PLC实验报告--三相异步电机
- 格式:docx
- 大小:11.35 KB
- 文档页数:2
三相异步电动机的Y—△启动控制实验报告三相异步电动机的Y—△启动控制一、设计目的:1.了解交流继电器、热继电器在电器控制系统中应用。
2.了解对自锁、互锁功能。
3.了解异步电动机Y—△降压启动控制的原理、运行情况及操作方法。
二、设计要求:1、设计电动机Y—△的启动控制系统电路;2、装配电动机Y—△启动控制系统;3、编写s7_300的控制程序;4、软、硬件进行仿真,得出结果。
三、设计设备:1.三相交流电源(输出电压线);2.继电接触控制、交流接触器、按钮、热继电器、熔断器、PLCS300;3.三相鼠笼式电动机。
四、设计原理:对于正常运行的定子绕组为三角形接法的鼠笼式异步电动机来说,如果在启动时将定子绕组接成星形,待起动完毕后再接成三角形,就可以降低启动电流,减轻它对电网的冲击,这样的起动方式称为星三角减压启动,或简称为星三角启动(Y-Δ启动)。
星三角起动法适用于正常运行时绕组为三角形联接的的电动机,电动机的三相绕组的六个出线端都要引出,并接到转换开关上。
起动时,将正常运行时三角形接法的定子绕组改接为星形联接,起动结束后再换为三角形连接。
这种方法只适用于中小型鼠笼式异步电动机.定子绕组星形连接时,定子电压降为三角形连接的1/√3,由电源提供的起动电流仅为定子绕组三角形连接时的1/3。
就是可以较大的降低启动电流,这是它的优点.但是,由于起动转矩与每相绕组电压的平方成正比,星形接法时的绕组电压降低了1/ √3倍,所以起动转矩将降到三角形接法的1/3,这是其缺点。
Y-△降压启动器仅适用于△运行380V的三相鼠笼式电动机作空载或轻载启动。
三相鼠笼式异步电动机Y—△降压启动控制线路图,如图1所示。
图1原理图的分析:按下空开后,按下SB1按钮,KM,KMY线圈得点,同时计时器也开始计时,KM得点,SB1按钮断开,KM触点闭合实现自锁,此时KM、KMY触点闭合,电动机以Y型启动;当计时器计时时间到,如上电路图KMΔ线圈得到,KMΔ常闭触点断开KMY线圈失电,KMY触点断开,KMΔ触点闭合进行工作,同时KMΔ动合触点闭合实现了互锁电路,此时电动机以Δ型运行。
实验二三相异步电动机的星/三角换接启动控制一、实验梯形图:
二、实验程序及注释
三、实验结果:
当按下X000即SS时,机器启动,Y001即KM1闭合,间隔1s后Y003即KM3闭合,此时为星形联结启动;按照设定的时间(本组为第九组,按照要求设定从启动到切换为三角形联结启动的时间为9秒),9秒后常闭触点T0断开,KM3断开,再间隔0.5秒后KM2闭合,此时为三角形联结启动。
当按下X001即ST时,机器停车,KM1~KM3的指示灯全部熄灭,电动机停止运作。
当按下X002即FR时,模拟过载情况,断电,情况如按下ST时。
实验结果与仿真结果一致,如图所示。
→
→
→
四、经验总结
①实验注意事项:
在实验过程中,必须连接好线路并确保接线以及程序正确后方可打开电源启动电动机模
块,以防出现触电的情况;如遇到程序错误的问题(此时PLC最下面的红灯会亮起来),先看程序有没有语句缺漏然后再检查语句是否有错误,注意器件名跟软元件名要一一对应。
②关于三相异步电动机的星/三角换接启动:
Y-△降压启动也称为星形-三角形降压启动,简称星三角降压启动。
这一线路的设计思想仍是按时间原则控制启动过程。
所不同的是,在启动时将电动机定子绕组接成星形,每相绕组承受的电压为电源的相电压(220V),减小了启动电流对电网的影响。
而在其启动后期则按预先整定的时间换接成三角形接法,每相绕组承受的电压为电源的线电压(380V),电动机进入正常运行。
凡是正常运行时定子绕组接成三角形的鼠笼式异步电动机,均可以采用这种线路。
三相异步电动机Y/△起动PLC控制程序的设计与调试
一、实验目的
1、熟悉PLC的I/O分配和连接方法。
2、进一步熟悉PLC的基本逻辑指令及其使用。
3、掌握PLC应用程序的设计与调试方法。
4、掌握PLC定时器的使用方法。
二、实验仪器
电气控制实验装置 1台
电动机 1 台;
万用表 1只
电工工具及导线若干
计算机1台
FX2N可编程序控制器 1台
三、实验内容及要求
1、实验内容:
1) 三相异步电动机Y/△起动控制程序设计与调试。
要求采用时间控制原则
进行控制程序设计。
2) 修改定时器的时间设定值,观察不同的时间对电动机控制性能的影响。
2、实验要求:
1) 运用经验设计法设计PLC控制程序。
2) 在FX-PCS-WIN3.0(三菱PLC梯形图编辑、调试集成环境)环境下进行
控制程序的编辑与调试。
3) 记录在调试程序过程中出现的问题,并分析产生的原因。
四、思考题
1、实现一个控制,程序的编写方式是否唯一?请谈谈体会。
2、可编程序控制器的定时器均为接通延时型,若需要分断延时型定时器怎么办?扩大延时范围有几种方法?
