1.1集合映射及函数1
- 格式:ppt
- 大小:893.50 KB
- 文档页数:29
机械工程学院中文
1.工程知识(专业
知识)
验证性实验
理论课(不含实践环
节)
化工学院英文 2.问题分析综合性实验理论课(含实践环
节)
电子工程
与光电技术学院法文
3.设计/开发解决
方案(解决方案制
定)
设计性实验实验课
计算机科
学与技术
学院
4.研究研究创新性实验毕业设计(论文)经济管理
学院
5.使用现代工具操作性实验科研训练
能源与动力工程学院6.工程与社会(实
践与社会)
演示性实验校内实习
自动化学院7.环境和可持续
发展
校外实习
理学院8.职业规范学年论文/社会调查外国语学
院
9.个人和团队课程设计/综合实验公共事务
学院
10.沟通军事体育类
材料科学
与工程学
院
11.项目管理
环境与生
物工程学
院
12.终身学习
设计艺术
与传媒学
院
教育实验
学院
知识产权
学院
马克思主
义学院
国际教育
学院
工程训练
中心
中法工程
师学院
宣传部
教务处
学生工作
处
研究生院
团委
高等教育
研究所
国际交流
合作处
军工试验
中心
军区培养办公室南中医南理工班体育部图书馆文化艺术素质教育中心
现代教育技术中心校医院外单位。
映射重要知识点总结一、映射的定义1.1 映射的概念映射是一种将一个集合中的元素对应到另一个集合中的元素的规则。
具体来说,如果从集合A到集合B的每个元素a都能找到集合B中的唯一元素b与之对应,那么我们就说存在从集合A到集合B的一个映射。
我们通常用f: A → B来表示这个映射,其中f表示映射的规则,A称为定义域,B称为值域,而对应的元素对(a, b)称为映射对。
1.2 映射的表示方式映射可以用图、公式、表格等形式来表示。
在图中,我们可以用箭头连接集合A和集合B 的元素,表示它们之间的对应关系;在公式中,我们可以用f(x) = y来表示映射的规则,其中x表示集合A中的元素,y表示集合B中的元素;在表格中,我们可以将集合A的元素和对应的集合B的元素按一定顺序排列,表示它们之间的对应关系。
1.3 映射的例子为了更好地理解映射的概念,我们可以举几个具体的例子。
比如说,将一个学生的学号与他的成绩对应起来,就是一个映射;将一个人的身高与体重对应起来,也是一个映射;将一个城市的名称与它的人口数量对应起来,同样也是一个映射。
二、映射的性质2.1 单射、满射和双射在研究映射的性质时,我们通常关注三个重要的性质,即单射、满射和双射。
- 单射:如果一个映射f: A → B满足对任意的x1, x2∈A,只要x1≠x2就有f(x1)≠f(x2),那么我们就说这个映射是单射。
单射也可以表述为:对于集合A中的任意两个不同的元素,它们在集合B中的像也是不同的。
- 满射:如果一个映射f: A → B满足对于集合B中的任意元素y,都能在集合A中找到一个元素x与之对应,那么我们就说这个映射是满射。
- 双射:如果一个映射既是单射又是满射,那么我们就说这个映射是双射。
2.2 映射的复合在实际问题中,有时我们会遇到多个映射的复合。
设有两个映射f: A → B和g: B → C,我们可以定义它们的复合映射g∘f: A → C为:对于A中的任意元素x,它在C中对应的像为(g∘f)(x) = g(f(x))。
集合与函数的关系引言:在数学中,集合和函数是非常基础且重要的概念。
集合是由一组确定的元素所构成的整体,而函数是一种特殊的关系,将一个集合的元素映射到另一个集合的元素。
本文将探讨集合与函数之间的关系,并分析这两个概念在实际问题中的应用。
一、集合的基本概念:1.1 集合的定义与表示法:集合是由一组确定的对象组成,这些对象被称为集合的元素。
集合可以用各种方式表示,例如列举法、描述法、等等。
例如,我们可以用列举法表示一个自然数集合:A = {1, 2, 3, 4, 5}。
