概率与事件综合经典题(含详解答案)
- 格式:docx
- 大小:36.63 KB
- 文档页数:3
概率难题汇编及答案解析一、选择题1 .布袋中装有除颜色外没有其他区别的1个红球和2个白球,搅匀后从中摸出一个球,放回搅匀,再摸出第二个球,两次都摸出白球的概率是(4 A.-92C.—31D.-3【解析】【分析】首先根据题意画出树状图,然后由树状图求得所有等可能的结果, 的情况,再利用概率公式求解即可求得答案.【详解】可求得两次都摸到白球开蜡白E1红/K A\/T\S白红白白红白白红则共有9种等可能的结果,两次都摸到白球的有4种情况,4• ••两次都摸到白球的概率为-9故选A.【点睛】此题考查了列表法或树状图法求概率.用到的知识点为:概率=所求情况数与总情况数之比.2.在一个不透明的袋中,装有3个红球和1个白球,这些球除颜色外其余都相同.搅均后从中随机一次模出两个球,这两个球都是红球的概率是(1 A. 21B. 31D. 4【答案】A【解析】【分析】列举出所有情况,看两个球都是红球的情况数占总情况数的多少即可. 【详解】画树形图得:解:画树状图得:一共有12种情况,两个球都是红球的有 6种情况,故这两个球都是红球相同的概率是12=1 故选A . 【点睛】此题考查的是用列表法或树状图法求概率.列表法可以不重复不遗漏的列出所有可能的结 果,适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;解题时要注意此 题是放回实验还是不放回实验.用到的知识点为:概率=所求情况数与总情况数之比.3.岐山县各学校开展了第二课堂的活动 ,在某校国学诗词组、篮球足球组、陶艺茶艺组三个活动组织中,若小斌和小宇两名同学每人随机选择其中一个活动参加 ,则小斌和小宇选到同一活动的概率是(等可能的结果数,再找出小斌和小宇两名同学的结果数,然后根据概率公式计算即可. 【详解】所以小斌和小宇两名同学选到同一课程的概率 故选B. 【点睛】本题考查的是用列表法或画树状图法求概率.列表法或画树状图法可以不重复不遗漏的列 出所有可能的结果,列表法适合于两步完成的事件,树状图法适用于两步或两步以上完成 的事件.用到的知识点为:概率 =所求情况数与总情况数之比.4.下列事件是必然事件的是()A .某彩票中奖率是1%,买100张一定会中奖/1\A\ A\ A\白红红白红红白红红红红红 1B.-3 1C.-61A.-2【答案】B 【解析】 【分析】1D.-9A 、B 、C 表示)展示所有9种(国学诗词组、 B/1\ A B CC共有9种等可能的结果数,'篮球足球组、陶艺茶艺组分别用A. B. C 表示)C/1\ABC3,画树状图为:A/"TVS 直右•• •这两辆汽车行驶方向共有 种,2• ••一辆向右转,一辆向左转的概率为-9故选:B .B .长度分别是3cm,5cm,6cm 的三根木条能组成一个三角形 C. 打开电视机,正在播放动画片 D. 2018年世界杯德国队一定能夺得冠军【答案】B 【解析】 【分析】必然事件就是一定发生的事件,即发生的概率是 【详解】1的事件.A 、 某彩票中奖率是1%,买100张一定会中奖,属于随机事件,不符合题意;B 、 由于6-5< 3< 5+6,所以长度分别是 3cm , 5cm , 6cm 的三根木条能组成一个三角形, 属于必然事件,符合题意;C 打开电视机,正在播放动画片,属于随机事件,不符合题意;D 、2018年世界杯德国队可能夺得冠军,属于随机事件,不符合题意. 故选:B .【点睛】此题考查必然事件、不可能事件、随机事件的概念,理解概念是解题关键.5.经过某十字路口的汽车,可能直行,也可能向左转或向右转,如果这三种可能性大小相 同,则两辆汽车经过这个十字路口时,一辆向右转,一辆向左转的概率是2A -■ 3【答案】B 【分析】可以采用列表法或树状图求解•可以得到一共有 种结果数,根据概率公式计算可得. 【详解】画树形图”如图所示:9种情况,一辆向右转, 一辆向左转有2左宣右I9种可能的结果, 其中一辆向右转,一辆向左转的情况有【点睛】此题考查了树状图法求概率•解题的关键是根据题意画出树状图,再由概率=所求情况数 与总情况数之比求解6.在一个不透明的布袋中,红色、黑色、白色的小球共有 同•乐乐通过多次摸球试验后发现, 则口袋中白色球的个数很可能是(白色球的个数是50? (1 27%- 43%)= 15个, 故选:B. 【点睛】此题考查概率的计算公式,频率与概率的关系,正确理解频率即为概率是解题的关键7.学校新开设了航模、彩绘、泥塑三个社团,如果征征、舟舟两名同学每人随机选择参加 其中一个社团,那么征征和舟舟选到同一社团的概率是(3 9考点:简单事件的概率.&如图,在菱形 ABCD 中,AC 与BD 相交于点0•将菱形沿EF 折叠,使点C 与点0重 合.若在菱形ABCD 内任取一点,则此点取自阴影部分的概率为()50个,除颜色外其他完全相摸到红色球、黑色球的频率分别稳定在27%和 43%,A . 20【答案】B 【解析】 【分析】由频率得到红色球和黑色球的概率, 【详解】B . 15 C. 10 D . 5用总数乘以白色球的概率即可得到个数2 A .3【答案】C 【解析】 1 B .21C.-3 1D.-4【分析】 【详解】用数组(X , Y )中的X 表示征征选择的社团, 丫表示舟舟选择的社团. A , B , C 分别表示航模、彩绘、泥塑三个社团, 于是可得到(A ,A ),( A ,A ),( C ,B ),(A ,A ),( B , (C , C ),B ),(c, B ) ,( A ,C ),( B, A ),( B ,B ),( B ,C ),( C , 共9中不同的选择结果,而征征和舟舟选到同一社团的只有C )三种, 所以,所求概率为1,故选C.9•••此点取自阴影部分的概率为-AC BD 2故选C.. 【点睛】本题考查了几何概率的计算方法:用整个几何图形的面积 某个事件所占有的面积 m 表示这个事件发生的结果数, 件的概率为:Pmn9.在一个不透明的袋子里装有两个黄球和一个白球,它们除颜色外都相同,随机从中摸出 一个球,记下颜色后放回袋子中,充分摇匀后,再随机摸出一个球•两次都摸到黄球的概 率是( )c.5D.-8【解析】 【分析】根据菱形的表示出菱形 ABCD 的面积,由折叠可知 形CEOF 的面积,然后根据概率公式计算即可 .【详解】EF 是△BCD 的中位线,从而可表示出菱1 菱形ABCD 的面积=—AC BD ,2•••将菱形沿EF 折叠,使点C 与点0重合,••• EF 是△BCD 的中位线,••• EF=1BD,11•••菱形 CEOF 的面积=—0C EF -AC BD ,2 - •••阴影部分的面积=1AC 2 BD 1AC BD8|ACBD3-AC BD .8 n 表示所有等可能的结果数,用然后利用概率的概念计算出这个事4A.-1B.-32 C.-91D.-9B.-5A.-3【答【答案】A 【解析】【分析】 首先根据题意画出树状图,由树状图求得所有等可能的结果与两次都摸到黄球的情况,然 后利用概率公式求解即可求得答案•注意此题属于放回实验. 【详解】 画树状图如下:共有 9种等可能结果,其中两次都摸到黄球的有 4种结果,•••两次都摸到黄球的概率为49故选A . 【点睛】此题考查的是用列表法或树状图法求概率的知识•注意画树状图与列表法可以不重复不遗 漏的列出所有可能的结果,列表法适合于两步完成的事件;树状图法适合两步或两步以上 完成的事件;解题时要注意此题是放回实验还是不放回实验.10.动物学家通过大量的调查估计:某种动物活到 20岁的概率为0.8,活到25岁的概率为0.5,活到30岁的概率为0.3,现在有一只20岁的动物,它活到30岁的概率是( )【解析】 【分析】先设出所有动物的只数,根据动物活到各年龄阶段的概率求出相应的只数,再根据概率公 式解答即可. 【详解】 解:设共有这种动物 x 只,则活到20岁的只数为0.8X ,活到30岁的只数为0.3X , 故现年20岁到这种动物活到30岁的概率为 故选:B .【点睛】本题考查概率的简单应用,用到的知识点为:概率3A.-5【答案】BB .35C.-83D.—10=所求情况数与总情况数之比. 由树状图可知,11.下列事件中,属于不可能事件的是( )A. 某个数的绝对值大于 0B.某个数的相反数等于它本身C.任意一个五边形的外角和等于540 ° D.长分别为3, 4, 6的三条线段能围成一个三角形【答案】C 【解析】 【分析】直接利用随机事件以及确定事件的定义分析得出答案. 【详解】故答案选C. 【点睛】本题考查的知识点是随机事件以及确定事件,解题的关键是熟练的掌握随机事件以及确定 事件.12. 有大小、形状、颜色完全相同的四个乒兵球,球上分别标有数字 个球放入不透明的袋中搅匀, 为奇数的概率是(【分析】根据题意先画出树状图,得出所有等可能的情况数和两个球上的数字之积为奇数的情况 数,然后根据概率公式即可得出答案. 【详解】根据题意画树状图如下:•••一共有12种等可能的情况数,这两个球上的数字之积为奇数的有2 1•••这两个球上的数字之积为奇数的概率是—=1 12 6故选A . 【点睛】此题考查的是树状图法求概率;树状图法适合两步或两步以上完成的事件;解题时要注意A 、B 、C 、D 、 某个数的绝对值大于 0,是随机事件,故此选项错误; 某个数的相反数等于它本身,是随机事件,故此选项错误; 任意一个五边形的外角和等于 540 °是不可能事件,故此选项正确; 长分别为3,4, 6的三条线段能围成一个三角形,是必然事件,故此选项错误. 2,3,5,6,将这四 不放回地从中随机连续抽取两个,则这两个球上的数字之积1A.-6【答案】A B .2 C.—31 D.—4木木3 563562362种情况,此题是不放回实验.用到的知识点为:概率=所求情况数与总情况数之比.181 11113. 由两个可以自由转动的转盘、每个转盘被分成如图所示的几个扇形、游戏者同时转动 两个转盘,如果一个转盘转出了红色,另一转盘转出了蓝色,游戏者就配成了紫色下列说A. 两个转盘转出蓝色的概率一样大B. 如果A 转盘转出了蓝色,那么 B 转盘转出蓝色的可能性变小了C. 先转动A 转盘再转动B 转盘和同时转动两个转盘,游戏者配成紫色的概率不同 1 6【答案】D 【解析】由于共有6种等可能结果,而出现红色和蓝色的只有 1种,所以游戏者配成紫色的概率为16故选D .14•小英同时掷甲、乙两枚质地均匀的小立方体(立方体的每个面上分别标有数字 1, 2, 3, 4, 5, 6).记甲立方体朝上一面上的数字为X 、乙立方体朝上一面朝上的数字为y ,这6y=-上的概率为()XD .游戏者配成紫色的概率为A 、 A 盘转出蓝色的概率为 如果A 转盘转出了蓝色,由于A 、B 两个转盘是相互独立的,先转动 游戏者配成紫色的概率相同,此选项错误; D 、画树状图如下:B 、C 、 1 1 —、B 盘转出蓝色的概率为 -,此选项错误;23那么 B 转盘转出蓝色的可能性不变,此选项错误;X 、 样就确定点P 的一个坐标(X , y ),那么点P 落在双曲线【答案】C 【解析】 画树状图如下:6•••一共有36种等可能结果,点 P 落在双曲线y=—上的有(1, 6),( 2, 3),( 3,x2),( 6, 1),•••点P 落在双曲线y=—上的概率为: —=-•故选C.x 36 915.下列说法:① “明天降雨的概率是 50%”表示明天有半天都在降雨; ② 无理数是开方开不尽的数;其中正确的个数有(A . 1个【答案】A 【解析】 【分析】① 根据概率的定义即可判断;② 根据无理数的概念即可判断;③ 根据不可能事件的概念即可判断;④根据平方根的表示方法即可判断. 【详解】① “明天降雨的概率是 50%”表示明天有50%的可能会降雨,而不是半天都在降雨,故错 误;③若a 为实数,则 a 0是不可能事件; ④16的平方根是4,用式子表示是用B . 2个D . 4个②无理数是无限不循环小数,不只包含开方开不尽的数,故错误;【分析】直接利用概率公式进行求解,即可得到答案. 【详解】解:•••共准备了 100张抽奖券,设一等奖••• 1张抽奖券中奖的概率是:10 20 30= 0.6,100故选:D . 【点睛】本题考查了概率公式:随机事件 A 的概率P (A )=事件A 可能出现的结果数除以所有可能 出现的结果数.17.向一个半径为2的圆中投掷石子(假设石子全部投入圆形区域内),那么石子落在此 圆的内接正方形中的概率是().A. d2【答案】D 【解析】 【分析】先得出圆内接正方形的边长,再用正方形的面积除以圆的面积即可得. 【详解】•••半径为2的圆内接正方形边长为 2^2,•••圆的面积为4n 正方形的面积为 8, 故选D .④16的平方根是 综上,正确的只有 故选:A . 【点睛】本题主要考查概率, 4,用式子表示是 护64,故错误;③,无理数的概念,绝对值的非负性,平方根的形式,掌握概率,无理数 的概念,绝对值的非负性,平方根的形式是解题的关键.16.某单位进行内部抽奖,共准备了100张抽奖券,设一等奖10个,二等奖20个,三等奖30个.若每张抽奖券获奖的可能性相同,则 1张抽奖券中奖的概率是()A . 0.1【答案】D【解析】B . 0.2 C. 0.3 D . 0.610个,二等奖20个,三等奖 30个.B. 2则石子落在此圆的内接正方形中的概率是旦_24【点睛】本题考查了几何概率的求法:求某事件发生在某个局部图形的概率等于这个局部的面积与整个图形的面积的比.18.如图,在AABC中,AB= AC, / BAC= 90°直角/ EPF的顶点P是BC的中点,两边PE PF分别交AB, AC于点E, F,现给出以下四个结论:(1 )AE= CF; (2)AEPF是等1腰直角三角形;(3)S四边形AEPF=—S ABC;(4)当/ EPF在AABC内绕顶点P旋转时始终有2EM AP.(点E不与A、B重合),上述结论中是正确的结论的概率是(【答案】D【解析】△AEP^A CFP然后能推理得到选项A, B, C都是正确的,当EF= APAP2 2PF2,由AP的长为定值,而PF的长为变化值可知选项正确•从而求出正确的结论的概率.【详解】解:••• AB= AC, / BAC= 90°1•- EAP - BAC 45 ,2(1 )在△AEP 与ACFP 中,•••/ EAP=/ C= 45°, AP= CP•••△ AEP^A CFPAP 丄BC CP .2/ APE=/ CPF= 90° -/ APF,••• AE= CF. ( 1)正确;(2)由(1)知,△AEP^A CFP, ••• PE= PF,又•••/ EPF= 90°•••△ EPF是等腰直角三角形.(2)正确;(3)•••△ AEP^^ CFP 同理可证△APF^△ BPE1…S四边形AEPF ^/AEP S vAPF Sg PF S B PE? S VABC •A. 1个B. 3个1C.-43D.—4【分析】根据题意,容易证明始终相等时,可推出点P是BC的中点,(3)正确;(4)当EF = AP 始终相等时,由勾股定理可得:EF22PF 2则有:AP22PF 2,••• AP 的长为定值,而 PF 的长为变化值, ••• AP 2与2PF 2不可能始终相等,即EF 与AP 不可能始终相等,(4)错误, 综上所述,正确的个数有 3个,3故正确的结论的概率是 一4故选:D . 【点睛】用到的知识点为:概率 =所求情况数与总情况数之比;解决本题的关键是利用证明三角形全 等的方法来得到正确结论.【答案】D 【解析】试题分析:分别根据必然事件的定义,方差的性质,众数的定义及抽样调查的定义进行判断,、打开电视,正在播放《新闻联播》 ”是随机事件,故本选项错误; B 、一组数据的波 动越大,方差越大,故本选项错误; C 数据1 , 1, 2, 2, 3的众数是1和2,故本选项错 误;D 、想了解某种饮料中含色素的情况,宜采用抽样调查,故本选项正确. 故选D .考点:全面调查与抽样调查;众数;方差;随机事件.).打开电视,正在播放《新闻联播》 ”是必然事件一组数据的波动越大,方差越小数据1, 1, 2, 2, 3的众数是3想了解某种饮料中含色素的情况,宜采用抽样调查19.下列说法中正确的是(A .B . D .20.从一副(54张)扑克牌中任意抽取一张,正好为 2 A . 一 27 【答案】A 【解析】 【分析】用K 的扑克张数除以一副扑克的总张数即可求得概率.1 B.-4C.K 的概率为()1541D.-2【详解】解:•一副扑克共54张,有4张K, •••正好为K的概率为—=-2.54 27故选:A.【点睛】此题考查概率的求法:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件mA出现m种结果,那么事件A的概率P (A)=—n。