3、PLC控制系统与传统继电器控制系统的主要区别是什么?
五、实验报告要求
1、实现三相异步电动机Y/△起动控制的PLC控制系统的I/O分配表。
2、实现三相异步电动机Y/△起动控制的PLC控制系统的硬件接线图、
2、采用PLC实现三相异步电动机Y/△起动控制的程序清单。
3、记录实验中发现得问题、错误、故障及解决方法。
实训三:基于PLC实现的三相异步电动机定时运动控制系统的改造一、实训目的1、进一步掌握PLC编程思路;2、掌握FX2N系列PLC的堆栈指令;3、掌握梯形图程序设计的经验设计法。
二、项目描述按照三相异步电动机控制原理图接线或用控制模板代替。
图中的QS为电源开关,当KM1、KM3主触点闭合时,电动机星形连接;当KM1、KM2主触点闭合时,电动机三角形连接。
设计一个三相异步电动机星形三角形降压启动控制程序,要求合上电源刀开关,按下启动按钮SB2后,电动机以星形连接启动,开始转动5S后,KM3断电,星形启动结束。
三、实训器材1、PLC控制实验箱一台;2、电脑一台;3、导线若干。
四、实训要求1、输入点和输出点分配:2个输入3个输出。
输入端启动按钮SB2:X0停止按钮SB1:X1输出端KM1启动:Y0KM2启动:Y1KM3启动:Y22、PLC接线图按图完成PLC的接线。
3、程序设计(1)该程序采用堆栈指令配合常用一般指令可实现。
(2)根据指令要求和控制要求设计出梯形图。
(3)操作步骤1)编程准备;2)编程操作:打开软件,建立一个程序文件,选择梯形图编程方式;设置端口;保存文件。
3)程序传送:将PLC置于STOP模式,将编程元件中的梯形图进行转换—PLC 传送—写出到PLC当中,在PLC程序写入范围设置,然后进行校验。
(4)运行操作程序传送到PLC用户存储器后,按以下操作程序运行操作1)根据梯形图确定输入输出端口分配,并正确连接输入输出回路导线,检查PLC输入输出接线及输入输出端子是否接触良好;2)接通PLC运行开关打在RUN状态,表明程序运行。
3)在不同输入状态下观察输入输出继电器的状态,若与程序一致,则程序调试成功。
五、根据实验内容完成相应实验报告附:1、I/O接线图2、梯形图实训四运料小车的PLC控制一、实训目的1、熟悉所学顺序功能图设计方法和经验设计法;2、熟练使用所学编程方法将功能图转换成梯形图;3、掌握简单自动控制装置的基本控制原理及方法。
plc控制变频器驱动三相异步电动机正反转实训总结I. 引言本文将总结PLC控制变频器驱动三相异步电动机正反转实训的相关内容。
本实训主要涉及PLC控制系统、变频器驱动系统和三相异步电动机正反转控制系统。
在实训过程中,我们学习了PLC编程、变频器参数设置、三相异步电动机接线及控制等知识,并通过实际操作加深了对这些知识的理解。
II. PLC控制系统在本实训中,我们使用的是西门子S7-200系列PLC,通过编写Ladder图程序来控制变频器和电动机。
在编写程序时需要考虑输入输出信号的选择和逻辑关系的设计。
另外,还需要注意程序的调试和修改,以确保程序能够正确运行。
III. 变频器驱动系统变频器是一种用于调整交流电源供应电压、频率和相位等参数的设备,可以用来调整三相异步电动机的转速。
在本实训中,我们使用的是DELTA VFD-M系列变频器。
在设置参数时需要注意各个参数之间的关系,以确保变频器能够正确地驱动电动机。
IV. 三相异步电动机正反转控制系统三相异步电动机是一种常见的工业用电机,可以通过变频器来调整其转速。
在本实训中,我们主要学习了三相异步电动机的接线和正反转控制。
在接线时需要注意各个端子之间的连接关系,以及接地等问题。
在正反转控制时需要编写PLC程序,并通过变频器来调整电动机的转速和方向。
