5、力与直线运动:弹簧问题-2021-2022年度高考尖子生培优专题(解析版)
- 格式:docx
- 大小:367.20 KB
- 文档页数:15
2023年高三物理二轮常见模型与方法强化专训专练专题04 弹簧模型一、高考真题1.(2022年江苏卷)如图所示,轻质弹簧一端固定,另一端与物块A 连接在一起,处于压缩状态,A 由静止释放后沿斜面向上运动到最大位移时,立即将物块B 轻放在A 右侧,A 、B 由静止开始一起沿斜面向下运动,下滑过程中A 、B 始终不分离,当A 回到初始位置时速度为零,A 、B 与斜面间的动摩擦因数相同、弹簧未超过弹性限度,则( )A .当上滑到最大位移的一半时,A 的加速度方向沿斜面向下B .A 上滑时、弹簧的弹力方向不发生变化C .下滑时,B 对A 的压力先减小后增大D .整个过程中A 、B 克服摩擦力所做的总功大于B 的重力势能减小量【答案】B【详解】B .由于A 、B 在下滑过程中不分离,设在最高点的弹力为F ,方向沿斜面向下为正方向,斜面倾角为θ,AB 之间的弹力为F AB ,摩擦因素为μ,刚下滑时根据牛顿第二定律对AB 有()()()A B A B A B sin cos F m m g m m g m m a θμθ++−+=+对B 有B B AB B sin cos m g m g F m a θμθ−−=联立可得AB A B BF F m m m =−+由于A 对B 的弹力F AB 方向沿斜面向上,故可知在最高点F 的方向沿斜面向上;由于在最开始弹簧弹力也是沿斜面向上的,弹簧一直处于压缩状态,所以A 上滑时、弹簧的弹力方向一直沿斜面向上,不发生变化,故B 正确;A .设弹簧原长在O 点,A 刚开始运动时距离O 点为x 1,A 运动到最高点时距离O 点为x 2;下滑过程AB 不分离,则弹簧一直处于压缩状态,上滑过程根据能量守恒定律可得()()22121211sin 22kx kx mg f x x θ=++− 化简得()122sin mg f k x x θ+=+当位移为最大位移的一半时有()121in =s +2F f x x k x mg θ−⎛⎫−− ⎪⎝⎭合带入k 值可知F 合=0,即此时加速度为0,故A 错误;C .根据B 的分析可知AB A B BF F m m m =−+再结合B 选项的结论可知下滑过程中F 向上且逐渐变大,则下滑过程F AB 逐渐变大,根据牛顿第三定律可知B 对A 的压力逐渐变大,故C 错误;D .整个过程中弹力做的功为0,A 重力做的功为0,当A 回到初始位置时速度为零,根据功能关系可知整个过程中A 、B 克服摩擦力所做的总功等于B 的重力势能减小量,故D 错误。
弹簧类专题一、选择题1、如图,物块a、b和c的质量相同,a和b、b和c之间用完全相同的轻弹簧S1和S2相连,通过系在a上的细线悬挂于固定点O;整个系统处于静止状态;现将细绳剪断,将物块a的加速度记为a1,S1和S2相对原长的伸长分别为△l1和△l2,重力加速度大小为g,在剪断瞬间A.a1=3gB.a1=0C. △l1=2△l2D. △l1=△l22、如图所示,绝缘粗糙斜面体固定在水平地面上,斜面所在空间存在平行于斜面向上的匀强电场E,轻弹簧一端固定在斜面顶端,另一端拴接一不计质量的绝缘薄板.一带正电的小滑块,从斜面上的P点处由静止释放后,沿斜面向上运动,并能压缩弹簧至R点(图中未标出),然后返回.则( )A.滑块从P点运动到R点的过程中,其机械能增量等于电场力与弹簧弹力做功之和B.滑块从P点运动到R点的过程中,电势能的减小量大于重力势能和弹簧弹性势能的增加量之和C.滑块返回能到达的最低位置在P点的下方D.滑块最终停下时,克服摩擦力所做的功等于电势能的减小量与重力势能增加量之差3、如图所示,水平桌面上的轻质弹簧一端固定,另一端与小物块相连.弹簧处于自然长度时物块位于O点(图中未标出).物块的质量为m,AB=a,物块与桌面间的动摩擦因数为μ.现用水平向右的力将物块从O点拉至A点,拉力做的功为W.撤去拉力后物块由静止向左运动,经O 点到达B点时速度为零.重力加速度为g. 则上述过程中( )A.OA=OBB.OA>OBC.物块经过O点时,速度最大D.物块在B点时,弹簧的弹性势能等于W﹣μmga4、如图所示,由轻质弹簧下面悬挂一物块组成一个竖直方向振动的弹簧振子,弹簧的上端固定于天花板,当物块处于静止状态时,取它的重力势能为零,现将物块向下拉一小段距离后放手,此后振子在平衡位置附近上下做简谐运动,不计空气阻力,则A.振子速度最大时,振动系统的势能为零B.振子速度最大时,物块的重力势能与弹簧的弹性势能相等C.振子经平衡位置时,振动系统的势能最小D.振子在振动过程中,振动系统的机械能不守恒5、如下图示,一根轻弹簧上端固定在O点,下端拴一个钢球P,球处于静止状态。
高考热点专题——有关弹簧问题的分析与计算弹簧类问题在高中物理中占有相当重要的地位,且涉及到的物理问题多是一些综合性较强、物理过程又比较复杂的问题,从受力的角度看,弹簧上的弹力是变力;从能量的角度看,弹簧是个储能元件;因此,关于弹簧的问题,能很好的考察学生的分析综合能力,备受高考命题专家的青睐。
解决这些问题除了一般要用动量守恒定律和能量守恒定律这些基本规律之外,搞清物体的运动情景,特别是弹簧所具有的一些特点,也是正确解决这类问题的重要方法。
