《Multisim9电子技术基础仿真实验》4.8灵敏度分析
- 格式:ppt
- 大小:738.00 KB
- 文档页数:12
一、功能利用两个共发射极放大电路构成的两级阻容耦合放大电路实现对输入电压的放大功能。
二、性能指标电路的主要性能有电压放大倍数Av、输入电阻Ri、输出电阻Ro、同频带BW三、电路图四、原理分析及理论计算㈠原理分析:将放大电路的前级输出端通过电容接到后级输入端称为阻容耦合方式,上图所示为两级阻容耦合放大电路且两级均为共射放大电路。
由于电容对直流量的阻抗为无穷大,因而阻容耦合放大电路各级之间的直流通路各不相通,各级的静态工作点相互独立,在求解或实际调试Q点时可按单级处理,所以电路的分析与设计和调试简单易行。
而且,只要输入信号频率较高,耦合电容容量较大,前级的输出信号就可以几乎没有衰减的传递到后级输入端,因此在分立件电路中阻容耦合方式得到非常广泛的应用。
由于前后两级电路静态工作点相互独立,接下来将对典型单级阻容耦合放大电路进行分析,对第一级:1、第一级是典型的阻容耦合共射级放大电路,它采用的是分压式电流负反馈偏置电路。
放大器的静态工作点Q主要由Rb1、Rb2、Re、Rc及电源电压所决定。
该电路利用电阻Rb1、Rb2的分压定基级电位Vbq,如果满足条件I1>>Ibq,当温度升高时,Ic q↑→Ve q↑→Vb e ↓→Ib q↓→Ic q↓,结果抑制了Ic q的变化,从而获得稳定的静态工作点。
2、基本关系式只有当I1>>Ibq时,才能保证Vbq恒定。
这是稳定点工作的必要条件,一般取I1=(5~10)Ib q(硅管),I1=(10~20)Ib q(锗管),负反馈越强,电路的稳定性越好。
所以要求Vbq>> Vb e,即Vbq=(5~10)Vb e,一般取Vbq=(5~10)V(硅管),Vbq=(5~10)V(锗管)电路的静态工作点由下列关系式确定R e≈(Vbq- Vb e)/ Ic q= Ve q/ Ic q,对于小信号放大器,一般Ic q=0.5mA到2mA,Veq=(0.2~0.5)VccRb2=Vbq/ I1==【Vbq/(5~10)Ic q】βRb1≈[(Vcc-Vbq)/Vbq]×Rb2Vceq≈Vcc- Ic q(Re+Rc)3、主要性能指标及测试方法①电压放大倍数Av=V o/Vi=-βRl’/rbe 式中Rl’=Rc//Rl ,rbe为晶体管内阻,即Rbe=rb+(1+β)26mV/{Ieq}. mA,测量放大倍数实际是测量放大器的输入电压与输出电压的值。
第2章Multisim9的基本分析方法主要内容2.1 直流工作点分析(DC Operating Point Analysis )2.2 交流分析(AC Analysis)2.3 瞬态分析(Transient Analysis)2.4 傅立叶分析(Fourier Analysis)2.5 失真分析(Distortion Analysis)2.6 噪声分析(Noise Analysis)2.7 直流扫描分析(DC Sweep Analysis)2.8参数扫描分析(Parameter Sweep Analysis)2.1 直流工作点分析直流工作点分析也称静态工作点分析,电路的直流分析是在电路中电容开路、电感短路时,计算电路的直流工作点,即在恒定激励条件下求电路的稳态值。
在电路工作时,无论是大信号还是小信号,都必须给半导体器件以正确的偏置,以便使其工作在所需的区域,这就是直流分析要解决的问题。
了解电路的直流工作点,才能进一步分析电路在交流信号作用下电路能否正常工作。
求解电路的直流工作点在电路分析过程中是至关重要的。
2.1.1构造电路为了分析电路的交流信号是否能正常放大,必须了解电路的直流工作点设置得是否合理,所以首先应对电路得直流工作点进行分析。
在Multisim9工作区构造一个单管放大电路,电路中电源电压、各电阻和电容取值如图所示。
注意:图中的1,2,3,4,5等编号可以从Options---sheet properties—circuit—show all调试出来。
执行菜单命令Simulate/Analyses,在列出的可操作分析类型中选择DC Operating Point,则出现直流工作点分析对话框,如图A所示。
直流工作点分析对话框B。
1. Output 选项Output用于选定需要分析的节点。
左边Variables in circuit 栏内列出电路中各节点电压变量和流过电源的电流变量。
右边Selected variables for 栏用于存放需要分析的节点。
Multisim的电路分析方法:主要有直流工作点分析,交流分析,瞬态分析,傅里叶分析,噪声分析,失真分析,直流扫描分析,灵敏度分析,参数扫描分析,温度扫描分析,零一极点分析,传递函数分析,最坏情况分析,蒙特卡罗分析,批处理分析,用户自定义分析,噪声系数分析。
1.直流工作点分析(DC Operating):在进行直流工作点分析时,电路中的交流源将被置零,电容开路,电感短路。
2.交流分析(AC Analysis):交流分析用于分析电路的频率特性。
需先选定被分析的电路节点,在分析时,电路中的直流源将自动置零,交流信号源、电容、电感等均处在交流模式,输入信号也设定为正弦波形式。
若把函数信号发生器的其他信号作为输入激励信号,在进行交流频率分析时,会自动把它作为正弦信号输入。
因此输出响应也是该电路交流频率的函数。
3.瞬态分析(Transient Analysis):瞬态分析是指定所选定的电路节点的时域响应。
即观察该节点在整个显示周期中每一时刻的电压波形。
在进行瞬态分析时,直流电源保持常数,交流信号源随着时间而改变,电容和电感都是能量储存模式元件。
4.傅里叶分析(Fourier Analysis):用于分析一个时域信号的直流分量、基频分量和谐波分量。
即把被测节点处的时域变化信号作为离散傅里叶变换,分析的节点,一般将电路中的交流激励源的频率设定为基频,若在电路中有几个交流源时,可以将基频设定在这些频率的最小公因数上。
5.噪声分析(Noise Analysis):噪声分析用于检查电子线路输出信号的噪声功率幅度,用于计算、分析电阻或晶体管的噪声对电路的影响。
在分析时,假定电路中各自噪声源是互不相关的,因此他们的数值可以分开各自计算。
总的噪声是各自噪声在该节点的和(用有效值表示)。
6.噪声系数分析(Noise Figure Analysis):主要用于研究元件模型中的噪声参数对电路的影响。
在Multisim中噪声系数定义中:No是输出噪声功率,Ns是信号源电阻的热噪声,G是电路的AC增益(即二端口网络的输出信号与输入信号的比)。