V. 实训总结通过本实训,我们深入了解了PLC控制系统、变频器驱动系统和三相异步电动机正反转控制系统的相关知识。
同时,我们也学会了如何进行PLC编程、变频器参数设置和电动机接线及控制等操作。
这些知识对于工业自动化领域的从业人员来说非常重要,能够帮助他们更好地理解和应用相关技术。
实验三三相异步电动机的星/三角降压起动的控制
由于电机带载启动时,为了减少它的启动电流,所以采用了星/三角换接起动。
一、实验目的
1、掌握电机星/三角换接起动主回路的接线
2、学会用PLC实现电机星/三角换接起动过程的编程方法
二、实验要求
图2-1是三相异步电动机星—三角降压起动的典型继电器控制电路。
1、分析控制要求
起动时,按起动按钮SB1,接触器KM1、KM3相继吸合。
三相异步电动机定子绕组接成星形(降压)起动,同时延时继电器KT接通计时。
经10秒(起动时间整定值)后接触器KM3释放,
KM2吸合。
为了避免KM3尚未释放时KM2就吸合而造成短路,可在KM3释放后再经一级延时才使KM2吸合。
此时电动机定时绕组接成三角形,成正常运行。
停车时,按停止按钮SB2,接触器KM1、KM2释放,电动机停转。
电机热保护继电器为FR,当电动机过载时,1002触点断开,2000 —2003失电,电动机也停车。
2、确定PLC所需的各类继电器,对各元件编号(热保护继电器作为输入控制信号),如表2-1所示。
表2-1 输入/输出端口地址分配
3、画出PLC的外部输入输出电路如图2-2所示。
图中停止按钮SB2和热继电器FR采用常闭接法。
三、编制梯形图并写出语句表,实验梯形图如图2-3所示
参考语句表如表2-2所示。
表2-2 语句表
四、实验报告。
实验一、三相异步电机点动和自锁控制线路一、实验目的熟悉三相异步电动机启动停止和点动线路中各电器元件的工作原理、使用方法及其在线路中的作用。
二、实验要求1、实验前要检查控制屏左侧端面上的调压器旋钮须在零位,即将它向逆时针向旋转到底,各个电源输出端没有连接负载,开启控制屏上的“电源总开关”,按下“启动”按钮,向顺时针方向旋转控制屏左侧端面上的调压器旋纽,将三相交流电源输出端U、V、W的线电压调到220V,以后保持不变。
2、按下控制屏上的“停止”按钮以切断三相交流电源,按实验图2-1所示点动控制线路进行安装接线,接线时,先接主电路,它是从 220V三相交流电源的输出端U、V、W开始,经三刀开关Q1、熔断器FU,接触器KM1的主触头,热电器FR的热元件到电动机M的三个线端A、B、C的电路。
用导线按顺序串联起来,有三路。
主电路连接完整无误后,再连接控制电路,它是从容电器FU后的插孔V开始,经过常开按钮SB1、接线器KM1的线圈、热继电器FR的常闭触头到插孔W,显然它是对接触器KM1主触头吸合,电机机M因接通电源而被投入运转。
当送开SB1时,KM1线圈断电,KM1主触头断开,M停止运转。
实验线路经指导教师检查无误后,方可按下控制屏上的“启动”按钮,按下列步骤进行通电实验。
(1)合上DT43挂箱上的开关Q1。
接通三相交流220V电源。
(2)按下DT42挂箱上的启动按钮SB1,对电动机M进行点动操作,即比较按下SB1与松开SB1时电动机M的运转情况。
按下SB1,接触器线圈KM1得电,接触器常开触点闭合,电动机得电运转。
松开SB1由于抚慰弹簧的作用,使按钮复位,KM1线圈失电,电动机停转,从而实现电动控制。
3、按下控制屏上的“停止”按钮以切断三相交流电源。
按实验图2-2所示的自锁线路进行接线,它与图2-1的不同,只在于控制电路中多串联一只常闭按钮SB2 ,同时在SB1上并联有一只接触器KM1的常开触头,它起自锁作用,实验线路经指导老师检查无误后,方可按下控制屏上的“启动”按钮,按下列步骤进行通电实验。