在有关弹簧类问题中,要特别注意使用如下特点和规律:1.弹簧的弹力是一种由形变而决定大小和方向的力。
当题目中出现弹簧时,要注意弹力的大小与方向时刻要与当时的形变相对应。
在题目中一般应从弹簧的形变分析入手,先确定弹簧原长位置、现长位置,找出形变量x与物体空间位置变化的几何关系,分析形变所对应的弹力大小、方向,以此来分析计算物体运动状态的可能变化。
2. 弹簧的弹力不能突变,它的变化要经历一个过程,这是由弹簧形变的改变要逐渐进行决定的。
在瞬间内形变量可以认为不变,因此,在分析瞬时变化时,可以认为弹力大小不变,即弹簧的弹力不突变。
3、弹簧上的弹力是变力,弹力的大小随弹簧的形变量发生变化,求弹力的冲量和弹力做功时,不能直接用冲量和功的定义式,一般要用动量定理和动能定理计算。
弹簧的弹力与形变量成正比例变化,故它引起的物体的加速度、速度、动量、动能等变化不是简单的单调关系,往往有临界值。
如果弹簧被作为系统内的一个物体时,弹簧的弹力对系统内物体做不做功都不影响系统的机械能。
4、对于只有一端有关联物体,另一端固定的弹簧,其运动过程可结合弹簧振子的运动规律去认识,突出过程的周期性、对称性及特殊点的应用。
如当弹簧伸长到最长或压缩到最短时,物体的速度最小(为零),弹簧的弹性势能最大,此时,也是关联物的速度方向发生改变的时刻。
若关联物与接触面间光滑,当弹簧恢复原长时,物体速度最大,弹性势能为零。
常见弹簧类问题归类剖析一、“轻弹簧”类问题簧轻弹簧中各部分间的张力处处相等,均等于弹簧两端的受力.【例1】如图1所示,一个弹簧秤放在光滑的水平面上,外壳质量m 不能忽略,弹簧及挂钩质量不计,施加水平方向的力1F 、2F ,且12F F >,则弹簧秤沿水平方向的加速度为 ,弹簧秤的读数为 .【12F F a m-= 1F 】二、质量不可忽略的弹簧【例2】如图2所示,一质量为M 、长为L 的均质弹簧平放在光滑的水平面,在弹簧右端施加一水平力F 使弹簧向右做加速运动.试分析弹簧上各部分的受力情况.【x xT F L=】三、弹簧长度的变化问题(胡克定律的理解与应用)F k x ∆=∆ 弹簧受力的变化与弹簧长度的变化也同样遵循胡克定律,此时x ∆表示的物理意义是弹簧长度的改变量,并不是形变量.【例3】如图3所示,劲度系数为1k 的轻质弹簧两端分别与质量为1m 、2m 的物块1、2拴接,劲度系数为2k 的轻质弹簧上端与物块2拴接,下端压在桌面上(不拴接),整个系统处于平衡状态.现将物块1缓慢地竖直上提,直到下面那个弹簧的下端刚脱离桌面.在此过程中,物块2的重力势能增加了 ,物块1的重力势能增加了 .【221221()m m m g k + 21121211()()m m m g k k ++】四、与物体平衡相关的弹簧问题【例4】(山东卷)如图所示,用完全相同的轻弹簧A 、B 、C 将两个相同的小球连接并悬挂,小球处于静止状态,弹簧A 与竖直方向的夹角为30o,弹簧C 水平,则弹簧A 、C 的伸长量之比为 A .4:3 B.3:4 C. 1:2 D. 2:1五、与动力学相关的弹簧问题【例5】如图所示,一轻质弹簧竖直放在水平地面上,小球A 由弹簧正上方某高度自由落下,与弹簧接触后,开始压缩弹簧,设此过程中弹簧始终服从胡克定律,那么在小球压缩弹簧的过程中,以下说法中正确的是( )A.小球加速度方向始终向上B.小球加速度方向始终向下C.小球加速度方向先向下后向上D.小球加速度方向先向上后向下六、弹簧弹力瞬时问题(弹簧的弹力不能突变)【例6】如图6所示,木块A 与B 用轻弹簧相连,竖直放在木块C 上,三者静置于地面,A B C 、、的质量之比是1:2:3.设所有接触面都光滑,当沿水平方向迅速抽出木块C 的瞬时,木块A 和B 的加速度分别是Aa =与B a=【,1.5g 】图2图1图 3【例7】一根大弹簧内套一根小弹簧,大弹簧比小弹簧长0.2m ,它们的一端固定,另一端自由,弹力与形变量的关系如图所示,求这两根弹簧的劲度系数k 1(大弹簧)和k 2(小弹簧)分别为多少?【 k 1=100N/m k 2=200N/m) 】八、弹簧形变量可以代表物体的位移【例8】如图8所示,在倾角为θ的光滑斜面上有两个用轻质弹簧相连接的物块A B 、,其质量分别为A B m m 、,弹簧的劲度系数为k ,C 为一固定挡板,系统处于静止状态,现开始用一恒力F 沿斜面方向拉A 使之向上运动,求B 刚要离开C 时A 的加速度a 和从开始到此时A 的位移d (重力加速度为g ).【()sin A B A F m m g a m θ-+= ()sin AB m m g d kθ+=】九、最大转速和最小转速问题【例9】 有一水平放置的圆盘,上面放一个劲度系数为k 的轻弹簧,其一端固定于轴O 上,另一端系着质量为m 的物体A ,物体A 与盘面间最大静摩擦力为Ffm ,弹簧原长为L ,现将弹簧伸长∆L 后置于旋转的桌面上,如图所示,问:要使物体相对于桌面静止,圆盘转速n 的最大值和最小值各是多少?【12πk L F m L L fm ∆∆++()和12πk L F m L L fm ∆∆-+()】拓展:若盘面光滑,弹簧的原长为L0,当盘以W 匀角速度转动时,弹簧的伸长量为多少?【)(02x L mw x k ∆+=∆】十、弹力变化的运动过程分析(弹簧振子振动模型)【例10】如图10所示,质量为m 的物体A 用一轻弹簧与下方地面上质量也为m 的物体B 相连,开始时A 和B 均处于静止状态,此时弹簧压缩量为0x ,一条不可伸长的轻绳绕过轻滑轮,一端连接物体A 、另一端C 握在手中,各段绳均刚好处于伸直状态,物体A 上方的一段绳子沿竖直方向且足够长.