高中数学:概率总复习(例题、巩固练习、例题和巩固练习详解)【典型例题】要点一:随机事件与概率例1.某射手在相同条件下进行射击,结果如下:(1)问该射手射击一次,击中靶心的概率约是多少? (2)假设该射手射击了300次,估计击中靶心的次数是多少?举一反三:【变式1】若在同等条件下进行n 次重复试验得到某个事件A 发生的频率()n f ,则随着n 的逐渐增大,有( )A .()n f 与某个常数相等B .()n f 与某个常数的差逐渐减小C .()n f 与某个常数的差的绝对值逐渐减小D .()n f 与某个常数的附近摆动并趋于稳定要点二:互斥事件与对立事件例2.经统计,在某储蓄所一个营业窗口等候的人数及相应概率如下:(1)至多2人排队等候的概率是多少? (2)至少3人排队等候的概率是多少?举一反三:【变式1】某地区的年降水量在下列范围内的概率如下表所示:.要点三:古典概型例3.5张奖券中有2张是中奖的,首先由甲抽一张,然后由乙抽一张,求:(1)甲中奖的概率P(A);(2)甲、乙都中奖的概率P(B);(3)只有乙中奖的概率P(C);(4)乙中奖的概率P(D).举一反三:【变式1】在甲、乙两个盒子中分别装有标号为1、2、3、4的四个球,现从甲、乙两个盒子中各取出1个球,每个小球被取出的可能性相等.(Ⅰ)求取出的两个球上标号为相邻整数的概率;(Ⅱ)求取出的两个球上标号之和能被3整除的概率.【变式2】从含有两件正品a1,a2和一件次品b1的三件产品中,每次任取一件,每次取出后不放回,连续取两次,求取出的两件产品中恰有一件次品的概率.要点四:几何概型例4、从甲地到乙地有一班车在9:30到10:00到达,若某人从甲地坐该班车到乙地转乘9:45到10:15出发的汽车到丙地去,问他能赶上车的概率是多少?举一反三:【变式1】在0~1之间随机选择两个数,这两个数对应的点把长度为1的线段分成了三条线段,试求这三条线段能构成三角形的概率.【变式2】已知关于x 的二次函数2()41f x ax bx =-+.(1)设集合P ={-1,1,2,3,4,5}和Q ={-2,-1,1,2,3,4},分别从集合P 和Q 中随机取一个数作为a 和b ,求函数()y f x =在区间[1,+∞)上是增函数的概率:(2)设点(a ,b)是区域8000x y x y +-≤⎧⎪>⎨⎪>⎩内的随机点,求函数()f x 在区间[1,+∞)上是增函数的概率.【巩固练习】1.一个射手进行射击,记事件E 1:“脱靶”,E 2:“中靶”,E 3:“中靶环数大于4”,E 4:“中靶环数不小于5”,则在上述事件中,互斥而不对立的事件共有( ) A .1对 B .2对 C .3对 D .4对2.某校学生毕业后有回家待业,上大学和补习的三种方式,现取一个样本调查结果如图所示,若该校每一个学生上大学的概率为45,则每个学生补习的概率为( )A .110 B .225 C .325D .153.从一批羽毛球产品中任取一个,其质量小于4.8 g 的概率为0.3,质量小于4.85g 的概率为0.32,那么质量在[4.8,4.85)(g)范围内的概率是( ) A .0.62 B .0.38 C .0.02 D .0.684.先后抛掷骰子三次,则至少一次正面朝上的概率是( ) A .81 B . 83 C . 85 D . 87 5.有五条线段长度分别为1,3,5,7,9,从这5条线段中任取3条,则所取3条线段能构成一个三角形的概率为( )。
随机事件的概率检测题与详解答案A 级——保大分专练1.在投掷一枚硬币的试验中,共投掷了100次,“正面朝上”的频数为51,则“正面朝上”的频率为( )A .49B .0.5C .0.51D .0.49解析:选C 由题意,根据事件发生的频率的定义可知,“正面朝上”的频率为51100=0.51. 2.(2019·泉州模拟)从含有质地均匀且大小相同的2个红球、n 个白球的口袋中随机取出一球,若取得红球的概率是25,则取得白球的概率等于( )A .15B .25C .35D .45解析:选C ∵取得红球与取得白球为对立事件, ∴取得白球的概率P =1-25=35.3.甲:A 1,A 2是互斥事件;乙:A 1,A 2是对立事件,那么( ) A .甲是乙的充分不必要条件 B .甲是乙的必要不充分条件 C .甲是乙的充要条件D .甲既不是乙的充分条件,也不是乙的必要条件解析:选B 两个事件是对立事件,则它们一定互斥,反之不一定成立.4.从一箱产品中随机地抽取一件,设事件A ={抽到一等品},事件B ={抽到二等品},事件C ={抽到三等品},且已知P (A )=0.65,P (B )=0.2,P (C )=0.1,则事件“抽到的不是一等品”的概率为( )A .0.7B .0.65C .0.35D .0.3解析:选C 事件“抽到的产品不是一等品”与事件A 是对立事件.因为P (A )=0.65,所以由对立事件的概率公式得“抽到的产品不是一等品”的概率P =1-P (A )=1-0.65=0.35.故选C.5.若A ,B 互为对立事件,其概率分别为P (A )=4x ,P (B )=1y,且x >0,y >0,则x +y 的最小值为( )A .7B .8C .9D .10解析:选C 由题意知4x +1y=1,则x +y =(x +y )·⎝ ⎛⎭⎪⎫4x +1y =5+⎝ ⎛⎭⎪⎫4y x +x y ≥9,当且仅当4y x =x y,即x =2y 时等号成立.故选C.6.掷一个骰子的试验,事件A 表示“出现小于5的偶数点”,事件B 表示“出现小于5的点数”.若B 表示B 的对立事件,则在一次试验中,事件A +B 发生的概率为( )A .13 B .12 C .23D .56解析:选C 掷一个骰子的试验有6种可能结果.依题意,得P (A )=26=13,P (B )=46=23,∴P (B )=1-P (B )=1-23=13.因为B 表示事件“出现5点或6点”,因此事件A 与B 互斥,从而P (A +B )=P (A )+P (B )=13+13=23.7.某网店根据以往某品牌衣服的销售记录,绘制了日销售量的频率分布直方图,如图所示,由此估计日销售量不低于50件的概率为________.解析:用频率估计概率知日销售量不低于50件的概率为1-(0.015+0.03)×10=0.55. 答案:0.558.容量为20的样本数据,分组后的频数如下表:解析:数据落在区间[10,40)的频率为2+3+420=920=0.45.答案:0.459.“键盘侠”一词描述了部分网民在现实生活中胆小怕事、自私自利,却习惯在网络上大放厥词的一种现象.某地新闻栏目对该地区群众对“键盘侠”的认可程度进行调查:在随机抽取的50人中,有14人持认可态度,其余持反对态度,若该地区有9 600人,则可估计该地区对“键盘侠”持反对态度的有________人.解析:在随机抽取的50人中,持反对态度的频率为1-1450=1825,则可估计该地区对“键盘侠”持反对态度的有9 600×1825=6 912(人).答案:6 91210.一只袋子中装有大小相同的7个红玻璃球和3个绿玻璃球,从中无放回地任意抽取两次,每次只取一个,取得两个红球的概率为715,取得两个绿球的概率为115,则取得两个同颜色的球的概率为________;至少取得一个红球的概率为________.解析:由于“取得两个红球”与“取得两个绿球”是互斥事件,取得两个同色球,只需两互斥事件有一个发生即可,因而取得两个同色球的概率为P =715+115=815.由于事件A “至少取得一个红球”与事件B “取得两个绿球”是对立事件,则至少取得一个红球的概率为P (A )=1-P (B )=1-115=1415.答案:815 141511.某人去开会,他乘火车、轮船、汽车、飞机去的概率分别为0.3,0.2,0.1,0.4. (1)求他乘火车或乘飞机去的概率; (2)求他不乘飞机去的概率;(3)若他乘上面的交通工具去的概率为0.5,请问他有可能是乘何种交通工具去的? 解:设“乘火车”“乘轮船”“乘汽车”“乘飞机”分别表示事件A ,B ,C ,D ,则 (1)P (A ∪D )=P (A )+P (D )=0.3+0.4=0.7.(2)设“不乘飞机”为事件E ,则P (E )=1-P (D )=1-0.4=0.6.(3)因为P (A ∪B )=P (A )+P (B )=0.5,P (C ∪D )=P (C )+P (D )=0.5,故他有可能是乘火车或轮船去,也有可能是乘汽车或飞机去.12.(2018·北京高考)电影公司随机收集了电影的有关数据,经分类整理得到下表:(1)从电影公司收集的电影中随机选取1部,求这部电影是获得好评的第四类电影的概率. (2)随机选取1部电影,估计这部电影没有获得好评的概率.(3)电影公司为增加投资回报,拟改变投资策略,这将导致不同类型电影的好评率发生变化.假设表格中只有两类电影的好评率数据发生变化,那么哪类电影的好评率增加0.1,哪类电影的好评率减少0.1,使得获得好评的电影总部数与样本中的电影总部数的比值达到最大?(只需写出结论)解:(1)由题意知,样本中电影的总部数是140+50+300+200+800+510=2 000, 获得好评的第四类电影的部数是200×0.25=50, 故所求概率为502 000=0.025.(2)由题意知,样本中获得好评的电影部数是140×0.4+50×0.2+300×0.15+200×0.25+800×0.2+510×0.1 =56+10+45+50+160+51 =372,故所求概率估计为1-3722 000=0.814.(3)增加第五类电影的好评率,减少第二类电影的好评率.B 级——创高分自选1.若随机事件A ,B 互斥,A ,B 发生的概率均不等于0,且P (A )=2-a ,P (B )=4a -5,则实数a 的取值范围是( )A.⎝ ⎛⎭⎪⎫54,2B.⎝ ⎛⎭⎪⎫54,32C.⎣⎢⎡⎦⎥⎤54,32 D.⎝ ⎛⎦⎥⎤54,43 解析:选D 由题意可得⎩⎪⎨⎪⎧0<P A <1,0<P B <1,P A P B 1,即⎩⎪⎨⎪⎧0<2-a <1,0<4a -5<1,3a -3≤1,解得54<a ≤43.2.现有10个数,它们能构成一个以1为首项,-3为公比的等比数列,若从这10个数中随机抽取一个数,则它小于8的概率是________.解析:由题意得a n =(-3)n -1,易知前10项中奇数项为正,偶数项为负,所以小于8的项为第一项和偶数项,共6项,即6个数,所以所求概率P =610=35.答案:353.某河流上的一座水力发电站,每年六月份的发电量Y (单位:万千瓦时)与该河上游在六月份的降雨量X (单位:毫米)有关.据统计,当X =70时,Y =460;X 每增加10,Y 增加5.已知近20年X 的值为140,110,160,70,200,160,140, 160,220,200,110,160,160, 200,140,110, 160,220,140,160.(1)完成如下的频率分布表:近20年六月份降雨量频率分布表(2)求今年六月份该水力发电站的发电量低于490(万千瓦时)或超过530(万千瓦时)的概率.解:(1)在所给数据中,降雨量为110毫米的有3个,为160毫米的有7个,为200毫米的有3个.故近20年六月份降雨量频率分布表为:(2)根据题意,Y=460+10×5=2+425,故P(“发电量低于490万千瓦时或超过530万千瓦时”) =P(Y<490或Y>530)=P(X<130或X>210)=P(X=70)+P(X=110)+P(X=220)=120+320+220=310.故今年六月份该水力发电站的发电量低于490(万千瓦时)或超过530(万千瓦时)的概率为310.。