1.2 集合之间的关系:集合之间可以有一些基本的关系,如并集、交集、差集等。
并集指的是两个或多个集合合并后的集合,交集指的是两个或多个集合共有的元素构成的集合,差集指的是从一个集合中去除另一个集合的元素。
这些关系有助于我们处理和描述集合之间的关系。
二、函数的基本概念:2.1 函数的定义与表示法:函数是一种特殊的关系,它将一个集合的元素映射到另一个集合的元素。
在函数中,每个输入都对应唯一的输出。
函数可以用不同的表示法来表示,如箭头图、公式表示法等。
例如,我们可以表示一个函数f,将自然数集合映射到自然数集合,表示为f: N -> N。
2.2 函数的性质:函数有一些重要的性质,如定义域、值域、单调性、奇偶性等。
定义域是指函数的输入可以取的值的集合,值域是指函数的输出可以取到的值的集合。
单调性描述了函数的增减性质,奇偶性描述了函数在坐标系中的对称性。
三、集合与函数的关系:3.1 集合与函数的映射关系:集合与函数之间存在一种映射关系。
一个函数可以被看作是一个集合到另一个集合的映射,即将一个集合的元素映射到另一个集合的元素。
函数的定义域和值域都是集合。
例如,我们可以定义一个函数f: A -> B,其中A和B分别表示集合A和集合B。
3.2 集合的运算与函数的运算:集合与函数之间的运算也存在一些共性。
在集合中,可以进行并集、交集、差集等运算,而在函数中,也可以进行函数的加法、减法、乘法、除法等运算。
课题:§1.1 集合教材分析:集合概念及其基本理论,称为集合论,是近、现代数学的一个重要的基础,一方面,许多重要的数学分支,都建立在集合理论的基础上。
另一方面,集合论及其所反映的数学思想,在越来越广泛的领域种得到应用。
课型:新授课教学目标:(1)通过实例,了解集合的含义,体会元素与集合的理解集合“属于”关系;(2)能选择自然语言、图形语言、集合语言(列举法或描述法)描述不同的具体问题,感受集合语言的意义和作用;教学重点:集合的基本概念与表示方法;教学难点:运用集合的两种常用表示方法——列举法与描述法,正确表示一些简单的集合;教学过程:一、引入课题军训前学校通知:8月15日8点,高一年段在体育馆集合进行军训动员;试问这个通知的对象是全体的高一学生还是个别学生?在这里,集合是我们常用的一个词语,我们感兴趣的是问题中某些特定(是高一而不是高二、高三)对象的总体,而不是个别的对象,为此,我们将学习一个新的概念——集合(宣布课题),即是一些研究对象的总体。
阅读课本P2-P3内容二、新课教学(一)集合的有关概念1.集合理论创始人康托尔称集合为一些确定的、不同的东西的全体,人们能意识到这些东西,并且能判断一个给定的东西是否属于这个总体。
2.一般地,研究对象统称为元素(element),一些元素组成的总体叫集合(set),也简称集。
3.思考1:课本P3的思考题,并再列举一些集合例子和不能构成集合的例子,对学生的例子予以讨论、点评,进而讲解下面的问题。
4.关于集合的元素的特征(1)确定性:设A是一个给定的集合,x是某一个具体对象,则或者是A的元素,或者不是A的元素,两种情况必有一种且只有一种成立。
(2)互异性:一个给定集合中的元素,指属于这个集合的互不相同的个体(对象),因此,同一集合中不应重复出现同一元素。
(3)集合相等:构成两个集合的元素完全一样5.元素与集合的关系;(1)如果a是集合A的元素,就说a属于(belong to)A,记作a∈A(2)如果a不是集合A的元素,就说a不属于(not belong to)A,记作a∉A(或a A)(举例)∈6.常用数集及其记法非负整数集(或自然数集),记作N正整数集,记作N*或N+;整数集,记作Z有理数集,记作Q实数集,记作R(二)集合的表示方法我们可以用自然语言来描述一个集合,但这将给我们带来很多不便,除此之外还常用列举法和描述法来表示集合。