现在C 端施加水平恒力F 使物体A 从静止开始向上运动.(整个过程弹簧始终处在弹性限度以内).(1)如果在C 端所施加的恒力大小为3mg ,则在物体B 刚要离开地面时物体A 的速度为多大? (2)若将物体B 的质量增加到2m ,为了保证运动中物体B 始终不离开地面,则F 最大不超过多少?(此问自主招生选做)【答案】022gx32mg说明: 区别原长位置与平衡位置.和原长位置对应的形变量与弹力大小、方向、弹性势能相关,和平衡位置对应的位移量与回复大小、方向、速度、加速度相关.图 8图 10两物体分离之前加速度与速度均相同,刚分离时二者之间弹力为零。
高一物理培优5:弹簧模型(参考答案)一、选择题1. 【答案】B【解析】A .人由P 至c 的全过程中,外力的总冲量为重力的冲量与弹性绳弹力的冲量的矢量和,根据动量定理,外力的总冲量应等于人的动量增量,人在P 与c 时速度均为零,则动量的增量为零,则重力的冲量大小应等于绳弹力的冲量大小,方向相反,总冲量为零,选项A 错;B .根据动能定理,人由P 至c 过程中,人的动能增量为零,则重力与绳弹力做的总功为零,重力所做的功等于克服弹力所做的功,选项B 正确;C .人在b 点加速度为零,受力平衡,C 错误;D.根据对称性,当人运动到a 关于b 的对称点时加速度为g ,方向向上,继续减速,在c 点,人的速度为零,其加速度大于g ,D 正确。
2. 【答案】BC【解析】解:弹簧被压缩至最短时的弹性势能为E p ,由功能关系,得:下滑过程:(M +m )gh -μ(M +m )g cos θhsin θ=E p上滑过程:E p =Mg ·h +μMg cos θ·hsin θ解得m =2M ,故选项A 错B 对; 上滑时加速度:a 上=g sin θ+μg cos θ 下滑时加速度:a 下=g sin θ-μg cos θ 故选项C 正确;由能量守恒定律得,减少的重力势能转化为弹簧的弹性势能和内能,选项D 错误. 3. 【答案】BCD【解析】A .由图可知,小球到最低点时,高度下降0.6m ,则重力势能减少p1max 6J E mgh ∆== 重力势能转化为摩擦热和弹簧的弹性势能,根据max p2p1Q fh E E ==∆-∆ 解得2N f =则图乙中4a =故A 错误;B .结合图甲和图丙,可知小球高度下降0.5m 内,只有重力做功,根据k mgh fh E -=解得0.5m y =时的动能k 4J E =故B 正确;C .当小球动能最大时,小球加速度为零,根据平衡条件F f mg +=弹解得8N F =弹簧故C 正确;D .根据功能关系可知,小球高度下降0.5m 时,机械能的减少量等于克服阻力所做的功为10E c fx ∆=-= 解得9c =根据能量守恒定律可知,小球高度下降0.6m 时,动能为零,则小球减少的重力势能等于减少的机械能为6J ,则4d =故D 正确。
高中物理弹簧问题(原创实用版)目录1.弹簧问题的背景和概述2.弹簧问题的解题思路和方法3.弹簧问题的典型例题解析4.弹簧问题的注意事项和误区点拨5.弹簧问题在中高考中的应用和意义正文高中物理弹簧问题是物理学科中的一个重要内容,涉及对弹簧的理解和应用。
弹簧是一种具有弹性的物体,在外力作用下能产生形变,当外力去除后能恢复原状。
弹簧问题在中高考中频繁出现,对学生的综合能力和思维能力有较高的要求。
在解决弹簧问题时,通常需要遵循以下步骤和方法:1.确定研究对象和受力分析:在解决弹簧问题时,首先要明确研究对象,分析物体受到的各种外力,如重力、弹力、推力等。
2.运用胡克定律:胡克定律是弹簧问题的核心,它描述了弹簧的伸长量与所受拉力成正比。
在解题过程中,要充分运用胡克定律,根据弹簧的伸长量或压缩量求出弹力。
3.利用牛顿第二定律:在求解弹簧问题时,常常需要运用牛顿第二定律,通过列方程求解物体的加速度。
4.注意临界情况:在弹簧问题中,有时会出现临界情况,如物体的分离、弹簧的断裂等。
在解题过程中,要特别注意这些临界情况,避免出现不合理的答案。
5.灵活运用整体法和隔离法:在解决弹簧问题时,可以根据问题的具体情况,灵活运用整体法和隔离法进行求解。
在解决弹簧问题时,还需注意以下事项和误区:1.弹力与弹簧长度的关系:弹力与弹簧的伸长量或压缩量成正比,而不是与弹簧的长度成正比。
2.注意弹簧的压缩和拉伸:在解题过程中,要分清弹簧是处于压缩状态还是拉伸状态,避免出现错误的答案。
3.弹簧问题的功能关系:在解决弹簧问题时,要注意功与能的关系,根据能量守恒原理进行求解。
通过以上分析,我们可以得出高中物理弹簧问题的解题思路和方法。
在实际应用中,弹簧问题可以出现在各种题型中,如选择题、填空题、计算题等。
压轴题03弹簧类专题1.足够长的光滑细杆竖直固定在地面上,轻弹簧及小球A 、B 均套在细杆上,弹簧下端固定在地面上,上端和质量为m 1=50g 的小球A 相连,质量为m 2=30g 的小球B 放置在小球A 上,此时A 、B 均处于静止状态,弹簧的压缩量x 0=0.16m ,如图所示。
从t=0时开始,对小球B 施加竖直向上的外力,使小球B 始终沿杆向上做匀加速直线运动。