专题30 条件概率与全概率公式一、单选题1.(2020·河南南阳高二二模(理))根据历年气象统计资料,某地四月份吹东风的概率为,下雨的概率为,既吹东风又下雨的概率为.则在下雨条件下吹东风的概率为( )A .B .C .D .【答案】C 【解析】分析:在下雨条件下吹东风的概率=既吹东风又下雨的概率 下雨的概率详解:在下雨条件下吹东风的概率为,选C2.(2020·安徽省六安中学高二期中(理))根据以往数据统计,某酒店一商务房间1天有客人入住的概率为,连续2天有客人入住的概率为,在该房间第一天有客人入住的条件下,第二天也有客人入住的概率为( )A .B .C .D .【答案】D 【解析】设第二天也有客人入住的概率为P ,根据题意有,解得,故选D.3.(2020·河南开封高三二模(理))已知正方形,其内切圆与各边分别切于点,,、,连接,,,.现向正方形内随机抛掷一枚豆子,记事件:豆子落在圆内,事件:豆子落在四边形外,则( )A .B .C .D .【答案】B 【解析】93011308302589811911¸8830=11113045351312353443=55P ×34P =ABCD I E F G H EF FG GH HE ABCD A I B EFGH ()P B A =2π21π-12π142-由题意,设正方形的边长为,则圆的半径为,面积为;正方形,面积为;所求的概率为.故选:B .4.(2020·河南高二期末(理))把一枚硬币连续抛两次,记“第一次出现正面”为事件,“第二次出现正面”为事件,则=( )A .B .C .D .【答案】A 【解析】“第一次出现正面”:,“两次出现正面”: ,则故选A5.(2020·陕西临渭高二期末(文))已知,,等于( )A .B .C .D .【答案】C 【解析】根据条件概率的定义和计算公式:把公式进行变形,就得到,故选C.ABCD 2a I r a =2a p EFGH 22a \22222(|)1a a P B A a p p p-==-A B ()P B A 121416182(1)P A =111()=224P AB =´()1()14|==1()22P AB P B A P A =()1P B|A 2=()35P A =()P AB 56910310110()()0(|),()P AB P A P B A P A >=当时,()0()(|)()P A P AB P B A P A >=当时,6.(2020·黑龙江南岗哈师大附中高二期末(理))从1,2,3,4,5,6,7,8,9中不放回地依次取2个数,事件A 为“第一次取到的是奇数”,B 为“第二次取到的是3的整数倍”,则( )A .B .C .D .【答案】B 【解析】由题意事件为“第一次取到的是奇数且第二次取到的是3的整数倍”:若第一次取到的为3或9,第二次有2种情况;若第一次取到的为1,5,7,第二次有3种情况,故共有个事件由条件概率的定义:故选:B7.(2020·西夏宁夏大学附属中学高二月考(理))将两颗骰子各掷一次,设事件“两个点数不相同”, “至少出现一个6点”,则概率等于( )A .B .C .D .【答案】A 【解析】由题意事件A={两个点数都不相同},包含的基本事件数是36-6=30至少出现一个6点的情况分二类,给两个骰子编号,1号与2号,若1号是出现6点,2号没有6点共五种2号是6点,一号不是6点有五种,若1号是出现6点,2号也是6点,有1种,故至少出现一个6点的情况是11种∴=8.(2020·广东东莞高二期末)一个袋中装有大小相同的3个白球和3个黑球,若不放回地依次取两个球,设事件为“第一次取出白球”,事件为“第二次取出黑球”,则概率( )A .B .C .D .【答案】B 【解析】(|)P B A =3813401345345()9P A =A B I 223313´+´=1313()9872P A B ==´I ()13(|)()40P A B P B A P A ==I A =B =()|P A B 10115115185361011A B ()P B A =56351225设事件为“第一次取出白球”,事件为“第二次取出黑球”,,第一次取出白球的前提下,第二次取出黑球的概率为:.故选:B.二、多选题9.(2020·大名中学高二月考)甲乙两个质地均匀且完全一样的四面体,每个面都是正三角形,甲四个面上分别标有数字1,2,3,4,乙四个面上分别标有数字5,6,7,8,同时抛掷这两个四面体一次,记事件为“两个四面体朝下一面的数字之和为奇数”,事件为“甲四面体朝下一面的数字为奇数”,事件为“乙四面体朝下一面的数字为偶数”,则下列结论正确的是( )A .B .C .D .【答案】ABD 【解析】由已知,,由已知有,,,所以,则A 正确;,则B 正确;事件、、不相互独立,故错误,即C 错误,则D 正确;综上可知正确的为ABD.故选:ABD .10.(2020·江苏海安高级中学高二期中)甲箱中有5个红球,2个白球和3个黑球,乙箱中有4个红球,3个白球和3个黑球.先从甲箱中随机取出一球放入乙箱中,分别以,,表示由甲箱中取出的是红球,白A B ()()31333==,==626510P A P A B ´()()3()5P AB P B A P A ==A B C ()()()P A P B P C ==()()()P BC P AC P AB ==1()8P ABC =1()()()8P A P B P C ××=22221()44442P A =´+´=21()()42P B P C ===1()()()4P AB P A P B ==1()4P AC =1()4P BC =()()()P A P B P C ==()()()P BC P AC P AB ==A B C 1()8P ABC =1()()()8P A P B P C ××=1A 2A 3A球和黑球的事件;再从乙箱中随机取出一球,以表示由乙箱中取出的球是红球的事件,则下列结论正确的是( )A .B .C .事件与事件相互独立D .、、两两互斥【答案】BD 【解析】因为每次取一球,所以,,是两两互斥的事件,故D 正确;因为,所以,故B 正确;同理,所以,故AC 错误;故选:BD11.(2020·江苏海安高级中学高一期中)以下对各事件发生的概率判断正确的是( )A .连续抛两枚质地均匀的硬币,有3个基本事件,出现一正一反的概率为B .每个大于2的偶数都可以表示为两个素数的和,例如12=5+7,在不超过15的素数中随机选取两个不同的数,其和等于14的概率为C .将一个质地均匀的骰子先后抛掷2次,记下两次向上的点数,则点数之和为6的概率是D .从三件正品、一件次品中随机取出两件,则取出的产品全是正品的概率是【答案】BCD 【解析】A.连续抛两枚质地均匀的硬币,有4个基本事件,包含两正,两反,先反再正,先正再反,出现一正一反的概率,故A 不正确;B 2()5P B =15()11P B A =B 1A 1A 2A 3A 1A 2A 3A ()()()123523,,101010p A p A p A ===11155()51011()5()1110P BA P B A P A ´===3223232434()()4410111011(),()23()11()111010P BA P BA P B A P B A P A P A ´´======1235524349()()()()10111011101122P B P BA P BA P BA =++=´+´+´=13115536122142P ==B.不超过15的素数包含2,3,5,7,11,13,共6个数字,随机选取两个不同的数字,和等于14的包含,则概率为,故B 正确;C.将一个质地均匀的骰子先后抛掷2次,共36种情况,点数之和为6包含,共5种,所以点数之和为6的概率,故C 正确;D.由题意可知取出的产品全是正品的概率,故D 正确.12.(2020·山东昌乐二中高二月考)一袋中有大小相同的4个红球和2个白球,给出下列结论:①从中任取3球,恰有一个白球的概率是;②从中有放回的取球6次,每次任取一球,恰好有两次白球的概率为;③现从中不放回的取球2次,每次任取1球,则在第一次取到红球后,第二次再次取到红球的概率为;④从中有放回的取球3次,每次任取一球,则至少有一次取到红球的概率为.则其中正确命题的序号是( )A .①B .②C .③D .④【答案】ABD 【解析】一袋中有大小相同的4个红球和2个白球,①从中任取3球,恰有一个白球的概率是故正确;②从中有放回的取球6次,每次任取一球,每次抽到白球的概率为,则恰好有两次白球的概率为,故正确;③现从中不放回的取球2次,每次任取1球,则在第一次取到红球后,第二次再次取到红球的概率为,故错误;④从中有放回的取球3次,每次任取一球,每次抽到红球的概率为:则至少有一次取到红球的概率为,故正确.()3,11261115P C ==()()()()()1,5,2,4,3,3,4,2,5,1536P =232412C P C ==358024325262721423635C C p C ==2163p ==4226218033243p C æöæö==ç÷ç÷èøèø1143114535C C C C =4263p ==3031261327p C æö=-=ç÷èø故选:ABD.三、填空题13.(2020·全国高三课时练习(理))一个口袋中装有6个小球,其中红球4个,白球2个.如果不放回地依次摸出2个小球,则在第1次摸出红球的条件下,第2次摸出红球的概率为________.【答案】【解析】故答案为:14.(2020·邢台市第二中学高二期末)某校组织甲、乙、丙、丁、戊、己等6名学生参加演讲比赛,采用抽签法决定演讲顺序,在“学生甲和乙都不是第一个出场,且甲不是最后一个出场”的前提下,学生丙第一个出场的概率为__________.【答案】【解析】设事件A :“学生甲和乙都不是第一个出场,且甲不是最后一个出场”;事件B :“学生丙第一个出场”,对事件A ,甲和乙都不是第一个出场,第一类:乙在最后,则优先从中间4个位置中选一个给甲,再将余下的4个人全排列有种;第二类:乙没有在最后,则优先从中间4个位置中选两个给甲乙,再将余下的4个人全排列有种,故总的有.对事件AB ,此时丙第一个出场,优先从除了甲以外的4人中选一人安排在最后,再将余下的4人全排列有种故.故答案为:15.(2020·湖南天心长郡中学高三其他(理))甲罐中有5个红球,2个白球和3个黑球,乙罐中有4个红球,3个白球和3个黑球.先从甲罐中随机取出一球放入乙罐,分别以,和表示由甲罐取出的球是红球,白球和黑球的事件;再从乙罐中随机取出一球,以B 表示由乙罐取出的球是红球的事件,则下列结论35()()235(|)253P AB P B A P A ===35141444C A ×2444A A ×()14244444n A C A A A =×+×1444C A ×()()()14441424444414n AB C A P B A n A C A A A ×===×+×141A 2A 3A中正确的是___________.①;②;③事件B 与事件相互独立;④,,是两两互斥的事件【答案】②④【解析】因为每次取一球,所以,,是两两互斥的事件,故④正确;因为,所以,故②正确;同理,所以,故①③错误.故答案为:②④16.(2018·全国高二课时练习)某气象台统计,该地区下雨的概率为,刮四级以上风的概率为,既刮四级以上的风又下雨的概率为,设为下雨,为刮四级以上的风,则=_______,=__________【答案】 【解析】由已知,,,∴ , 故答案为,求条件概率一般有两种方法:一是对于古典概型类题目,可采用缩减基本事件总数的办法来计算,P(B|A)=,其中n(AB)表示()25P B =()1511P B A =1A 1A 2A 3A 1A 2A 3A ()()()123523,,101010P A P A P A ===11155()51011()5()1110P BA P B A P A ´===3223232434()()4410111011(),()23()11()111010P BA P BA P B A P B A P A P A ´´======1235524349()()()()10111011101122P B P BA P BA P BA =++=´+´+´=415215110A B ()P B A ()P A B 3438()415P A =()215P B =()110P AB =()()()3|8P AB P B A P A ==()()()3|4P AB P A B P B ==3438n AB n A ()()事件AB 包含的基本事件个数,n(A)表示事件A 包含的基本事件个数.二是直接根据定义计算,P(B|A)=,特别要注意P(AB)的求法.四、解答题17.(2020·甘肃省静宁县第一中学高二月考(理))有件产品,其中件是次品,其余都是合格品,现不放回的从中依次抽件.求:(1)第一次抽到次品的概率;(2)第一次和第二次都抽到次品的概率;(3)在第一次抽到次品的条件下,第二次抽到次品的概率.【答案】(1);(2);(3).【解析】(1)因为有5件是次品,第一次抽到次品,有5中可能,产品共有20件,不考虑限制,任意抽一件,有20中可能,所以概率为两者相除.(2)因为是不放回的从中依次抽取2件,所以第一次抽到次品有5种可能,第二次抽到次品有4种可能,第一次和第二次都抽到次品有5×4种可能,总情况是先从20件中任抽一件,再从剩下的19件中任抽一件,所以有20×19种可能,再令两者相除即可.(3)因为第一次抽到次品,所以剩下的19件中有4件次品,所以,抽到次品的概率为18.(2020·阜新市第二高级中学高二月考)甲、乙两地都位于长江下游,根据一百多年的气象记录,知道甲、乙两地一年中雨天占的比例分别为和,两地同时下雨的比例为,问:(1)乙地为雨天时甲地也为雨天的概率是多少?(2)甲地为雨天时乙地也为雨天的概率是多少【答案】(1)0.67(2)0.60【解析】(1)设 “甲地为雨天”, “乙地为雨天”,则根据题意有,,.所以乙地为雨天时甲地也为雨天的概率是.(2)甲地为雨天时乙地也为雨天的概率是.p AB p A ()()20521411941941920%18%12%A =B =()0.20P A =()0.18P B =()0.12P AB =()()0.12|0.67()0.18P AB P A B P B ==»()()0.12|0.60()0.20P AB P B A P A ===19.(2020·山东平邑高二期中)已知口袋中有2个白球和4个红球,现从中随机抽取两次,每次抽取1个.(1)若采取放回的方法连续抽取两次,求两次都取得白球的概率;(2)若采取不放回的方法连续抽取两次,求在第一次取出红球的条件下,第二次取出的是红球的概率.【答案】(1)(2)【解析】(1)两次都取得白球的概率;(2)记事件:第一次取出的是红球;事件:第二次取出的是红球,则, ,利用条件概率的计算公式,可得.20.(2019·攀枝花市第十五中学校高二期中(理))先后抛掷一枚骰子两次,将出现的点数分别记为.(1)设向量,,求的概率;(2)求在点数之和不大于5的条件下,中至少有一个为2的概率.【答案】(1);(2)【解析】先后抛掷一枚骰子两次,“将出现的点数分别记为”包含的基本事件有:(1,1),(1,2),(1,3),(1,4),(1,5),(1,6),(2,1),…,(6,5),(6,6),共36个.(1)记“向量,,且”为事件,由得:,从而事件包含共3个基本事件,故.