文献
[1] 杨志光污水生物脱氮除磷工艺[J]. 科技论坛,2000,1(2):49.
[2] 周群英,王士芬环境工程微生物学[M]. 北京:高等教育出版社,2008.
[3] 张洁, 胡卫新, 张雁秋城市污水生物脱磷除氮工艺的新进展[B]. 中国期刊全文数据库,2003.
[4] 蒋文,贾娜,张洪杰生活污水生物脱氮除磷工艺[J]. 科技创新导报,2003,20:106-108.
[5] 高廷耀,顾国维,周琪水污染处理工程[M].北京:高等教育出版社,2007.
[6]肖文涛污水生物脱氮除磷工艺的现状与发展[A]. 中国期刊全文数据库,2010.。