经过一段时间后A 、B 两球分离;再经过同样长的时间,B 球距其出发点的距离恰好也为x 0。
弹簧的形变始终在弹性限度内,重力加速度取g=10m/s 2。
求:(1)弹簧的劲度系数k ;(2)整个过程中小球B 加速度a 的大小及外力F 的最大值。
【答案】(1)5N/m ;(2)2m/s 2,0.36N 【解析】 【详解】(1)根据共点力平衡条件和胡克定律得:()120m m g kx += 解得:5/k N m =;(2)设经过时间t 小球A 、B 分离,此时弹簧的压缩量为0x , 对小球A :11kx m g m a -=2012x x at -=小球B :()20122x a t =当B 与A 相互作用力为零时F 最大对小球B :22F m g m a -=解得:22/a m s = ,0.36F N =2.如图所示,半径为R 的光滑半圆形导轨固定在竖直面内的AB 两点,直径AB 与竖直方向的夹角为60°,导轨上的C 点在A 点的正下方,D 点是轨道的最低点,质量为m 的圆环套在导轨上,圆环通过两个相同的轻弹簧分别与A 、B 两点连接,弹簧原长均为R ,对圆环施加水平向右的力F =10可使其静止在D 点。
(1)求弹簧的劲度系数k :(2)由C 点静止释放圆环,求圆环运动到D 点的动能E k ;(3)由C 点静止释放圆坏,求圆环运动到D 点时对轨道的作用力N 。
【答案】(1)(310mgk R+=;(2)2k mgR E =;(3)1.7mg ,方向竖直向下【解析】 【分析】 【详解】(1)如图1所示,圆环在D 点时,BD 弹簧处于原长,AD 弹簧的伸长量为x =R 受力分析,正交分解sin 30F kx =解得k =(2)C 点与D 点的高度差 h =0.5R圆环从C 运动到D ,弹簧弹性势能不变,根据机械能守恒k mgh E =解得2k mgRE =(3)如图2所示,圆环运动到D 点时的速度v 受力分析,正交分解2cos30v kx N mg m R'+-=解得1.7N mg '=根据牛顿第三定律,圆环对轨道的作用力N 为1.7N N mg '==方向竖直向下.3.如图,A 、B 两小球由绕过轻质定滑轮的细线相连,A 放在固定的光滑斜面上,B 、C 两小球在竖直方向上通过劲度系数为k 的轻质弹簧相连,C 球放在水平地面上.现用手控制住A ,并使细线刚刚拉直但无拉力作用,并保证滑轮左侧细线竖直、右侧细线与斜面平行.已知A 的质量为4m ,B 、C 的质量均为m ,重力加速度为g ,细线与滑轮之间的摩擦不计.开始时整个系统处于静止状态.释放A 后,A 沿斜面下滑至速度最大时,C 恰好离开地面.求:(1)斜面倾角α=?(2)A 获得的最大速度为多少?【答案】(1)30=α︒(2)2v = 【解析】 【分析】 【详解】(1)释放A 后,A 斜面加速下滑,当速度最大时,加速度0A a =,A 、B 之间通过绳连接,则A 速度最大时,B 的速度也最大,加速度0B a =,以A 、B 整体为研究对象,由平衡条件得:4sin mg F mg α=+,F 为此时弹簧弹力,因C 此时恰好离开地面,则有F mg =,联立方程得斜面倾角30=α︒.(2)刚开始以B 为研究对象弹簧弹力01F mg kx ==, C 恰好离开地面时以C 为研究对象, 弹簧弹力2F mg kx ==,所以12mgx x k==,由能量守恒得:2121214sin ()()(4)2mg x x mg x x m m v -α++=+,解得2v =【点睛】本题关键是对三个物体分别受力分析,得出物体B 速度最大时各个物体都受力平衡,然后根据平衡条件分析;同时要注意是那个系统机械能守恒4.一轻弹簧的一端固定在倾角为θ的固定光滑斜面的底部,另一端和质量为m 的小物块a 相连,如图所示.质量为35m 的小物块b 紧靠a 静止在斜面上,此时弹簧的压缩量为x 0,从t=0时开始,对b 施加沿斜面向上的外力,使b 始终做匀加速直线运动.经过一段时间后,物块a 、b 分离;再经过同样长的时间,b 距其出发点的距离恰好也为x 0.弹簧的形变始终在弹性限度内,重力加速度大小为g .求:(1)弹簧的劲度系数; (2)物块b 加速度的大小;(3)在物块a 、b 分离前,外力大小随时间变化的关系式.【答案】(1)08sin 5mg x θ (2)sin 5g θ(3)22084sin sin 2525mg F mg x θθ=+ 【解析】 【详解】(1)对整体分析,根据平衡条件可知,沿斜面方向上重力的分力与弹簧弹力平衡,则有: kx 0=(m+35m )gsinθ 解得:k=8 5mgsin x θ(2)由题意可知,b 经两段相等的时间位移为x 0; 由匀变速直线运动相邻相等时间内位移关系的规律可知:1014x x = 说明当形变量为0010344x x x x =-=时二者分离; 对m 分析,因分离时ab 间没有弹力,则根据牛顿第二定律可知:kx 1-mgsinθ=ma 联立解得:a=15gsin θ(3)设时间为t ,则经时间t 时,ab 前进的位移x=12at 2=210gsin t θ则形变量变为:△x=x 0-x对整体分析可知,由牛顿第二定律有:F+k △x -(m+35m )gsinθ=(m+35m )a 解得:F=825mgsinθ+220425mg sin x θt 2 因分离时位移x=04x 由x=04x =12at 2解得:t =故应保证0≤tF 表达式才能成立.