(2)设“点数之和不大于5”为事件,包含(1,1),(1,2),(1,3),(1,4),(2,1),(2,2),1935221669P =´=A B 452()653P A ´==´432()655P AB ´==´()233(|)()525P AB P B A P A ==´=,a b (,)m a b =u r (2,1)n =-r 1m n ×=u r r,a b ,a b 11212,a b (,)m a b =u r (2,1)n =-r 1m n ×=u r rA 1m n ×=u r r21a b -=B (1,1),(2,3),(3,5)31()3612P A ==,a b B(2,3),(3,1),(3,2),(4,1),共10个基本事件;设“中至少有一个为2”为事件,包含(1,2),(2,1),(2,2),(2,3),(3,2),共5个基本事件,故“在点数之和不大于5的条件下,中至少有一个为2” 的概率:.21.(2020·延安市第一中学高二月考(文))10张奖券中有3张有奖,甲,乙两人不放回的各从中抽1张,甲先抽,乙后抽.求:(1)甲中奖的概率.(2)乙中奖的概率.(3)在甲未中奖的情况下,乙中奖的概率.【答案】(1);(2);(3)【解析】(1)设“甲中奖”为事件,则(2)设“乙中奖”为事件,则又,所以(3)因为,所以22.(2020·河南南阳高二期中(文))某校从学生文艺部6名成员(4男2女)中,挑选2人参加学校举办的文艺汇演活动.(1)求男生甲被选中的概率;(2)在已知男生甲被选中的条件下,女生乙被选中的概率;(3)在要求被选中的两人中必须一男一女的条件下,求女生乙被选中的概率.,a b C ,a b ,a b ()51()102n BC P n B ===31031013A ()310P A =B ()()()()P B P AB AB P AB P AB =+=+()32110915P AB =´=()73710930P AB =´=()()()179315303010P B P AB P AB =+=+==()710P A =()730P AB =()()()7130|7310P AB P B A P A ===【答案】(1);(2);(3).【解析】(1)记4名男生为A ,B ,C ,D ,2名女生为a ,b ,从6名成员中挑选2名成员,有,,,,,,,,,,,,,,共有15种情况,,记“男生甲被选中”为事件M ,不妨假设男生甲为A事件M 所包含的基本事件数为,,,,共有5种,故.(2)记“男生甲被选中”为事件,“女生乙被选中”为事件,不妨设女生乙为,则,又由(1)知,故.(3)记“挑选的2人一男一女”为事件,则,“女生乙被选中”为事件,,故.131512AB AC AD Aa Ab BC BD Ba Bb CD Ca Cb Da Db ab AB AC AD Aa Ab ()51153P M ==M N b ()115P MN =()13P M =()()()15P MN P N M P M ==S ()815P S =N ()415P SN =()()()12P SN P N S P S ==。
九年级数学下册第6章事件的概率综合练习考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、下列事件属于不可能事件的是()A.经过有交通信号灯的路口,遇到红灯B.任意画一个三角形,其内角和等于180°C.连续掷两次骰子,向上一面的点数都是6D.明天太阳从西边升起2、在一个不透明的袋中装有6个只有颜色不同的球,其中1个红球、2个黄球和3个白球.从袋中任意摸出一个球,是白球的概率为().A.16B.13C.12D.233、元旦晚会上,九(1)班40名同学和7名老师每人写了一张同种型号的新年贺卡,放进一个纸箱里充分摇匀后,从中任意摸出一张贸卡,恰好是老师写的概率是()A.133B.747C.17D.7404、抛掷一枚质地均匀的硬币一次,“反面朝上”的概率是()A.12B.13C.14D.155、下列事件是随机事件的是()A.三角形内角和为360度B.测量某天的最低气温,结果为120℃C.买一张彩票中奖D.太阳从东方升起6、六张朴克牌中2张“方块”,3张“梅花”,1张“红桃”.将这六张牌背面朝上,从中任意抽取1张,是“红桃”的概率为()A.16B.23C.12D.137、有大小形状一样、背面相同的四张卡片,在它们的正面分别标有数字1、2、3、4,若把四张卡片背面朝上,一次性抽取两张,则抽取的两张卡片上的数字都是偶数的概率是()A.12B.14C.16D.1128、在一个不透明的盒子中装有30个白、黄两种颜色的乒乓球,这些乒乓球除颜色外都相同.班长进行了多次的摸球试验,发现摸到黄色乒乓球的频率稳定在0.3左右,则盒子中的白色乒乓球的个数可能是()A.21个B.15个C.12个D.9个9、下列事件中,属于必然事件的是()A.经过路口,恰好遇到红灯B.367人中至少有2人的生日相同C.打开电视,正在播放动画片D.抛一枚质地均匀的硬币,正面朝上10、从甲、乙、丙、丁四人中用抽签的方式,随机选取两人打扫卫生,那么选中的两人是甲和乙的概率为()A.14B.112C.16D.18第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、一个布袋里装有2个只有颜色不同的球,其中1个红球,1个白球,从布袋里摸出1个球,记下颜色后放回,搅匀,再摸出1个球,则两次摸到的球恰好颜色不同的概率是______.2、某校九年级在“停课不停学”期间,积极开展网上答疑活动,在某时间段共开放7个网络教室,3个是语文答疑教室.为了解九年级学生的答疑情况,学校教学管理人员随机进入一个网络教室,则该教室是数学答疑教室的概率为_____.3、在一个不透明的盒子中,有五个完全相同的小球,把它们分别标号为1,2,3,4,5,随机摸出一个小球,摸出的小球标号为偶数的概率是____________.4、小华为学校“赓续百年初心,庆祝建党百年”活动布置会场,在—个不透明的口袋里有4根除颜色以外完全相同的缎带,其中2根为红色,2根为黄色,从口袋中随机摸出根缎带,则恰好摸出1根红色缎带1根黄色缎带的概率是______.5、布袋中装有1个红球和2个白球,它们除颜色外其他都相同,如果从布袋里随机摸出一个球,那么所摸到的球恰好为红球的概率为______.三、解答题(5小题,每小题10分,共计50分)1、小明和小亮是一对双胞胎,他们的爸爸买了两套不同品牌的运动服送给他们,小明和小亮都想先挑选.于是小明设计了如下游戏来决定谁先挑选.游戏规则是:在一个不透明的袋子里装有除数字以外其它均相同的4个小球,上面分别标有数字1,2,3,4.一人先从袋中随机摸出一个小球,另一人再从袋中剩下的3个小球中随机摸出一个小球.若摸出的两个小球上的数字和为奇数,则小明先挑选;否则小亮先挑选.(1)用树状图或列表法求出小明先挑选的概率;(2)你认为这个游戏公平吗?请说明理由.2、保护环境人人有责,某学校举行了“垃圾分类,绿色环保”知识竞赛活动,通过初赛初一年级和初二年级各选出5名选手参加决赛,两个年级选出的5名选手的比赛成绩如图所示.(1)根据信息填写以下表格;(2)结合以上统计数据,请分析哪个年级的比赛成绩更好;(3)学校将从在这10名选手且成绩在80分以上(不包括80分)的选手中选取2人参加区赛,请用列表法或画树状图求出选中的选手都是初二学生的概率.3、“三孩”政策实施后,甲、乙两个家庭有了各自的规划(假定生男生女的概率相同):(1)甲家庭已有一个男孩和一个女孩,准备再生一个孩子,则第三个孩子是男孩的概率是______;(2)乙家庭没有孩子,准备生三个孩子,求至少有两个孩子是女孩的概率.4、某校对学生进行立定跳远水平测试.随机抽取50名学生进行测试,并把测试成绩绘制成如下两幅不完整的图(表).根据图(表)中所提供的信息,完成下列问题:(1)填空:a=,中位数应落在第组;(2)请直接把条形统计图补充完整;(3)若该校共有1200名学生,试估计该校学生立定跳远成绩在2.4≤x<2.8范围内的人数.5、为大力弘扬“奉献、友爱、互助、进步”的志愿精神,我市某社区开展了“文明新风进社区”系列志愿服务活动,参加活动的每位志愿者必须从A.“垃圾分类入户宣传”、B.“消防安全知识宣传”、C.“走访慰问孤寡老人”、D.“社区环境整治活动”四个活动主题中随机选取一个主题中随机选取一个主题.(1)志愿者小李选取A.“垃圾分类入户宣传”这个主题的概率是.(2)志愿者小张和小李从A、B、C、D四个主题中分别随机选取一个主题,请用列表或画树状图的方法,求他们选取相同主题的概率.-参考答案-一、单选题1、D【解析】【分析】根据事件发生的可能性大小判断即可.【详解】解:A、经过有交通信号灯的路口,遇到红灯,是随机事件,选项不符合题意;B、任意画一个三角形,其内角和等于180︒,是必然事件,选项不符合题意;C、连续掷两次骰子,向上一面的点数都是6,是随机事件,选项不符合题意;D、明天太阳从西边升起,是不可能事件,选项符合题意;故选:D.【点睛】本题考查的是必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下,一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件,不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.2、C【解析】【分析】根据概率的求法,找准两点:①全部情况的总数;②符合条件的情况数目;二者的比值就是其发生的概率.【详解】解:∵袋子中共有6个小球,其中白球有3个,∴摸出一个球是白球的概率是31 62 =.故选:C.【点睛】本题主要考查了概率的求法,如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=mn.3、B 【解析】【分析】根据随机事件概率大小的求法,找准两点:①符合条件的情况数目;②全部情况的总数.二者的比值就是其发生的概率的大小.【详解】解:∵40名同学和7名老师每人写了一张同种型号的新年贺卡,∴从中任意摸出一张贺卡,恰好是老师写的概率是747,故选:B.【点睛】本题考查概率的求法与运用,一般方法:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=mn.4、A【解析】【分析】列出抛硬币一次后的所有可能结果,然后根据概率公式求解即可.【详解】解:抛一枚质地均匀的硬币一次,出现的结果有2种,即:正面朝上或反面朝上,∴“反面朝上”的概率是12,故选:A.【点睛】本题考查等可能事件的概率,属于基础题,计算过程中细心即可.5、C【解析】【分析】随机事件是可能发生也可能不发生的事件,根据定义即可作出判断.【详解】解:A、三角形的内角和是180°,因而三角形的内角和是360°是不可能事件,故选项错误;B、是不可能事件,故选项错误;C、是随机事件,故选项正确;D、是必然事件,故选项错误.故选:C.【点睛】考查了随机事件.解决本题需要正确理解必然事件、不可能事件、随机事件的概念.用到的知识点为:确定事件包括必然事件和不可能事件.必然事件指在一定条件下一定发生的事件不可能事件是指在一定条件下,一定不发生的事件.不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.6、A【解析】【分析】根据概率公式求得任意抽取1张的结果总数以及是“红桃”的结果数,即可求解.【详解】解:将这六张牌背面朝上,从中任意抽取1张,结果总数为6,结果为“红桃”的数为1,则由概率公式可得,是“红桃”的概率为16,故选:A【点睛】此题考查了概率的计算,解题的关键是根据概率公式正确求得结果总数以及随机事件发生的结果数.7、C【解析】【分析】由题意知,抽取两张卡片有(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)共6种情况;抽取的两张卡片上的数字都是偶数有(2,4)一种情况,按照概率公式进行求解即可.【详解】解:由题意知,抽取两张卡片有(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)共6种情况;抽取的两张卡片上的数字都是偶数有(2,4)一种情况∴抽取的两张卡片上的数字都是偶数的概率为1 6故选C.【点睛】本题考查了列举法求概率.解题的关键在于正确的列举事件.8、A【解析】【分析】在同样条件下,大量反复试验时,随机事件发生的频率逐渐稳定在概率附近,可以从比例关系入手,设袋中有白色乒乓球x个,列出方程求解即可.【详解】解:设袋中有白色乒乓球x个,由题意得3030x=0.3,解得x=21.故选:A.【点睛】本题利用了用大量试验得到的频率可以估计事件的概率.关键是利用黄球的概率公式列方程求解得到黄球的个数.9、B【解析】【分析】必然发生的事件是必然事件,根据定义解答.【详解】解:A. 经过路口,恰好遇到红灯是随机事件,故该项不符合题意;B. 367人中至少有2人的生日相同是必然事件,故该项符合题意;C. 打开电视,正在播放动画片是随机事件,故该项不符合题意;D. 抛一枚质地均匀的硬币,正面朝上是随机事件,故该项不符合题意;故选:B.【点睛】此题考查了必然事件的定义,熟记定义是解题的关键.10、C【解析】【分析】画树状图展示所有12种等可能的结果数,找出选中甲和乙的结果数,然后利用概率公式求解.【详解】解:画树状图为:共有12种等可能的结果数,其中选中甲和乙的结果数为2,所以选中的两人是甲和乙的概率=212=16.故选:C.【点睛】本题考查了列表法与树状图法:利用列表法或树状图法展示所有可能的结果求出n,再从中选出符合事件A或B的结果数目m,然后根据概率公式计算事件A或事件B的概率.二、填空题1、1 2【解析】【分析】画树状图,共有4种等可能的结果,两次摸到的球是一白一红的结果有2种,再由概率公式求解即可.【详解】解:画树状图如下:共有4种等可能的结果,两次摸到的球是一白一红的结果有2种,∴两次摸到的球是一白一红的概率为21 42 ,故答案为:12.【点睛】本题考查的是用列表法或画树状图法求概率.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件,树状图法适合两步或两步以上完成的事件.注意概率=所求情况数与总情况数之比.2、4 7【解析】【分析】根据概率公式即可求出该教室是数学答疑教室的概率.【详解】解:根据题意可知:共开放7个网络教室,其中4个是数学答疑教室,3个是语文答疑教室,管理人员随机进入一个网络教室,则该教室是数学答疑教室的概率为47.