基于Plc控制电机调速实验报告电控学院电气0904班李文涛07 —、实验名称:基于PLC实现的三相异步电动机变频调速控制二、实验目的:通过综合实验,使学生对所学过的可编程控制器在电动机变频调速控制中的应用有一个系统的认识,并运用自己学过的知识,自己设计变频调速控制系统。
要求用PLC控制变频器,通过光电编码器反馈速度信号达到电动机调速的精确控制,自己设计,自己编程,最后进行硬件、软件联机的综合调试,实现自己的设计思想。
三、实验器材:220V PLC实验台一套、380V变频器实验台一套、万用表一个、导线若干三、实验各部分原理:1.实验主要器件原理1)光电编码器:光电编码器,是一种通过光电转换将输出轴上的机械几何位移量转换成脉冲或数字量的传感器。
这是目前应用最多的传感器,光电编码器是由光栅盘和光电检测装置组成。
光栅盘是在一定直径的圆板上等分地开通若干个长方形孔。
由于光电码盘与电动机同轴,电动机旋转时,光栅盘与电动机同速旋转,经发光二极管等电子元件组成的检测装置检测输出若干脉冲信号;通过计算每秒光电编码器输出脉冲的个数就能反映当前电动机的转速。
2)变频器:I原理概述变频调速能够应用在大部分的电机拖动场合,由于它能提供精确的速度控制,因此可以方便地控制机械传动的上升、下降和变速运行。
变频应用可以大大地提高工艺的高效性(变速不依赖于机械部分),同时可以比原来的定速运行电机更加节能,变频器的主电路大体上可分为两类:电压型是将电压源的直流变换为交流的变频器,直流回路的滤波是电容;电流型是将电流源的直流变换为交流的变频器,其直流回路滤波石电感。
矢量控制:U/f控制方式建立于电机的静态数学模型,因此,动态性能指标不高。
对于对动态性能要求较高的应用,可以采用矢量控制方式。
矢量控制的基本思想是将异步电动机的定子电流分解为产生磁场的电流分量(励磁电流)和与其相垂直的产生转矩的电流分量(转矩电流),并分别加以控制。
由于在这种控制方式中必须同时控制异步电动机定子电流的幅值和相位,即控制定子电流矢量,这种控制方式被称为矢量控制(Vectory Control)。
三相异步电动机的正反转控制实验报告[学习]一、实验目的1. 掌握三相异步电动机正反转控制电路的设计方法;2. 熟悉三相异步电动机的正反转控制原理;3. 学会使用PLC控制三相异步电动机实现正反转控制。
二、实验设备1. PLC编程器;2. 三相异步电动机;3. 三相交流电源;4. 电流表和电压表。
三、实验原理三相异步电动机是一种常见的交流电动机,具有结构简单、可靠性高、功率大等优点,在工业控制领域得到广泛应用。
在实际应用中,常常需要对三相异步电动机进行正反转控制。
三相异步电动机的正反转与交流电源成相,不同的是正反转时交流电源的相序不同。
在正转时,交流电源的ABC三相线分别连接电动机的U、V、W三相线对应的绕组。
在反转时,交流电源的ABC三相线分别连接电动机的W、V、U三相线对应的绕组。
实现三相异步电动机的正反转控制可以通过PLC编程实现。
通常情况下,PLC输出端口不直接用于控制电机本身,而是用于控制交流接触器的继电器。
通过PLC输出信号控制继电器通断,实现电机的正反转控制。
四、实验步骤1. 按照电路图连接三相异步电动机正反转控制电路,其中CJX2交流接触器用于控制电机的正反转,ZJWN4-4P4C继电器用于控制交流接触器;2. 利用PLC编程器编写程序,根据控制要求确定PLC输出端口状态。
程序应包含以下功能模块:(1)控制交流接触器的正反转;3. 连接三相交流电源,打开电源开关,检查电路是否正常连接。
4. 测试正转功能:按下正转按钮,观察三相异步电动机是否能够正常启动,并旋转在预定方向上。
五、实验结果通过本次实验,成功地实现了三相异步电动机的正反转控制,并且能够正常控制电机正反转和停止。