点睛:本题考查牛顿第二定律的基本应用,解题时一定要注意明确整体法与隔离法的正确应用,同时注意分析运动过程,明确运动学公式的选择和应用是解题的关键.5.如图所示,半径R =2.8m 的光滑半圆轨道BC 与倾角θ=37°的粗糙斜面轨道在同一竖直平面内,两轨道间由一条光滑水平轨道AB 相连,A 处用光滑小圆弧轨道平滑连接,B 处与圆轨道相切.在水平轨道上,两静止小球P 、Q 压紧轻质弹簧后用细线连在一起.某时刻剪断细线后,小球P 向左运动到A 点时,小球Q 沿圆轨道到达C 点;之后小球Q 落到斜面上时恰好与沿斜面向下运动的小球P 发生碰撞.已知小球P 的质量m 1=3.2kg ,小球Q 的质量m 2=1kg ,小球P 与斜面间的动摩擦因数μ=0.5,剪断细线前弹簧的弹性势能E p =168J ,小球到达A 点或B 点时已和弹簧分离.重力加速度g =10m/s 2,sin 37°=0.6,cos 37°=0.8,不计空气阻力,求:(1)小球Q 运动到C 点时的速度大小; (2)小球P 沿斜面上升的最大高度h ;(3)小球Q 离开圆轨道后经过多长时间与小球P 相碰. 【答案】(1)12m/s(2)0.75m(3)1s 【解析】 【详解】(1)两小球弹开的过程,由动量守恒定律得:m 1v 1=m 2v 2 由机械能守恒定律得:2211221122P E m v m v =+联立可得:v 1=5m/s ,v 2=16m/s小球Q 沿圆轨道运动过程中,由机械能守恒定律可得:22222211222C m v m v m gR =+ 解得:v C =12m/s ,(2)小球P 在斜面向上运动的加速度为a 1由牛顿第二定律得:m 1g sin θ+μm 1g cos θ=m 1a 1, 解得:a 1=10m/s 2故上升的最大高度为:211sin 2v h a θ==0.75m (3)设两小球相遇点距离A 点为x ,小球P 从A 点上升到两小球相遇所用的时间为t ,小球P 沿斜面下滑的加速度为a 2由牛顿第二定律得:m 1g sin θ-μm 1g cos θ=m 1a 2, 解得:a 2=2m/s 2小球P 上升到最高点所用的时间:111v t a ==0.5 s , 则:2221112()sin 22R gt h a t t θ=+-- 解得:t =1s.6.(2020·重庆市育才中学高三开学考试)如图所示,光滑斜面体ABC 固定在地面上,斜面AB 倾角为37°,斜面AC 倾角为53°,P 、Q 两个物块分别放在AB 、AC 斜面上,并用绕过斜面体顶端A 处光滑定滑轮的细线连接。
5、力与直线运动:弹簧问题一.两类模型(1)刚性绳(或接触面)——不发生明显形变就能产生弹力的物体,剪断(或脱离)后,其弹力立即消失,不需要形变恢复时间.(2)弹簧(或橡皮绳)——两端同时连接(或附着)有物体的弹簧(或橡皮绳),特点是形变量大,其形变恢复需要较长时间,在瞬时性问题中,其弹力的大小往往可以看成保持不变.2、求解瞬时加速度问题时应抓住“两点”(1)物体的受力情况和运动情况是时刻对应的,当外界因素发生变化时,需要重新进行受力分析和运动分析.(2)加速度可以随着力的突变而突变,而速度的变化需要一个过程的积累,不会发生突变.二、动态变化问题力与运动的关系:力→加速度→速度变化→(运动状态变化)(1)分析物体的运动性质,要从受力分析入手,先求合力,然后根据牛顿第二定律分析加速度的变化。
(2)速度增大或减小取决于加速度和速度方向间的关系,和加速度的大小没有关系。
(3)加速度如何变化取决于物体的质量和合外力,与物体的速度没有关系。
三、临界问题物体分离的临界条件时两物体间相互作用力为0例1、(2021·山东泰安模拟)如图,质量为1.5 kg的物体A静止在竖直的轻弹簧上,质量为0.5 kg的物体B由细线悬挂在天花板上,B与A刚好接触但不挤压.现突然将细线剪断,则剪断后瞬间A、B间的作用力大小为(g取10 m/s2)( )A.0 B.2.5 NC.5 N D.3.75 N【解析】当细线剪断瞬间,细线的弹力突然变为零,则B物体的重力突然作用到A上,此时弹簧形变仍不变,对AB整体受力分析受重力G=(m A+m B)g=20 N,弹力为F=m A g=15 N,由牛顿第二定律G-F=(m A+m B)a,解得a=2.5 m/s2,对B受力分析,B受重力和A对B的弹力F1,对B有m B g-F1=m B a,可得F1=3.75 N,D选项正确.【答案】 D针对训练1. (多选)如图所示,质量为m的小球被一根橡皮筋AC和一根绳BC系住,当小球静止时,橡皮筋处在水平方向上.下列判断中正确的是( )A .在AC 被突然剪断的瞬间,BC 对小球的拉力不变B .在AC 被突然剪断的瞬间,小球的加速度大小为g sin θC .在BC 被突然剪断的瞬间,小球的加速度大小为g cos θD .在BC 被突然剪断的瞬间,小球的加速度大小为g sin θ【解析】:选BC .设小球静止时BC 绳的拉力为F ,AC 橡皮筋的拉力为T ,由平衡条件可得:F cos θ=mg ,F sin θ=T ,解得:F =mgcos θ,T =mg tan θ.