故答案为:47.【点睛】本题考查了列表法与树状图法,解决本题的关键是掌握概率公式.3、25##0.4【解析】【分析】确定出偶数有2个,然后根据概率公式列式计算即可得解.【详解】解:∵5个小球中,标号为偶数的有2、4这2个,∴摸出的小球标号为偶数的概率是25,故答案为:25.【点睛】本题考查了概率公式,用到的知识点为:概率=所求情况数与总情况数之比.4、2 3【解析】【分析】画树状图共有12种等可能的结果,其中摸出1根红色缎带1根黄色缎带的结果数为8,再由概率公式即可求解【详解】解:根据题意画出树状图,得:共有12种等可能的结果,其中摸出1根红色缎带1根黄色缎带的结果数为8,所以摸出1根红色缎带1根黄色缎带的概率=82123.【点睛】本题考查了列表法与树状图法:利用列表法或树状图法展示所有可能的结果求出n,再从中选出符合事件A或B的结果数目m,然后根据概率公式计算事件A或事件B的概率是解题的关键.5、1 3【解析】【分析】根据概率公式,求摸到红球的概率,即用红球的个数除以小球总个数即可得到摸出红球的概率.【详解】解:∵布袋中装有1个红球和2个白球,∴摸出一个球为红球的概率为:11 123=+,故答案为:13.【点睛】本题考查简单的概率计算,熟练掌握概率公式是解答本题的关键.三、解答题1、 (1)见解析,23;(2)不公平,见解析【解析】【分析】(1)用列表法表示所有可能出现的结果,进而求出相应的概率即可;(2)求出小明、小亮获胜的概率即可.(1)解:根据题意可列表或树状图如下:从表可以看出所有可能结果共有12种,且每种结果发生的可能性相同,符合条件的结果有8种,∴P(和为奇数)23 =;(2)解:不公平.∵小明先挑选的概率是P(和为奇数)23=,小亮先挑选的概率是P(和为偶数)13=,2133≠,∴不公平.【点睛】本题考查了列表法或树状图法求简单随机事件发生的概率,列举出所有可能出现的结果是正确解答的关键.2、 (1)85,85,100,160;(2)初一年级的比赛成绩更好,理由见解析;(3)作图见解析,1 10【解析】【分析】(1)将各年级的成绩按照大小排序,确定众数,中位数,根据平均数与方差的公式计算求解即可;(2)在平均数相同的情况下,比较各自的中位数与方差,确定出好的成绩;(3)由题意知,10名选手且成绩在80分以上(不包括80分)的选手共有5名,把初一年级的3名选手分别记为A、B、C,初二年级的2名选手分别记为D、E,画树状图求解概率即可.(1)解:由图可知初一年级比赛成绩排序为:75,80,85,85,100;初二年级比赛成绩排序为:70,75,80,100,100∴初一年级比赛成绩的中位数是85(分)平均数为75808585100855++++=(分)∴初二年级比赛成绩的众数是100(分)平均数为707580100100855++++=(分)方差为()()()()()22222 708575858085100851165085-+-+-+=-+-(分2)故答案为:85,85,100,160.(2)解:初一年级的比赛成绩更好,理由如下:①两个年级的平均数相同,而初一年级的中位数较高;②初一年级的方差较小,因此初一年级的成绩比较稳定;∴初一年级的比赛成绩更好.(3)解:10名选手且成绩在80分以上(不包括80分)的选手共有5名,把初一年级的3名选手分别记为A、B、C,初二年级的2名选手分别记为D、E,画树状图如下:共有20种等可能的结果,选中的选手都是初二学生的结果有DE ED,,2种∵21 2010=∴选中的选手都是初二学生的概率为1 10.【点睛】本题考查了中位数,众数,平均数,方差,树状图求概率.解题的关键与难点在于从图表中获取信息.3、 (1)12(2)12【解析】【分析】(1)直接利用概率公式求解;(2)画树状图展示所有8种等可能的结果数,再找出至少有一个孩子是女孩的结果数,然后根据概率公式求解.(1)解:第三个孩子是男孩的概率12 =;故答案为12;(2)解:画树状图为:共有8种等可能的结果数,其中至少有两个孩子是女孩的结果数为4, 所以至少有一个孩子是女孩的概率2481==.【点睛】本题考查了列表法与树状图法,解题的关键是利用列表法或树状图法展示所有等可能的结果n ,再从中选出符合事件A 或B 的结果数目m ,然后利用概率公式计算事件A 或事件B 的概率.4、 (1)8a =,20b =;(2)详见解析;(3)240人【解析】【分析】(1)根据频数分布直方图可以求得a 的值,再根据样本容量求出b 的值.(2)根据(1)中的结果可以将频数分布直方图补充完整.(3)根据频数分步表中的数据可以求出该学校学生立定跳远成绩在2.4 2.8x <范围内的有多少人.(1)由统计图可得8a =,508121020b =---=;故答案为:8a =,20b =; (2)由(1)知,20b=,补全的频数分布直方图如图所示;学生立定跳远测试成绩的频数分布直方图(3)10120024050⨯=(人),答:估计该学校学生立定跳远成绩在2.4 2.8x<范围内有240人.【点睛】本题考查频数分布表、频数分布直方图、中位数、用样本估计总体,解答本题的关键是明确题意,利用数形结合思想解答.5、 (1)14;(2)作图见解析,1 4【解析】【分析】(1)直接根据概率公式求解即可;(2)画树状图,共有16种等可能的结果,小张和小李选择相同主题的结果有4种,由概率公式求解即可.(1)解:由题意知志愿者小李选取A.“垃圾分类入户宣传”这个主题的概率是1 4故答案为:14.(2)解:画树状图如图:由图可知,共有16种等可能的结果,小张和小李选择相同主题的结果有AA BB CC DD、、、共4种,可知小张和小李选择相同主题的概率为41= 164∴小张和小李选择相同主题的概率为14.【点睛】本题考查了树状图求概率.解题的关键在于正确的列出所有情况.。
概率全集汇编含答案解析一、选择题1.下列事件是必然事件的是()A.打开电视机正在播放动画片B.投掷一枚质地均匀的硬币100次,正面向上的次数为50C.车辆在下个路口将会遇到红灯D.在平面上任意画一个三角形,其内角和是180【答案】D【解析】【分析】直接利用随机事件以及必然事件的定义分别判断得出答案.【详解】A、打开电视机正在插放动画片为随机事件,故此选项错误;B、投掷一枚质地均匀的硬币100次,正面向上的次数为50为随机事件,故此选项错误;C、“车辆在下个路口将会遇到红灯”为随机事件,故此选项错误;D、在平面上任意画一个三角形,其内角和是180°为必然事件,故此选项正确.故选:D.【点睛】此题考查随机事件以及必然事件,正确把握相关定义是解题关键.2.某小组做“频率具有稳定性”的试验时,绘出某一结果出现的频率折线图如图所示,则符合这一结果的试验可能是()A.抛一枚硬币,出现正面朝上B.掷一个正六面体的骰子,掷出的点数是5C.任意写一个整数,它能被2整除D.从一个装有2个红球和1个白球的袋子中任取一球(这些球除颜色外完全相同),取到的是白球【答案】D【解析】【分析】根据频率折线图可知频率在0.33附近,进而得出答案.【详解】A、抛一枚硬市、出現正面朝上的概率为0.5、不符合这一结果,故此选项错误;B、掷一个正六面体的骰子、掷出的点数是5的可能性为16,故此选项错误;C、任意写一个能被2整除的整数的可能性为12,故此选项错误;D、从一个装有2个红球1个白球的袋子中任取一球,取到白球的概率是13,符合题意,故选:D.【点睛】此题考查频率的折线图,利用频率估计事件的概率,正确理解频率折线图是解题的关键.3.下列事件中,是必然事件的是( )A.任意掷一枚质地均匀的骰子,掷出的点数是奇数B.操场上小明抛出的篮球会下落C.车辆随机到达一个路口,刚好遇到红灯D.明天气温高达30C︒,一定能见到明媚的阳光【答案】B【解析】【分析】根据必然事件的概念作出判断即可解答.【详解】解:A、抛任意掷一枚质地均匀的骰子,掷出的点数是奇数是随机事件,故A错误;B、操场上小明抛出的篮球会下落是必然事件,故B正确;C、车辆随机到达一个路口,刚好遇到红灯是随机事件,故C错误;D、明天气温高达30C︒,一定能见到明媚的阳光是随机事件,故D错误;故选:B.【点睛】本题考查了必然事件的定义,必然事件指在一定条件下一定发生的事件,熟练掌握是解题的关键.4.(2018•六安模拟)下列成语所描述的是必然事件的是()A.揠苗助长 B.瓮中捉鳖 C.水中捞月 D.大海捞针【答案】B【解析】A,是不可能事件,故选项错误;B,是必然事件,选项正确;C,是不可能事件,故选项错误;D,是随机事件,故选项错误.故选B.5.一个不透明的袋子中装有白球4个,黑球若干个,这些球除颜色外其余完全一样.如果随机从袋中摸出一个球是白球的概率为13,那么袋中有多少个黑球()A.4个B.12个C.8个D.不确定【答案】C【解析】【分析】首先设黑球的个数为x个,根据题意得:4143=x+,解此分式方程即可求得答案.【详解】设黑球的个数为x个,根据题意得:41 43=x+,解得:x=8,经检验:x=8是原分式方程的解;∴黑球的个数为8.故选:C.【点睛】此题考查概率公式的应用.解题关键在于掌握概率=所求情况数与总情况数之比.6.抛掷一枚质地均匀的硬币,若抛掷95次都是正面朝上,则抛掷第100次正面朝上的概率是()A.小于12B.等于12C.大于12D.无法确定【答案】B【解析】【分析】根据概率的意义分析即可.【详解】解:∵抛掷一枚质地均匀的硬币是随机事件,正面朝上的概率是1 2∴抛掷第100次正面朝上的概率是1 2故答案选:B【点睛】本题主要考查概率的意义,熟练掌握概率的计算公式是解题的关键.7.下列事件中是确定事件的为( )A.两条线段可以组成一个三角形 B.打开电视机正在播放动画片C.车辆随机经过一个路口,遇到绿灯 D.掷一枚均匀的骰子,掷出的点数是奇数【答案】A【解析】A. 两条线段可以组成一个三角形是不可能事件,也是确定事件,故本选项正确;B. 打开电视机正在播放动画片是随机事件,故本选项错误;C. 车辆随机经过一个路口,遇到绿灯是随机事件,故本选项错误;D. 掷一枚均匀的骰子,掷出的点数是奇数是随机事件,故本选项错误。
概率与统计题目精选及答案1. 某人忘记了电话号码的最后一个数字,因而他随意地拨号,假设拨过了的号码不再重复,试求下列事件的概率:(1)第3次拨号才接通电话; (2)拨号不超过3次而接通电话.解:设A 1={第i 次拨号接通电话},i =1,2,3. (1)第3次才接通电话可表示为321A A A 于是所求概率为;1018198109)(321=⨯⨯=A A A P(2)拨号不超过3次而接通电话可表示为:A 1+32121A A A A A +于是所求概率为 P (A 1+32121A A A A A +)=P(A 1)+P(21A A )+P(321A A A )=.103819810991109101=⨯⨯+⨯+2. 一出租车司机从饭店到火车站途中有六个交通岗,假设他在各交通岗到红灯这一事件是相互独立的,并且概率都是.31(1)求这位司机遇到红灯前,已经通过了两个交通岗的概率; (2)求这位司机在途中遇到红灯数ξ的期望和方差 解:(1)因为这位司机第一、二个交通岗未遇到红灯,在第三个交通岗遇到红灯,所以P=.27431)311)(311(=⨯--(2)易知).31,6(~B ξ ∴.2316=⨯=ξE .34)311(316=-⨯⨯=ξD3. (理科)摇奖器有10个小球,其中8个小球上标有数字2,2个小球上标有数字5,现摇出3个小球,规定所得奖金(元)为这3个小球上记号之和,求此次摇奖获得奖金数额的数学期望解:设此次摇奖的奖金数额为ξ元,当摇出的3个小球均标有数字2时,ξ=6;当摇出的3个小球中有2个标有数字2,1个标有数字5时,ξ=9; 当摇出的3个小球有1个标有数字2,2个标有数字5时,ξ=12所以,157)6(31038===C C P ξ 157)9(3101228===C C C P ξ 151)12(3102218===C C C P ξ……9分 E ξ=6×539151121579157=⨯+⨯+(元)答:此次摇奖获得奖金数额的数字期望是539元 ……………………12分 4. 某学生语、数、英三科考试成绩,在一次考试中排名全班第一的概率:语文为0.9,数学为0.8,英语为0.85,问一次考试中(Ⅰ)三科成绩均未获得第一名的概率是多少?(Ⅱ)恰有一科成绩未获得第一名的概率是多少解:分别记该生语、数、英考试成绩排名全班第一的事件为A 、B 、C ,则P (A )=0.9 P (B )=0.8,P (C )=0.85 …………………………2分 (Ⅰ))()()()(C P B P A P C B A P ⋅⋅=⋅⋅=[1-P (A )]·[1-P (B )]·[1-P (C )] =(1-0.9)×(1-0.8)×(1-0.85)=0.003答:三科成绩均未获得第一名的概率是0.003………………6分 (Ⅱ)P (C B A C B A C B A ⋅⋅+⋅⋅+⋅⋅) = P ()()()C B A p C B A P C B A ⋅⋅+⋅⋅+⋅⋅=)()()()()()()()()(C P B P A P C P B P A P C P B P A P ⋅⋅+⋅⋅+⋅⋅=[1-P (A )]·P (B )·P (C )+P (A )·[1-P (B )]·P (C )+P (A )·P (B )·[1-P (C )]=(1-0.9)×0.8×0.85+0.9×(1-0.8)×0.85+0.9×0.8×(1-0.85)=0.329答:恰有一科成绩未获得第一名的概率是0.329……………………12分5. 如图,A 、B 两点之间有6条网线并联,它们能通过的最大信息量分别为1,1,2,2,3,4.现从中任取三条网线且使每条网线通过最大的信息量.(I )设选取的三条网线由A 到B 可通过的信息总量为x ,当x ≥6时,则保证信息畅通.求线路信息畅通的概率;(II )求选取的三条网线可通过信息总量的数学期望.解:(I )411)6(,6321411361212=⋅+==∴=++=++C C C x P Θ)6(431012034141)6()4(101202)9(,9432203)8(,842243141205)7(,7322421分分=+++=≥∴===∴=++==∴=++=++===∴=++=++x P x P x P x P ΘΘΘ(II ))8(203)5(,5221311,101)4(,4211分===++=++===++x P x P ΘΘ ∴线路通过信息量的数学期望 5.61019203841741620351014=⨯+⨯+⨯+⨯+⨯+⨯= (11分) 答:(I )线路信息畅通的概率是43. (II )线路通过信息量的数学期望是6.5.