实验结果表明,PLC控制三相异步电动机的正反转控制具有可靠性高、控制精度高等优点,适用于工矿企业中对电机正反转的复杂控制要求。
实验四三相异步电动机的星/三角换接启动控制在三相异步电动机的星/三角换接启动控制实验区完成本实验注意:(本实验只能在实验台上完成),由于电机正反转换接时,有可能因为电动机容量较大或操作不当等原因,使接触器主触头产生较为严重的起弧现象,如果电弧还未完全熄灭时,反转的接触器就闭合,则会造成电源相间短路。
用PLC来控制电机则可避免这一问题。
一、实验目的1、掌握电机星/三角换接启动主回路的接线。
2、学会用可编程控制器实现电机星/三角换接降压启动过程的编程方法。
二、实验要求合上启动按钮后,电机先作星形连接启动,经延时6秒后自动换接到三角形连接运转。
三、三相异步电动机的星/三角换接启动控制的实验面板图6-3-1上图下框下的SS、ST、FR分别接主机的输入点I0.0、I0.1、I0.2;将KM1、KM2、KM3分别接主机的输出点Q0.1、Q0.2、Q0.3;M端与主机的1L端相连;本实验区的+24V端与主机的L+相连,主机的1M与主机的M相连。
KM1、KM2、KM3的动作用发光二极管来模拟。
实验装置已将三个CJ0-10接触器的触点引出至面板。
学生可按图示的粗线,用专用实验连接导线连接。
380V电压已引至三相开关SQ的U、V、W端。
A、B、C、X、Y、Z与三相异步电动机(400W)的相应六个接线柱相连。
将三相闸刀开关拨向“开”位置,三相380V电即引至U、V、W三端。
注意:接通电源之前,将三相异步电动机的星/三角换接启动实验模块的开关置于“关”位置(开关往下扳)。
因为一旦接通三相电,只要开关置于“开”位置(开关往上扳),这一实验模块中的U、V、W端就已得电。
所以,请在连好的实验接线后,才将这一开关接通,请千万注意人身安全。
四、编制梯形图并写出程序实验参考程序梯形图如下图所示:五、动作过程分析启动:按启动按钮SS,I0.0的动合触点闭合,M10.0线圈得电,M10.0的动合触点闭合,Q0.1线圈得电,即接触器KM1的线圈得电,1秒后Q0.3线圈得电,即接触器KM3的线圈得电,电动机作星形连接启动;同时定时器线圈T37得电,当启动时间累计达6秒时,T37的动断触点断开,Q0.3失电,接触器KM3断电,触头释放,与此同时T37的动合触点闭合,T38得电,经0.5秒后,T38动合触点闭合,Q0.2线圈得电,电动机接成三角形,启动完毕。
PLC实验报告--三相异步电机实验一三相异步电动机正反转控制
一、实验目的1.熟悉常用低压电器元件的功能及使用方法
2.掌握自锁、互锁电路的作用
3.掌握三相异步电动机正反转控制电路的工作原理。
4.熟悉电气电路的接线及检查方法
5.培养学生分析和解决实际问题的能力
6.使学生养成科学研究和团队合作的习惯
二、实验基本原理
画出实验电路图
三、实验所需仪器设备
三相异步电动机1台、接触器2个、热继电器1个、按钮盒1个、380V电源、导线若干
四、实验步骤及内容
1.认识各电器元件的结构。
2.完成三相异步电动机正反转控制实验电路图接线,应先接主电路,再接控制电路。
(其中,SB1为停止按钮,SB2为正转起动按钮、SB3为反转起动按钮)接线后,经指导教师检查后,方可进行通电操作。
注意:
1.要在断电时进行拆接线
2.正反转切换时,要先按下停止按钮SB1,看到电动机输出轴速度降下来后再按另一方向的起动按钮。
五、实验原始数据记录
自己组织语言描述该电路图的工作原理
六、数据处理与分析
1.正反转切换时,确保一方向控制运行的接触器在触点断开后进行另一方向起动,为什么?
2.如何进行电路改进,可实现直接正反转控制(画出电路图),并进行控制电路分析。