在AC 被突然剪断的瞬间,BC 上的拉力F 也发生了突变,小球的加速度方向沿与BC 垂直的方向且斜向下,大小为a =mg sin θm=g sin θ,B 正确,A 错误;在BC 被突然剪断的瞬间,橡皮筋AC 的拉力不变,小球的合力大小与BC 被剪断前拉力的大小相等,方向沿BC 方向斜向下,故加速度a =Fm=gcos θ,C 正确,D 错误.【答案】 BC针对训练2、(多选)如图所示,在水平地面上的箱子内,用细线将质量均为m 的两个球a 、b 分别系于箱子的上、下两底的内侧,轻质弹簧两端分别与球相连接,系统处于静止状态时,弹簧处于拉伸状态,下端细线对箱底的拉力为F ,箱子的质量为M ,则下列说法正确的是(重力加速度为g )( )A .系统处于静止状态时地面受到的压力大小为(M +2m )g -FB .系统处于静止状态时地面受到压力大小为(M +2m )gC .剪断连接球b 与箱底的细线的瞬间,地面受到的压力大小为(M +2m )g +FD .剪断连接球b 与箱底的细线的瞬间,地面受到的压力大小为(M +2m )g【解析】 系统处于静止状态时,对整体进行受力分析,由平衡条件可得,地面对整体的支持力F N =(M +2m )g ,由牛顿第三定律可知地面受到的压力大小为(M +2m )g ,选项B 正确,A 错误;剪断连接球b 与箱底的细线瞬间,球b 向上加速运动,地面受到的压力大小为(M +2m )g +F ,选项C 正确,D 错误。
专题弹簧类问题(附参考答案)高考动向弹簧问题能够较好的培养学生的分析解决问题的能力和开发学生的智力,借助于弹簧问题,还能将整个力学知识和方法有机地结合起来系统起来,因此弹簧问题是高考命题的热点,历年全国以及各地的高考命题中以弹簧为情景的选择题、计算题等经常出现,很好的考察了学生对静力学问题、动力学问题、能量守恒问题、功能关系问题等知识点的理解,考察了对于一些重要方法和思想的运用。
弹簧弹力的特点:弹簧弹力的大小可根据胡克定律计算(在弹性限度内),即F=kx,其中x是弹簧的形变量(与原长相比的伸长量或缩短量,不是弹簧的实际长度)。
高中研究的弹簧都是轻弹簧(不计弹簧自身的质量,也不会有动能和加速度)。
不论弹簧处于何种运动状态(静止、匀速或变速),轻弹簧两端所受的弹力一定等大反向。
弹簧的弹力属于接触力,弹簧两端必须都与其它物体接触才可能有弹力。
如果弹簧的一端和其它物体脱离接触,或处于拉伸状态的弹簧突然被剪断,那么弹簧两端的弹力都将立即变为零。
在弹簧两端都保持与其它物体接触的条件下,弹簧弹力的大小F=kx与形变量x成正比。
由于形变量的改变需要一定时间,因此这种情况下,弹力的大小不会突然改变,即弹簧弹力大小的改变需要一定的时间。
(这一点与绳不同,高中物理研究中,是不考虑绳的形变的,因此绳两端所受弹力的改变可以是瞬时的。
)一、与物体平衡相关的弹簧例.如图示,两木块的质量分别为m1和m2,两轻质弹簧的劲度系数分别为k1和k2,上面木块压在上面的弹簧上(但不拴接),整个系统处于平衡状态.现缓慢向上提上面的木块,直到它刚离开上面弹簧.在这过程中下面木块移动的距离为( )A.m1g/k1B.m2g/k2C.m1g/k2D.m2g/k2此题是共点力的平衡条件与胡克定律的综合题.题中空间距离的变化,要通过弹簧形变量的计算求出.注意缓慢上提,说明整个系统处于一动态平衡过程,直至m1离开上面的弹簧.开始时,下面的弹簧被压缩,比原长短(m1 + m2)g/k2,而m l刚离开上面的弹簧,下面的弹簧仍被压缩,比原长短m2g/k2,因而m2移动△x=(m1 + m2)·g/k2 -m2g/k2=m l g/k2.参考答案:C此题若求m l移动的距离又当如何求解?二、与分离问题相关的弹簧两个相互接触的物体被弹簧弹出,这两个物体在什么位置恰好分开?这属于临界问题。
弹簧高考试题及答案一、单项选择题(每题4分,共40分)1. 下列关于弹簧的描述中,哪一个是正确的?A. 弹簧的弹性势能与弹簧的形变量成正比B. 弹簧的弹性系数是一个定值,与弹簧的形变量无关C. 弹簧的弹性系数与弹簧的材料和形状有关D. 弹簧的形变量越大,弹性系数越小答案:C2. 弹簧在受到外力作用下发生形变,当外力撤去后,弹簧恢复原状的能力称为:A. 弹性B. 塑性C. 韧性D. 硬度答案:A3. 弹簧的弹性系数k与弹簧的形变量x之间的关系是:A. k与x成正比B. k与x成反比C. k与x无关D. k随x的增大而增大答案:C4. 弹簧的弹性势能公式为:A. U = 1/2 kx^2B. U = kxC. U = x^2/2kD. U = k^2/2x答案:A5. 当弹簧的形变量增加一倍时,其弹性势能将:A. 增加一倍B. 增加两倍C. 增加四倍D. 减少一半答案:C6. 弹簧的弹性系数k与弹簧的劲度系数是:A. 同一个概念B. 不同的概念C. 劲度系数是弹性系数的两倍D. 弹性系数是劲度系数的两倍答案:A7. 弹簧的弹性系数k越大,说明弹簧的:A. 弹性越强B. 弹性越弱C. 形变越容易D. 形变越困难答案:D8. 弹簧的形变量x与弹簧施加的力F之间的关系是:A. F与x成正比B. F与x成反比C. F与x无关D. F随x的增大而减小答案:A9. 弹簧的弹性势能与弹簧的劲度系数k和形变量x的关系是:A. U = kxB. U = k^2xC. U = 1/2 kx^2D. U = kx^2答案:C10. 当弹簧的形变量减小时,其弹性势能将:A. 增加B. 减少C. 保持不变D. 先增加后减少答案:B二、计算题(每题10分,共20分)11. 已知弹簧的劲度系数k=200N/m,弹簧的形变量x=0.1m,求弹簧的弹性势能。