(12分)6. 三个元件T 1、T 2、T 3正常工作的概率分别为,43,43,21将它们中某两个元件并联后再和第三元件串联接入电路.(Ⅰ)在如图的电路中,电路不发生故障的概率是多少?(Ⅱ)三个元件连成怎样的电路,才能使电路中不发生故障的概率最大?请画出此时电路图,并说明理由.解:记“三个元件T 1、T 2、T 3正常工作”分别为事件A 1、A 2、A 3,则.43)(,43)(,21)(321===A P A P A P (Ⅰ)不发生故障的事件为(A 2+A 3)A 1.(2分)∴不发生故障的概率为321521]41411[)()]()(1[)4)(()(])[(1321311321=⨯⨯-=⋅⋅-=⋅+=+=A P A P A P A P A A P A A A P P 分(Ⅱ)如图,此时不发生故障的概率最大.证明如下: 图1中发生故障事件为(A 1+A 2)·A 3 ∴不发生故障概率为3221)()]()(1[)()(])[(3213213212=⋅-=⋅+=+=A P A P A P A P A A P A A A P P )11(12分P P >∴图2不发生故障事件为(A 1+A 3)·A 2,同理不发生故障概率为P 3=P 2>P 1(12分) 说明:漏掉图1或图2中之一扣1分7. 要制造一种机器零件,甲机床废品率为0.05,而乙机床废品率为0.1,而它们 的生产是独立的,从它们制造的产品中,分别任意抽取一件,求: (1)其中至少有一件废品的概率;(2)其中至多有一件废品的概率. 解:设事件A=“从甲机床抽得的一件是废品”;B=“从乙机床抽得的一件是废品”. 则P (A )=0.05, P(B)=0.1, (1)至少有一件废品的概率)7(145.090.095.01)()(1)2)((1)(分分=⨯-=⋅-=+-=+B P A P B A P B A P(2)至多有一件废品的概率)12(995.09.095.01.095.09.005.0)(分=⨯+⨯+⨯=⋅+⋅+⋅=B A B A B A P P8. (理科)甲乙两人独立解某一道数学题,已知该题被甲独立解出的概率为0.6,被甲或乙解出的概率为0.92.(1)求该题被乙独立解出的概率;(2)求解出该题的人数ξ的数学期望和方差解:(1)记甲、乙分别解出此题的事件记为A 、B. 设甲独立解出此题的概率为P 1,乙为P 2.(2分) 则P (A )=P 1=0.6,P(B)=P 2:48.08.06.0)()()2(44.08.04.02.06.0)()()()()1(08.02.04.0)()()0()2()7(8.032.04.092.06.06.092.0)1)(1(1)(1)(2222212121的概率分布为分即则ξξξξ=⨯=⋅===⨯+⨯=+===⨯=⋅=====-+∴=-+=---=⋅-=+B P A P P B P A P B P A P P B P A P P P P P P P P P P P P B A P B A P)12(4.096.136.2)()(4.01728.00704.01568.048.0)4.12(44.0)4.11(08.0)4.10(4.196.044.048.0244.0108.0022222分或利用=-=-==++=⋅-+⋅-+⋅-==+=⨯+⨯+⨯=ξξξξE E D D E9. (理科考生做) 某保险公司新开设了一项保险业务,若在一年内事件E 发生,该公司要赔偿a 元.设在一年内E 发生的概率为p ,为使公司收益的期望值等于a 的百分之十,公司应要求顾客交多少保险金?解:设保险公司要求顾客交x 元保险金,若以ξ 表示公司每年的收益额,则ξ是一个随机变量,其分布列为:6分因此,公司每年收益的期望值为E ξ =x (1-p )+(x -a )·p =x -ap .8分为使公司收益的期望值等于a 的百分之十,只需E ξ =0.1a ,即x -ap =0.1a , 故可得x =(0.1+p )a .10分 即顾客交的保险金为 (0.1+p )a 时,可使公司期望获益10%a .12分10. 有一批食品出厂前要进行五项指标检验,如果有两项指标不合格,则这批食品不能出厂.已知每项指标抽检是相互独立的,且每项抽检出现不合格的概率都是0.2. (1)求这批产品不能出厂的概率(保留三位有效数字);(2)求直至五项指标全部验完毕,才能确定该批食品是否出厂的概率(保留三位有效数字).解:(1)这批食品不能出厂的概率是: P =1-0.85-15C ×0.84×0.2≈0.263. 4分(2)五项指标全部检验完毕,这批食品可以出厂的概率是:P 1=14C ×0.2×0.83×0.88分五项指标全部检验完毕,这批食品不能出厂的概率是:P 2=14C ×0.2×0.83×0.210分由互斥事件有一个发生的概率加法可知,五项指标全部检验完毕,才能确定这批产品是否出厂的概率是:P =P 1+P 2=14C ×0.2×0.83=0.4096.12分11. 高三(1)班、高三(2)班每班已选出3名学生组成代表队,进行乒乓球对抗赛.比赛规则是:①按“单打、双打、单打”顺序进行三盘比赛;②代表队中每名队员至少参加一盘比赛,不得参加两盘单打比赛. 已知每盘比赛双方胜出的概率均为.21(Ⅰ)根据比赛规则,高三(1)班代表队共可排出多少种不同的出场阵容?(Ⅱ)高三(1)班代表队连胜两盘的概率是多少? 解:(I )参加单打的队员有23A 种方法.参加双打的队员有12C 种方法.……………………………………………………2分所以,高三(1)班出场阵容共有121223=⋅C A (种)………………………5分(II )高三(1)班代表队连胜两盘,可分为第一盘、第二盘胜或第一盘负,其余两盘胜,………………………………………………………………………7分 所以,连胜两盘的概率为.832121212121=⨯⨯+⨯………………………………10分 12. 袋中有大小相同的5个白球和3个黑球,从中任意摸出4个,求下列事件发生的概率.(1)摸出2个或3个白球 (2)至少摸出一个黑球.解: (Ⅰ)设摸出的4个球中有2个白球、3个白球分别为事件A 、B ,则73)(,73)(481325482325=⋅==⋅=C C C B P C C C A P ∵A 、B 为两个互斥事件 ∴P (A+B )=P (A )+P (B )=76即摸出的4个球中有2个或3个白球的概率为76…………6分 (Ⅱ)设摸出的4个球中全是白球为事件C ,则P (C )=1414845=C C 至少摸出一个黑球为事件C 的对立事件其概率为14131411=-………………12分 13. 一名学生骑自行车上学,从他的家到学校的途中有6个交通岗,假设他在各交通岗遇到红灯的事件是独立的,并且概率都是31.(I )求这名学生首次遇到红灯前,已经过了两个交通岗的概率;(II )求这名学生在途中遇到红灯数ξ的期望与方差.解:(I )27431)311)(311(=--=P …………………………………………4分 (II )依题意ξ~),31,6(B ……………………………………………………7分2316=⋅=∴ξE ……………………………………………………………9分34)311(316=-⋅⋅=ξD ……………………………………………………12分14. 一出租车司机从饭店到火车站途中有六个交通岗,假设他在各交通岗到红灯这一事件是相互独立的,并且概率都是.31(1)求这位司机遇到红灯前,已经通过了两个交通岗的概率;(2)求这位司机在途中遇到红灯数ξ的期望和方差 解:(1)因为这位司机第一、二个交通岗未遇到红灯,在第三个交通岗遇到红灯,所以P=.27431)311)(311(=⨯--(2)易知).31,6(~B ξ ∴.2316=⨯=ξE .34)311(316=-⨯⨯=ξD1、 写出下列随机试验的样本空间。
事件与概率课后练习题一:袋子中装有4个黑球和2个白球,这些球的形状、大小、质地等完全相同,在看不到球的条件下,随机地从袋子中摸出三个球,下列事件是必然事件的是(球的条件下,随机地从袋子中摸出三个球,下列事件是必然事件的是( )A .摸出的三个球中至少有一个球是黑球.摸出的三个球中至少有一个球是黑球B .摸出的三个球中至少有一个球是白球.摸出的三个球中至少有一个球是白球C .摸出的三个球中至少有两个球是黑球.摸出的三个球中至少有两个球是黑球D .摸出的三个球中至少有两个球是白球.摸出的三个球中至少有两个球是白球题二:下列事件中,必然事件是题二:下列事件中,必然事件是 ,不可能事件是,不可能事件是 ,随机事件是,随机事件是 .(1)某射击运动员射击1次,命中靶心;次,命中靶心;(2)从一只装着白球和黑球的袋中摸球,摸出红球;)从一只装着白球和黑球的袋中摸球,摸出红球;(3)13人中至少2个人的生日是同一个月;个人的生日是同一个月;(4)任意摸1张体育彩票会中奖;张体育彩票会中奖;(5)天上下雨,马路潮湿;)天上下雨,马路潮湿;(6)随意翻开一本有400页的书,正好翻到第100页;页;(7)你能长高到4m ;(8)抛掷1枚骰子得到的点数小于8.题三:一个射手进行一次射击,则事件“命中环数小于6环”的对立事件是(的对立事件是( )A .命中环数为7、8、9、10环B .命中环数为1、2、3、4、5、6环C .命中环数至少为6环D .命中环数至多为6环题四:某人连续投篮投3次,那么下列各组事件中是互斥且不对立的事件的组数为(次,那么下列各组事件中是互斥且不对立的事件的组数为( ) (1)事件A :至少有一个命中,事件B :都命中;:都命中;(2)事件A :至少有一次命中,事件B :至多有一次命中;:至多有一次命中;(3)事件A :恰有一次命中,事件B :恰有2次命中;次命中;(4)事件A :至少有一次命中,事件B :都没命中.:都没命中.A .0 B .1 C .2 D .3 题五:为了防控输入性甲型H1N1流感,某市医院成立隔离治疗发热流涕病人防控小组,决定从内科5位骨干医师中(含有甲)抽调3人组成,则甲一定抽调到防控小组的概率是人组成,则甲一定抽调到防控小组的概率是 .题六:小明将1枚质地均匀的硬币连续抛掷3次.次.(1)按3次抛掷结果出现的先后顺序,下列三种情况:次抛掷结果出现的先后顺序,下列三种情况:①正面朝上、正面朝上、正面朝上;①正面朝上、正面朝上、正面朝上;②正面朝上、反面朝上、反面朝上;②正面朝上、反面朝上、反面朝上;③正面朝上、反面朝上、正面朝上,③正面朝上、反面朝上、正面朝上,其中出现的概率(其中出现的概率( )A .①最小.①最小B .②最小.②最小C .③最小.③最小D .①②③均相同.①②③均相同(2)请用树状图说明:小明在3次抛掷中,硬币出现1次正面向上、2次反面向上的概率是多少多少题七:掷两个面上分别记有数字1至6的正方体玩具,设事件A 为“点数之和恰好为6”,则A 所有基本事件个数为(有基本事件个数为( )A .2个B .3个C .4个D .5个题八:从1,2,3,5中任取2个数字作为直线Ax +By =0中的A 、B .(1)求这个试验的基本事件总数;)求这个试验的基本事件总数;(2)写出“这条直线的斜率大于-1”这一事件所包含的基本事件.这一事件所包含的基本事件.题九:袋内装有红、白、黑球分别为3、2、1个,从中任取两个,则互斥而不对立的事件是( )A .至少一个白球;都是白球.至少一个白球;都是白球B .至少一个白球;至少一个黑球.至少一个白球;至少一个黑球C .至少一个白球;一个白球一个黑球.至少一个白球;一个白球一个黑球D .至少一个白球;红球、黑球各一个.至少一个白球;红球、黑球各一个题十:掷两颗相同的均匀骰子(各个面分别标有1,2,3,4,5,6),记录朝上一面的两个数,那么互斥而不对立的两个事件是(那么互斥而不对立的两个事件是( )A .“至少有一个奇数”与“都是奇数”B .“至少有一个奇数”与“至少有一个偶数”C .“至少有一个奇数”与“都是偶数”D .“恰好有一个奇数”与“恰好有两个奇数”题十一:下列说法中正确的是题十一:下列说法中正确的是 ..(1)事件A 、B 中至少有一个发生的概率一定比A 、B 中恰有一个发生的概率大;中恰有一个发生的概率大; (2)事件A 、B 同时发生的概率一定比A 、B 中恰有一个发生的概率小;中恰有一个发生的概率小;(3)互斥事件一定是对立事件,对立事件不一定是互斥事件;)互斥事件一定是对立事件,对立事件不一定是互斥事件;(4)互斥事件不一定是对立事件,对立事件一定是互斥事件.)互斥事件不一定是对立事件,对立事件一定是互斥事件.题十二:从一堆产品(其中正品与次品都多于2件)中任取2件,观察正品件数与次品件数,判断下列每件事件是不是互斥事件,如果是,再判断它们是不是对立事件.判断下列每件事件是不是互斥事件,如果是,再判断它们是不是对立事件.(1)恰好有1件次品和恰好有2件次品;件次品;(2)至少有1件次品和全是次品;件次品和全是次品;(3)至少有1件正品和至少有1件次品.件次品.题十三:经临床验证,一种新药对某种疾病的治愈率为49%,显效率28%,有效率12%,其余为无效.则某人患该病使用此药后无效的概率是余为无效.则某人患该病使用此药后无效的概率是 .题十四:我国西部一个地区的年降水量(题十四:我国西部一个地区的年降水量( 单位:mm )在下列区间内的概率如下表:)在下列区间内的概率如下表:年降水量水量[600,800) [800,1000) [1000,1200) [1200,1400) [1400,1600) 概率 0.12 0.26 0.38 0.16 0.08 (1)求年降水量在)求年降水量在事件与概率课后练习参考答案题一:题一: A .详解:必然事件就是一定发生的事件,随机事件是可能发生也可能不发生的事件.A 、是必然事件;B 、是随机事件,选项错误;C 、是随机事件,选项错误;、是随机事件,选项错误;D 、是随机事件,选项错误.故选A .题二:题二: (3)、(5)、(8);(2)、(7);(1)、(4)、(6). 详解:在一定条件下,可能发生也可能不发生的事件,称为随机事件.一定发生的事件称为必然事件;一定不发生的事件称为不可能事件.(1)某射击运动员射击1次,命中靶心;(随机事件)(随机事件)(2)从一只装着白球和黑球的袋中摸球,摸出红球;(不可能事件)(不可能事件)(3)13人中至少2个人的生日是同一个月;(必然事件)(必然事件)(4)任意摸1张体育彩票会中奖;(随机事件);(5)天上下雨,马路潮湿;(必然事件)(必然事件)(6)随意翻开一本有400页的书,正好翻到第100页;(随机事件);(7)你能长高到4m ;(不可能事件)(不可能事件)(8)抛掷1枚骰子得到的点数小于8.(必然事件).题三:题三: C .详解:根据对立事件的定义可得,一个射手进行一次射击,则事件“命中环数小于6环”的对立事件是:“命中环数至少为6环”,故选C .题四:题四: B .详解:利用互斥事件、对立事件的定义,即可得到结论.互斥事件:事件A 与事件B 不可能同时发生,强调的是“不同时发生”.对立事件:事件A 、B 中必定而且只有一个发生。
