x y 4 0 例2、已知变量x, y满足 x y 0 , x 1 y 求 的取值范围. x
y B A
C
x
y B A
C
x
方法小结
非线性目标函数的最值问题的求解 ① 分析目标函数的几何意义 ② 将目标函数化归成具有明显几何 意义的函数
考点讲解
三、含参变量线性规划问题的求解
y
B
A
C
x
方法小结
简单线性规划求解的步骤:
①画 ②作 ③移 ④求
画可行域 作线性目标函数 平移线性目标函数 求目标函数的最值
方法小结
简单线性规划求解需要注意的问题:
① 可行域是否包含边界 ② 目标函数最值与直线截距之间的关系 ③ 目标函数对应直线的斜率与边界线 斜率之间的关系
考点讲解
二、非线性目标函数的最值问题
小结提升
简单的线性规划问题求解的步骤:
画
作
移
求
简单的线性规划的作用:
二元函数的最值问题
简单的线性规划的基本思想:
数形结合
课后作业
作业手册:P263
x y 4 0 例3、已知变量x, y满足 x y 0 , x 1 z -kx y在点 1,3 取得最大值,求 k的取值范围.
考点讲解
四、线性规划的应用
例5、在平面直角坐标系xOy中,已知平 面区域A= ( x, y ) x y 0, 且x 2, y 0, 则平面区域B ( x, y) ( x y, x y) A 的面积为 ___________ .
简单的线性规划问题
考点分析
线性规划是优化的具体模型之一.考纲要 求 学生能够体会线性规划的基本思想,并能