答案:U = 1/2 kx^2 = 1/2 × 200 × 0.1^2 = 1J12. 已知弹簧的弹性系数k=500N/m,弹簧施加的力F=100N,求弹簧的形变量。
5、力与直线运动:弹簧问题一.两类模型(1)刚性绳(或接触面)——不发生明显形变就能产生弹力的物体,剪断(或脱离)后,其弹力立即消失,不需要形变恢复时间.(2)弹簧(或橡皮绳)——两端同时连接(或附着)有物体的弹簧(或橡皮绳),特点是形变量大,其形变恢复需要较长时间,在瞬时性问题中,其弹力的大小往往可以看成保持不变.2、求解瞬时加速度问题时应抓住“两点”(1)物体的受力情况和运动情况是时刻对应的,当外界因素发生变化时,需要重新进行受力分析和运动分析.(2)加速度可以随着力的突变而突变,而速度的变化需要一个过程的积累,不会发生突变.二、动态变化问题力与运动的关系:力→加速度→速度变化→(运动状态变化)(1)分析物体的运动性质,要从受力分析入手,先求合力,然后根据牛顿第二定律分析加速度的变化。
(2)速度增大或减小取决于加速度和速度方向间的关系,和加速度的大小没有关系。
(3)加速度如何变化取决于物体的质量和合外力,与物体的速度没有关系。
三、临界问题物体分离的临界条件时两物体间相互作用力为0例1、(2021·山东泰安模拟)如图,质量为1.5 kg的物体A静止在竖直的轻弹簧上,质量为0.5 kg的物体B由细线悬挂在天花板上,B与A刚好接触但不挤压.现突然将细线剪断,则剪断后瞬间A、B间的作用力大小为(g取10 m/s2)( )A.0 B.2.5 NC.5 N D.3.75 N【解析】当细线剪断瞬间,细线的弹力突然变为零,则B物体的重力突然作用到A上,此时弹簧形变仍不变,对AB整体受力分析受重力G=(m A+m B)g=20 N,弹力为F=m A g=15 N,由牛顿第二定律G-F=(m A+m B)a,解得a=2.5 m/s2,对B受力分析,B受重力和A对B的弹力F1,对B有m B g-F1=m B a,可得F1=3.75 N,D选项正确.【答案】 D针对训练1. (多选)如图所示,质量为m的小球被一根橡皮筋AC和一根绳BC系住,当小球静止时,橡皮筋处在水平方向上.下列判断中正确的是( )A .在AC 被突然剪断的瞬间,BC 对小球的拉力不变B .在AC 被突然剪断的瞬间,小球的加速度大小为g sin θC .在BC 被突然剪断的瞬间,小球的加速度大小为g cos θD .在BC 被突然剪断的瞬间,小球的加速度大小为g sin θ【解析】:选BC .设小球静止时BC 绳的拉力为F ,AC 橡皮筋的拉力为T ,由平衡条件可得:F cos θ=mg ,F sin θ=T ,解得:F =mgcos θ,T =mg tan θ.在AC 被突然剪断的瞬间,BC 上的拉力F 也发生了突变,小球的加速度方向沿与BC 垂直的方向且斜向下,大小为a =mg sin θm=g sin θ,B 正确,A 错误;在BC 被突然剪断的瞬间,橡皮筋AC 的拉力不变,小球的合力大小与BC 被剪断前拉力的大小相等,方向沿BC 方向斜向下,故加速度a =Fm=gcos θ,C 正确,D 错误.【答案】 BC针对训练2、(多选)如图所示,在水平地面上的箱子内,用细线将质量均为m 的两个球a 、b 分别系于箱子的上、下两底的内侧,轻质弹簧两端分别与球相连接,系统处于静止状态时,弹簧处于拉伸状态,下端细线对箱底的拉力为F ,箱子的质量为M ,则下列说法正确的是(重力加速度为g )( )A .系统处于静止状态时地面受到的压力大小为(M +2m )g -FB .系统处于静止状态时地面受到压力大小为(M +2m )gC .剪断连接球b 与箱底的细线的瞬间,地面受到的压力大小为(M +2m )g +FD .剪断连接球b 与箱底的细线的瞬间,地面受到的压力大小为(M +2m )g【解析】 系统处于静止状态时,对整体进行受力分析,由平衡条件可得,地面对整体的支持力F N =(M +2m )g ,由牛顿第三定律可知地面受到的压力大小为(M +2m )g ,选项B 正确,A 错误;剪断连接球b 与箱底的细线瞬间,球b 向上加速运动,地面受到的压力大小为(M +2m )g +F ,选项C 正确,D 错误。
【答案】BC2、动态变化问题例2、在粗糙水平地面上有质量为m的物体,被一劲度系数为k的轻弹簧连在左侧墙上,物体在O点静止时,弹簧恰为自然长度;物体只有在A、B之间才能处于静止状态,则下列说法中正确的是( )A.物体在AO之间运动时,受到的摩擦力方向一定向左B.物体静止在AB之间时,离O越近,受到的摩擦力越大C.物体静止在OB之间时,受到的摩擦力方向一定向左D.用水平拉力将物体快速从A拉到B,在此过程中物体受到的地面摩擦力保持不变【解析】:选D 当物体在AO之间运动时,若物体向左运动,受到的摩擦力方向向右,故A错误;物体在O点静止时,弹簧为自然长度,此时静摩擦力为零,当物体静止在AB之间时,所受的静摩擦力与弹簧的弹力平衡,离O越近,弹簧的形变量越小,根据胡克定律知,弹力越小,则物体受到的摩擦力越小,故B错误;物体静止在OB之间时,弹簧处于伸长状态,弹力方向向左,则物体受到的摩擦力方向一定向右,故C错误;物体从A位置快速拉到B位置的过程中,受到的是滑动摩擦力,由于物体对地面的压力不变,动摩擦因数不变,由公式F f=μF N知,在此过程中,物体受到地面的摩擦力大小保持不变,方向始终向左,故D正确。