第三章概率3.1随机事件的概率3.1.1基本概念:(1)必然事件:在条件S下,一定会发生的事件,叫相对于条件S的必然事件;(2)不可能事件:在条件S下,一定不会发生的事件,叫相对于条件S的不可能事件;(3)确定事件:必然事件和不可能事件统称为相对于条件S的确定事件;(4)随机事件:在条件S下可能发生也可能不发生的事件,叫相对于条件S的随机事件;(5)频数与频率:在相同的条件S下重复n次试验,观察某一事件A是否出现,称n次试验中事件A出现的次数为事件A出现的频数;称事件A出现的比例为事件A出现的概率:对于给定的随机事件A,如果随着试验次数的增加,事件A发生的频率稳定在某个常数上,把这个常数记作P(A),称为事件A的概率。
3.1.2 概率的基本性质3.1.2.1基本概念:(1)事件的包含、并事件、交事件、相等事件(2)若A∩B为不可能事件,即A∩B=,那么称事件A与事件B互斥;(3)若A∩B为不可能事件,A∪B为必然事件,那么称事件A与事件B互为对立事件;(4)当事件A与B互斥时,满足加法公式:P(A∪B)= P(A)+ P(B);若事件A与B为对立事件,则A∪B为必然事件,所以P(A∪B)= P(A)+ P(B)=1,于是有P(A)=1—P(B)3.1.2.2概率的基本性质:1)必然事件概率为1,不可能事件概率为0,因此0≤P(A)≤1;2)当事件A 与B 互斥时,满足加法公式:P(A ∪B)= P(A)+ P(B);3)若事件A 与B 为对立事件,则A ∪B 为必然事件,所以P(A ∪B)= P(A)+ P(B)=1,于是有P(A)=1—P(B);【典型例题】已知同种血型的人可以输血,O 型血可以输给任一种血型的人,任何人的血都可以输给AB 型血的人,其他不同血型的人不能互相输血.小明是B 型血,若小明因病需要输血,问:(1)任找一个人,其血可以输给小明的概率是多少?(2)任找一个人,其血不能输给小明的概率是多少?[基础巩固]1.下列叙述错误的是( )A . 频率是随机的,在试验前不能确定,随着试验次数的增加,频率一般会越来越接近概率B . 若随机事件A 发生的概率为()A p ,则()10≤≤A pC . 互斥事件不一定是对立事件,但是对立事件一定是互斥事件D .5张奖券中有一张有奖,甲先抽,乙后抽,那么乙与甲抽到有奖奖券的可能性相同2.从装有5只红球、5只白球的袋中任意取出3只球,有事件:① “取出2只红球和1只白球”与“取出1只红球和2只白球”;② “取出2只红球和1只白球”与“取出3只红球”;③ “取出3只红球”与“取出3只球中至少有1只白球”;④ “取出3只红球”与“取出3只白球”.其中是对立事件的有( )A .①、④B .②、③C .③、④D .③3.下列说法中正确的是( )A .事件A 、B 中至少有一个发生的概率一定比A 、B 中恰有一个发生的概率大B .事件A 、B 同时发生的概率一定比事件A 、B 恰有一个发生的概率小C .互斥事件一定是对立事件,对立事件不一定是互斥事件D .互斥事件不一定是对立事件,对立事件一定是互斥事件[综合提高]4.某人在打靶中,连续射击2次,事件“至少有一次中靶”的互斥事件是( )A .至多有一次中靶B .两次都中靶C .两次都不中靶D .只有一次中靶5.在一对事件A 、B 中,若事件A 是必然事件,事件B 是不可能事件,那么事件A 和B ( )A .是互斥事件,但不是对立事件B .是对立事件,但不是互斥事件C .是互斥事件,也是对立事件D .既不是是互斥事件,也不是对立事件6.从5名礼仪小姐、4名翻译中任意选5人参加一次经贸洽谈活动,其中礼仪小姐、翻译均不少于2人的概率是( )A .B .C .D .7.若()1P A B +=,则事件A 与B 的关系是( )A .A 、B 是互斥事件 B .A 、B 是对立事件C .A 、B 不是互斥事件D .以上都不对8.某市派出甲、乙两支球队参加全省足球冠军赛.甲乙两队夺取冠军的概率分别是37和14. 试求该市足球队夺得全省足球冠军的概率为_____________ .9.某产品分甲、乙、丙三级,其中乙、丙两级均属次品.在正常生产情况下出现乙级品和丙级品的概率分别为3%和1%.求抽验一只是正品(甲级)的概率_____________ .10.一个口袋装有3个红球和n 个绿球,从中任意取出3个球中至少有1个是绿球的概率是,则n=______________ .[能力提高]11.圆周上有2n 个等分点(n >1),以其中任三点为顶点作三角形,其中可构成直角三角形的概率为 ____________ .12.某高校有5名学生报名参加义务献血活动,这5人中血型为A 型、O 型的学生各2名,血型为B 型的学生1 名,已知这5名学生中每人符合献血条件的概率均是23.(1)若从这5名学生中选出2名学生,求 所选2人的血型为O 型或A 型的概率;(2)求这5名学生中至少有2名学生符合献血条件的概率.(注:答案均用分数表示).13.在一只袋子中装有7个红玻璃球,3个绿玻璃球.从中无放回地任意抽取两次,每次只取一个.试求:(1)取得两个红球的概率; (2)取得两个绿球的概率; (3)取得两个同颜色的球的概率;(4)至少取得一个红球的概率.14.在放有5个红球、4个黑球、3个白球的袋中,任意取出3个球,分别求出3个全是同色球的概率及全是异色球的概率.15.从男女学生共有36名的班级中,任意选出2名委员,任何人都有同样的当选机会.如果 选得同性委员的概率等于,求男女生相差几名?3.2古典概率3.2.1 —3.2.2古典概型及随机数的产生(1)古典概型的使用条件:试验结果的有限性和所有结果的等可能性。
专题09 概率(专题测试) 【基础题】 1.(2021·全国高一单元测试)从数字1,2,3,4中任取三个不同的数字,则所抽取的三个数字之和能被6整除的概率为( ) A .12 B .15 C .14 D .25【答案】C【分析】利用列举法,结合古典概型概率计算公式,计算出所求概率.【详解】从数字1,2,3,4中任取三个不同的数字,方法有:123,124,134,234++++++++共4种, 其中所抽取的三个数字之和能被6整除的有:1236++=共1种,故所求概率为14. 故选:C2.(2021·全国高三专题练习(文))在新冠疫情的冲击下,全球经济受到重创,右图是各国公布的2020年第二季度国内生产值(GDP )同比增长率,现从这5个国家中任取2个国家,则这2个国家中第二季度GDP 同比增长率至少有1个低于15%-的概率为( )A .310B .12C .35D .710 【答案】D【分析】利用列举法求解即可【详解】令中国、澳大利亚、印度、英国、美国的2020年第二季度国内生产值(GDP )同比增长率分别为A ,B ,C ,D ,E ,其中C ,D 都低于15%-,则从这5个国家中任取2个国家有:AB ,AC ,AD ,AE ,BC ,BD ,BE ,CD ,CE ,DE 共10种,其中至少有1个低于15%-有AC ,AD ,BC ,BD ,CD ,CE ,DE 共7种,所以所求概率为710.故选:D.3.(2020·广西玉林市·北流市实验中学高二期中(理))从1,2,3,4,5这五个数中任取两个不同的数,则这两个数都是奇数的概率是( )A .0.1B .0.2C .0.3D .0.6【答案】C【分析】根据题中条件,列举出总的基本事件,以及满足条件的基本事件,基本事件的个数比即为所求概率.【详解】从1,2,3,4,5这五个数中任取两个数,包含的基本事件有:()1,2,()1,3,()1,4,()1,5,()2,3,()2,4,()2,5,()3,4,()3,5,()4,5,共10个;则这两个数都是奇数包含的基本事件有:()1,3,()1,5,()3,5,共3个;所以这两个数都是奇数的概率是310P =.故选:C. 4.(2021·全国高一课时练习)把分别写有1,2,3,4的四张卡片全部分给甲、乙、丙三个人,每人至少一张,且若分得的卡片超过一张,则必须是连号,那么2,3连号的概率为( )A .23B .13C .35D .14【答案】B【分析】根据列举法,列举出总的基本事件,以及满足条件的基本事件,基本事件个数之比即为所求概率.【详解】分三类情况,第一类1,2连号,则甲、乙、丙三个人拿到的卡片可能为()12,3,4,()12,4,3,()3,12,4,()4,12,3,()3,4,12,()4,3,12,有6种分法;第二类2,3连号,则甲、乙、丙三个人拿到的卡片可能为()1,23,4,()4,23,1,()23,1,4,()23,4,1,()1,4,23,()4,1,23,有6种分法;第三类3,4连号,则甲、乙、丙三个人拿到的卡片可能为()1,2,34,()2,1,34,()34,1,2,()34,2,1,()1,34,2,()2,34,1,有6种分法;共有18种分法,则2,3连号的概率为61183P ==.故选:B . 【点睛】本题主要考查求古典概型的概率,属于基础题型.5.(2021·浙江高一单元测试)从一批产品中随机抽取3件产品进行质量检测,记“3件产品都是次品”为事件A ,“3件产品都不是次品”为事件B ,“3件产品不都是次品”为事件C ,则下列说法正确的是( ) A .任意两个事件均互斥B .任意两个事件均不互斥C .事件A 与事件C 对立D .事件A 与事件B 对立【答案】C【分析】根据互斥事件和对立事件的概念可得选项.【详解】由题意知:事件C 包括三种情况,一是有两个次品一个正品,二是有一个次品两个正品,三是三件都是正品,没有次品.由此知: A 与C 是互斥事件,并且是对立事件; B 与C 是包含关系,不是互斥事件,不是对立事件;A 与B 是互斥事件,但不对立事件.故选:C.【点睛】本题考查互斥事件、对立事件的概念和辨析,属于基础题.6.(2021·浙江高一单元测试)设事件A ,B ,已知P (A )=15,P (B )=13,P (A ∪B )=815,则A ,B 之间的关系一定为( )A .两个任意事件B .互斥事件C .非互斥事件D .对立事件【答案】B【分析】由题意先求P (A )+P (B ),然后检验P (A )+P (B )是否与P (A ∪B )相等,从而可判断是否满足互斥关系【详解】因为P (A )+P (B )=1185315+==P (A ∪B ),所以A ,B 之间的关系一定为互斥事件.故选:B 【点睛】此题考查了互斥事件的概率公式的简单应用,属于基础题7.(2020·全国高一单元测试)对于总数N 的一批零件,抽取一个容量为30的样本.若每个零件被抽到的可能性均为25%,则N =( )A .120B .150C .200D .240 【答案】A【分析】根据每个个体被抽到的概率及样本容量,即可求得总体个数.【详解】∵对于总数为N 的一批零件,抽取一个容量为30的样本,每个零件被抽到的可能性均为25%, ∴3025%N=,解得120N =.故选:A. 【点睛】本题考查了样本容量与抽样概率的关系,属于基础题.8.(2021·全国高一课时练习)若A ,B 为对立事件,则下列式子中成立的是( )A .()()1P A PB +< B .()()1P A P B +>C .()()0P A P B +=D .()()1P A P B +=【答案】D【分析】根据事件的对立关系,结合概率的加法公式即可求解.【详解】若事件A 与事件B 是对立事件,则A B 为必然事件,再由概率的加法公式得()()1P A P B +=.故选:D.【点睛】此题考查对立事件的概率关系,关键在于弄清对立事件的特点及性质.9.(2020·全国高一课时练习)某射手在一次射击中,射中10环,9环,8环的概率分别是0.20, 0.30, 0.10.则此射手在一次射击中不够8环的概率为A .0.30B .0.40C .0.60D .0.90【答案】B【分析】先求出此射手在一次射击中大于等于8环的概率,即可求出结果.【详解】记“此射手在一次射击中大于等于8环”为事件A ,由题意可得()0.200.300.100.60P A =++=,所以,此射手在一次射击中不够8环的概率为()10.40P P A =-=.故选B【点睛】本题主要考查对立事件,熟记对立事件的性质即可,属于基础题型.10.(多选题)(2020·全国高一)中国篮球职业联赛(CBA )中,某男篮球运动员在最近几次参加的比赛中的得分情况如下表:记该运动员在一次投篮中,投中两分球为事件A ,投中三分球为事件B ,没投中为事件C ,用频率估计概率的方法,得到的下述结论中,正确的是( )A .()0.55P A =B .()0.18P B =C .()0.27P C =D .()0.55P B C += 【答案】ABC【分析】求出各事件的概率,并结合对立事件的概率公式可判断出各选项的正误.【详解】由题意可知,()550.55100P A ==,()180.18100P B ==, 事件A B +与事件C 为对立事件,且事件A 、B 、C 互斥,()()()()110.27P C P A B P A P B ∴=-+=--=,()()()0.45P B C P B P C +=+=.故选:ABC.【点睛】本题考查事件的概率,涉及互斥事件和对立事件概率公式的应用,考查计算能力,属于基础题. 11.(2021·浙江高一单元测试)某校参加夏令营的同学有3名男同学,,A B C 和3名女同学,,X Y Z ,其所属年级情况如下表:现从这6名同学中随机选出2人参加知识竞赛(每人被选到的可能性相同)(1)用表中字母写出这个试验的样本空间;(2)设M 为事件“选出的2人来自不同年级且恰有1名男同学和1名女同学”,写出事件M 的样本点,并求事件M 发生的概率.【答案】(1)答案见解析;(2)答案见解析;25. 【分析】(1)根据样本空间的概念写出即可;(2)利用列举法写出样本点,然后根据古典概型的概率公式求出概率即可得.【详解】(1)这个试验的样本空间为: {}{}{}{}{}{}{}{}{}{}{}{}{}{}{}{},,,,,,,,,,,,,,,,,,,,,,,,,,,,,A B A C A X A Y A Z B C B X B Y B Z C X C Y C Z X Y X Z Y Z . (2)选出的2人来自不同年级且恰有1名男同学和1名女同学的所有可能结果为;{},A Y ,{},A Z ,{},B X ,{},B Z ,{},C X ,{},C Y 共6种,因此事件M 发生的概率()62155P M ==. 