【答案】D针对训练3.如图所示,弹簧左端固定,右端自由伸长到O点并系住物体m.现将弹簧压缩到A点,然后释放,物体一直可以运动到B点,如果物体受到的阻力恒定,则( ).A.物体从A到O先加速后减速B.物体从A到O加速运动,从O到B减速运动C.物体运动到O点时所受合力为0D.物体从A到O的过程加速度逐渐减小【解析】首先有两个问题应搞清楚,①物体在A点所受弹簧的弹力大于物体与地面之间的摩擦力(因为物体能运动).②物体在O点所受弹簧的弹力为0.所以在A、O之间有弹簧的弹力与摩擦力大小相等的位置,故物体在A、O之间的运动应该是先加速后减速,A选项正确、B选项不正确;O点所受弹簧的弹力为0,但摩擦力不是0,所以C选项不正确;从A 到O 的过程加速度先减小、后增大,故D 选项错误.【答案】 A3、临界问题例3、(2020·福建三明市质检)如图8所示,质量为10 kg 的物体A 拴在一个被水平拉伸的弹簧一端,弹簧的拉力为5 N 时,物体A 处于静止状态.若小车以1 m/s 2的加速度向右运动,则(g =10 m/s 2)( )A .物体A 相对小车向右运动B .物体A 受到的摩擦力减小C .物体A 受到的摩擦力大小不变D .物体A 受到的弹簧的拉力增大【解析】 由题意得,物体A 与小车的上表面间的最大静摩擦力F fm ≥5 N ,小车加速运动时,假设物体A 与小车仍然相对静止,则物体A 所受合力F 合=ma =10 N ,可知此时小车对物体A 的摩擦力为5 N ,方向向右,且为静摩擦力,所以假设成立,物体A 受到的摩擦力大小不变,故选项A 、B 错误,C 正确;物体A 受到的弹簧的拉力大小不变,故D 错误.【答案】 C针对训练4、如图所示,劲度系数为k 的轻弹簧一端固定于墙上,另一端连接一物体A .用质量与A 相同的物体B 推物体A 使弹簧压缩,A 、B 与地面的动摩擦因数分别为μA 和μB ,且μA <μB ,释放A 、B ,两者向右运动一段时间之后将会分离,则A 、B 分离时弹簧的( )A .伸长量为(μB +μA )mg kB .压缩量为(μB +μA )mg kC .伸长量为(μB -μA )mg kD .压缩量为(μB -μA )mg k【解析】:选C .弹簧压缩时A 、B 一起运动不会分离,A 、B 分离时弹簧处于伸长状态,当A 、B 分离时其相互作用力为0,对B :μB mg =ma .对A :μA mg +kx =ma ,解得x =(μB -μA )mg k . 【答案】C练习1、.如图所示,一根轻弹簧上端固定,下端挂一个质量为m 0的小桶(底面水平),桶中放有一质量为m 的物体,当桶静止时,弹簧的长度比其自然长度伸长了L ,今向下拉桶使弹簧再伸长ΔL 后静止,然后松手放开,设弹簧总处在弹性限度内,则下列说法中正确的是( )①刚松手瞬间桶对物体的支持力大小为⎝⎛⎭⎪⎫1+ΔL L mg ②刚松手瞬间桶对物体的支持力大小为⎝ ⎛⎭⎪⎫1+ΔL L (m +m 0)g ③刚松手瞬间物体的加速度为ΔL L g ,方向向上 ④刚松手瞬间物体的加速度为ΔL L ⎝ ⎛⎭⎪⎫1+m 0m g ,方向向上 A .①③B .①④C .②③D .②④【解析】:选A.本题的常规解法是先取桶与物体为整体,利用平衡条件、牛顿第二定律求解,这样做费时易错,若用假设法求解,则能迅速选出正确选项.假设没有向下拉弹簧,即ΔL =0,则由平衡条件知刚松手瞬间盘对物体的支持力大小仍为mg ,将ΔL =0分别代入①②,可得①对②错;又由牛顿第二定律知刚松手瞬间物体的加速度为a =F N -mg m =ΔL Lg ,方向向上,③对④错,A 正确. 【答案】A2、(多选)(2021·哈尔滨模考)如图所示,一轻质弹簧上端固定在天花板上,下端拴接质量为m 的小球,小球放在倾角为30°的光滑固定斜面上,整体处于平衡状态时,弹簧与竖直方向成30°角,重力加速度为g ,则( )A .平衡时,斜面对小球的作用力大小为32mg B .若将斜面突然移走,则移走瞬间小球的加速度大小为32 g C .若将弹簧剪断,则剪断的瞬间小球的加速度大小为g2D .若将弹簧换成原长相同但劲度系数更大的另一轻弹簧,系统重新达到平衡时,弹簧仍处于拉伸状态,此时斜面对小球的作用力变小【解析】:小球静止于斜面上,设小球受的弹簧拉力为F ,斜面对小球的支持力为F N ,对小球的受力分析如图所示,则F N =F ,2F cos 30°=mg ,解得F N =F =33mg ,故A 错误;将斜面突然移走,小球受弹簧拉力和重力,弹簧弹力不突变,所以小球所受的合外力与斜面对小球的支持力的大小相等,方向相反,根据牛顿第二定律可知小球的加速度大小为a 1= F 合m =33g ,故B 错误;将弹簧剪断的瞬间,小球将沿斜面向下做匀加速运动,小球的加速度大小为a 2=mg sin 30°m =12g ,故C 正确;将弹簧换成原长相同但劲度系数更大的另一轻弹簧,弹簧弹力将变大,小球将沿斜面向上运动,系统重新达到平衡时,轻弹簧与竖直方向的夹角小于30°,但斜面对小球的支持力方向不变,根据作图可得斜面对小球的作用力变小,故D 正确。
【答案】CD3、(2021·绵阳模拟)如图所示,在倾角为θ=30°的光滑斜面上,物块A 、B 质量分别为m 和2m 。