【点睛】本题考查了样本空间的概念,考查了用列举法求古典概型的概率,属于基础题.12.(2021·全国高一课时练习)5张奖券中有2张是中奖的,先由甲抽1张,然后由乙抽1张,抽后不放回,求:(1)甲中奖的概率()P A ; (2)甲、乙都中奖的概率()P B ;(3)只有乙中奖的概率(C)P ; (4)乙中奖的概率()P D .【答案】(1)25;(2)110;(3)310;(4)25 【分析】(1)写出所有的基本事件,找出甲中奖的基本事件有8种,所以可求甲中奖的概率为25; (2)写出所有的基本事件,找出甲、乙都中奖的基本事件,然后可得概率;(3)写出所有的基本事件,找出只有乙中奖的基本事件,然后可得概率;(4)写出所有的基本事件,找出乙中奖的基本事件,然后可得概率.【详解】将5张奖券编号为1,2,3,4,5,其中4,5为中奖奖券,用(,)x y 表示甲抽到号码x ,乙抽到号码y ,则所有可能的结果为(1,2),(1,3),(1,4),(1,5),(2,1),(2,3),(2,4),(2,5),(3,1),(3,2),(3,4), (3,5),(4,1),(4,2),(4,3),(4,5),(5,1),(5,2),(5,3),(5,4),共20种.(1)甲中奖包含8个基本事件:(4,1),(4,2),(4,3),(4,5),(5,1),(5,2),(5,3),(5,4), 82()205P A ∴==. (2)甲、乙都中奖包含2个基本事件:(4,5),(5,4), 21()2010P B ∴==. (3)只有乙中奖包含6个基本事件:(1,4),(1,5),(2,4),(2,5),(3,4), (3,5), ∴63()2010P C ==. (4)乙中奖包含8个基本事件:(1,4),(1,5),(2,4),(2,5),(3,4), (3,5),(4,5),(5,4), ∴82()205P D ==. 【点睛】本题主要考查古典概率的求解,列出基本事件空间和各类事件所包含的基本事件是求解的关键,注意抽取方式的不同对结果的影响,侧重考查数学运算的核心素养.【提升题】13.(2021·全国高一单元测试)齐王与田忌赛马,田忌的上等马优于齐王的中等马,劣于齐王的上等马,田忌的中等马优于齐王的下等马,劣于齐王的中等马,田忌的下等马劣于齐王的下等马.某天,齐王与田忌赛马,双方约定:比赛三局,每局各出一匹,每匹马赛一次,赢得两局者为胜,则田忌获胜概率为( ).A .112B .16C .14D .13【答案】B【分析】设齐王的三匹马分别为123,,a a a ,田忌的三匹马分别为123,,b b b ,列举所有比赛的情况,利用古典概型的概率公式计算即可得出结果.【详解】设齐王的三匹马分别为123,,a a a ,田忌的三匹马分别为123,,b b b ,所有比赛的情况::11()a b ,、22(,)a b 、33(,)a b ,齐王获胜三局;11()a b ,、23(,)a b 、32(,)a b ,齐王获胜两局;12(,)a b 、21(,)a b 、33(,)a b ,齐王获胜两局;12(,)a b 、23(,)a b 、31(,)a b ,齐王获胜两局;13(,)a b 、21(,)a b 、32(,)a b ,田忌获胜两局;13(,)a b 、22(,)a b 、31(,)a b ,齐王获胜两局,共6种情况,则田忌胜1种情况,故概率为16P =,故选:B 【点睛】本题考查了古典概型的概率计算问题,考查了理解辨析和数学运算能力,属于中档题目. 14.(2021·全国高一课时练习)抛掷一个质地均匀的骰子的试验,事件A 表示“小于5的偶数点出现”,事件B 表示“不小于5的点数出现”,则一次试验中,事件A 或事件B 至少有一个发生的概率为( ) A .23 B .13 C .12 D .56【答案】A【分析】由古典概型概率公式分别计算出事件A 和事件B 发生的概率,又通过列举可得事件A 和事件B 为互斥事件,进而得出事件A 或事件B 至少有一个发生的概率即为事件A 和事件B 的概率之和.【详解】事件A 表示“小于5的偶数点出现”,事件B 表示“不小于5的点数出现”,∴P (A )2163==,P (B )2163==, 又小于5的偶数点有2和4,不小于5的点数有5和6,所以事件A 和事件B 为互斥事件, 则一次试验中,事件A 或事件B 至少有一个发生的概率为P (A ∪B )=P (A )+P (B )112333=+=, 故选:A .【点睛】本题主要考查古典概型计算公式,以及互斥事件概率加法公式的应用,属于中档题.15.(2021·浙江高一单元测试)洛书,古称龟书,是阴阳五行术数之源.在古代传说中有神龟出于洛水,其甲壳上心有此图象,结构是戴九履一,左三右七,二四为肩,六八为足,以五居中,五方白圈皆阳数,四隅黑点为阴数,其各行各列及对角线点数之和皆为15.如图,则甲壳上所有阴阳数之和__________;若从五个阳数中随机抽取三个数,则能使得这三个数之和等于15概率是__________.【答案】45 15【分析】由洛书上所有数相加即得和,用列举法列出从五个阳数中随机抽取三个数的所有基本事件,求和后知和为15的基本事件的个数,从而可得概率.【详解】甲壳上所有阴阳数之和为12945++=(或15345⨯=),五个阳数是1,3,5,7,9,任取3个数所得基本事件有:135,137,139,157,159,179,357,359,379,579共10个,其中和为15的有159,357共2个,所求概率为21105P ==.故答案为:45;15. 【点睛】本题考查数学文化,考查古典概型,用列举法是解决古典概型的常用方法.通过中国古代数学文化激发学生的学习兴趣,激发学生求知欲和创新意识,拓展学生的思维,培养学生的爱国情怀. 16.(2021·全国高一单元测试)A ,B 是治疗同一种疾病的两种药,用若干试验组进行对比试验,每个试验组由4只小白鼠组成,其中2只服用A ,另2只服用B ,然后观察疗效,若在一个试验组中,服用A 有效的白鼠的只数比服用B 有效的多,就称该试验组为甲类组,设每只小白鼠服用A 有效的概率为23,服用B 有效的概率为12. (1)求一个试验组为甲类组的概率;(2)观察3个试验组,求这3个试验组中至少有一个甲类组的概率.【答案】(1)49;(2)604729. 【分析】(1)由题意知本题是一个独立重复试验,根据所给的两种药物对小白鼠有效的概率,计算出小白鼠有效的只数的概率,对两种药物有效的小白鼠进行比较,得到甲类组的概率.(2)根据对立事件的概率公式计算可得;【详解】(1)设i A 表示事件:一个试验组中,服用A 有效的小鼠有i 只,0i =,1,2,i B 表示事件“一个试验组中,服用B 有效的小鼠有i 只“,0i =,1,2, 依题意有:1124()2339P A =⨯⨯=,2224()339P A =⨯=.0111()224P B =⨯=, 1111()2222P B =⨯⨯=,所求概率为:010212()()()P P B A P B A P B A =++14141444949299=⨯+⨯+⨯= (2)依题意这3个试验组中至少有一个甲类组的对立事件为这3个试验组中没有一个甲类组的.所以概率34604119729P ⎛⎫=--= ⎪⎝⎭; 【点睛】本题考查相互独立事件的概率公式的应用,以及对立事件的概率计算,属于中档题.【拓展题】(选用)17.(2021·全国高一单元测试)某社区举办《“环保我参与”有奖问答比赛》活动,某场比赛中,甲、乙、丙三个家庭同时回答一道有关环保知识的问题.已知甲家庭回答正确这道题的概率是34,甲、丙两个家庭都回答错误的概率是112,乙、丙两个家庭都回答正确的概率是14.若各家庭回答是否正确互不影响. (1)求乙、丙两个家庭各自回答正确这道题的概率;(2)求甲、乙、丙三个家庭中不少于2个家庭回答正确这道题的概率.【答案】(1)乙:38;丙:23;(2)2132 . 【分析】(1)记“甲回答对这道题”、“乙回答对这道题”、“丙回答对这道题”分别为事件A 、B 、C ,则()34P A =,且有1()?()121()()4P A P C P B P C ⎧=⎪⎪⎨⎪=⎪⎩,由此能求出乙、丙两人各自回答对这道题的概率. (2)首先计算出0个家庭回答正确这道题的概率与1个家庭回答正确这道题的概率,再根据对立事件的概率公式计算可得;【详解】(1)记“甲回答对这道题”、“乙回答对这道题”、“丙回答对这道题”分别为事件A 、B 、C ,则()34P A =,且有1()?()121()()4P A P C P B P C ⎧=⎪⎪⎨⎪=⎪⎩, 即1[1()][1()]121()()4P A P C P B P C ⎧--=⎪⎪⎨⎪=⎪⎩,解得()38P B =, ()23P C =. (2)有0个家庭回答正确的概率为()()()()0151548396P P ABC P A P B P C ===⨯⨯= 有1个家庭回答正确的概率为 ()()()()()()()()()()1P P ABC ABC ABC P A P B P C P A P B P C P A P B P C =++=++351131152748348348324=⨯⨯+⨯⨯+⨯⨯= 所以不少于2个家庭回答正确这道题的概率为01572111962432P P P =--=--= 【点睛】本题主要考查独立重复试验的概率乘法公式,互斥事件和对立事件,体现了分类讨论的数学思想,求出甲、乙、丙三人各自答对这道题的概率,是解题的关键,属于中档题.18.(2021·全国高一单元测试)有一种鱼的身体吸收汞,当这种鱼身体中的汞含量超过其体重的1.00ppm (即百万分之一)时,人食用它,就会对人体产生危害.现从一批该鱼中随机选出30条鱼,检验鱼体中的汞含量与其体重的比值(单位:ppm ),数据统计如下:0.07 0.24 0.39 0.54 0.61 0.66 0.73 0.82 0.82 0.820.87 0.91 0.95 0.98 0.98 1.02 1.02 1.08 1.14 1.201.20 1.26 1.29 1.31 1.37 1.40 1.44 1.58 1.62 1.68(1)求上述数据的中位数、众数、极差,并估计这批鱼该项数据的80%分位数;(2)有A ,B 两个水池,两水池之间有10个完全相同的小孔联通,所有的小孔均在水下,且可以同时通过2条鱼.(ⅰ)将其中汞的含量最低的2条鱼分别放入A 水池和B 水池中,若这2条鱼的游动相互独立,均有13的概率进入另一水池且不再游回,求这两条鱼最终在同一水池的概率;(ⅱ)将其中汞的含量最低的2条鱼都先放入A 水池中,若这2条鱼均会独立地且等可能地从其中任意一个小孔由A 水池进入B 水池且不再游回A 水池,求这两条鱼由不同小孔进入B 水池的概率.【答案】(1)中位数为1;众数为0.82;极差为1.61;估计这批鱼该项数据的80百分位数约为1.34;(2)(ⅰ)49;(ⅱ)910. 【分析】(1)由中位数—排序后处于中间的数,如有两个数取其平均数;众数—出现频率最高的数、极差—最大数与最小数的差;p 百分比位数—数据集中有n 个数:当np 为整数时12np np x x ++,当np 不为整数时[]1np x +;即可求出对应值;(2) (ⅰ)记A :“两鱼最终均在A 水池”; B :“两鱼最终均在B 水池”求出概率,由它们的互斥性即可求得两条鱼最终在同一水池的概率;(ⅱ)记n C :“两鱼同时从第n 个小孔通过”且鱼的游动独立,知1()100n P C =,而10个事件互斥,则“两鱼同时从一个小孔通过”的概率即可求,它与“两条鱼由不同小孔通过”为互斥事件,进而求得其概率【详解】(1)由题意知,数据的中位数为0.98 1.0212+=,数据的众数为0.82, 数据的极差为1.680.07 1.61-=,估计这批鱼该项数据的80百分位数约为1.31 1.37 1.342+= (2)(ⅰ)记“两鱼最终均在A 水池”为事件A ,则212()339P A =⨯= 记“两鱼最终均在B 水池”为事件B ,则212()339P B =⨯= ∵事件A 与事件B 互斥,∴两条鱼最终在同一水池的概率为224()()()999P AB P A P B =+=+= (ⅱ)记“两鱼同时从第一个小孔通过”为事件1C ,“两鱼同时从第二个小孔通过”为事件2C ,依次类推;而两鱼的游动独立 ∴12111()()1010100P C P C ===⨯= 记“两条鱼由不同小孔进入B 水池”为事件C ,则C 与1210...C C C 对立,又由事件1C ,事件2C ,10C 互斥∴121011()(...)1010010P C P C C C ==⨯=即12109()1(...)10P C P C C C =-= 【点睛】本题考查了数据特征值的概念,以及利用条件概率公式,结合互斥事件、独立事件等概念求概率;注意独立事件:多个事件的发生互不相关,且可以同时发生;互斥事件:一个事件发生则另一个事件必不发生,即不能同时发生。
概率与事件综合经典题(含详解答案)问题一:投色子
小明和小王玩一个游戏,游戏规则为两个人轮流投掷一个均匀的六面色子,投到点数为6的人获胜。
若小明先投,请问小明获胜的概率是多少?
解析:
设小明获胜的概率为p,则小王获胜的概率为1-p。
若小明投到6,则小明获胜;若小明投到1、2、3、4、5,则轮到小王投掷。
所以小明获胜的概率为:
p = 1/6 + (1-p) * 1/6 + (1-p)^2 * 1/6 + (1-p)^3 * 1/6 + ... ...
化简得到:
p = 1/7,即小明获胜的概率为1/7。
问题二:选球
有10个编号为1到10的球,从中不放回地抽取3个,求编号之和为偶数的概率。
解析:
球的编号之和为偶数有两种情况:
1. 选出的三个球编号均为偶数。
2. 选出的三个球编号中有两个是奇数,一个是偶数。
情况1的概率为:
C(5,3)/C(10,3) = 5/42。
情况2的概率为:
C(5,2) * C(5,1)/C(10,3) = 10/42。
所以编号之和为偶数的概率为:
5/42 + 10/42 = 5/21。
问题三:小球分组
有10个编号为1到10的球,其中2个是红球,3个是黄球,5
个是白球。
现从中任意抽取5个球,求其中恰好有3个白球的概率。
解析:
从10个球中任意选出5个的组合数为:
C(10,5) = 252。
从5个白球中任选出3个,从5个非白球中任选出2个的组合
数为:
C(5,3) * C(5,2) = 100。
所以恰好有3个白球的概率为:
100/252 = 25/63。