FRM模型丨效用函数和风险偏好的辨析
- 格式:doc
- 大小:461.50 KB
- 文档页数:9
浅谈效用函数模型在风险态度分析中的应用作者:张博王玉玮来源:《商情》2010年第25期[摘要]在现代经济激烈的市场竞争条件下,研究竞争对手和客户的心理动向变得尤为重要。
它是寡头们之间进行博弈的基础,是充分占领市场高地的必备条件。
本文试图寻求一种有效的方法,来研究不同心理承受能力及风险态度的决策者在面临风险的时候所采取的策略,从而揭示出决策者的风险态度与他们之后所采取的实际行动之间联系的一般规律。
[关键词]效用函数风险态度博弈一、效用论简介效用这个概念,是由西方经济学家给出来的。
它的具体定义可以写成:商品满足人们欲望的能力评价。
为了把效用这个概念数量化,以便能够在具体问题上建立合理的数学模型,人们经过长期的研究,得出了两大常用的量化效用的理论——基数效用理论,序数效用理论。
基数理论:基数是指1,2,3等这些数字。
基数是可以加总求和的,如3+8=11等。
将基数赋予效用概念之后,我们就可以直观的看出效用的大小了。
比如,商品A的效用是5,商品B的效用是10。
那么,显然能够直观的比较出这两种商品的大小关系,并且也可以直观的得到同时获得这两种商品时,所得到的效用为15。
运用建立在基数理论上的边际效用递减法则,就能够解决一些常见的关于效用的问题了。
序数理论:序数是指第一,第二,第三等,序数表示顺序或等级,它是不能够加总求和的,而是只能比较两者之间的大小,先后等等。
序数效用论者认为:效用是一种类似于香,臭,美,丑的东西,其大小无法具体的衡量,但是却可以相互比较。
因此,运用序数理论来描述效用这一概念更加合理,序数论者运用无差异曲线方法,在实践领域中也解决了相当多的问题,在理论研究上相对于基数理论来言,取得了更加丰厚的成果。
本文所讨论的效用函数问题,由于不影响讨论结果的正确性,且为了简便易懂,是采用了建立在基数理论上的效用模型来进行分析的。
二、模型建立设引起效用的满足物a的数量为x,则其所引起的效用大小可以即为U(x)。
FRM模型丨效用函数和风险偏好的辨析1.效用历史沿革效用的概念是丹尼尔·伯努利(不是数学家伯努利,但是他们都是伯努利家族的。
)在解释圣彼得堡悖论时提出的,目的是挑战以金额期望值作为决策的标准,证明期望收益并不是人们在做决策时的唯一衡量标准。
经济学家对于效用的理解是有一个过程的。
●19世纪的威廉姆·斯坦利·杰文斯、里昂·瓦尔拉斯和阿尔弗雷德·马歇尔等早期经济学家认为效用如同人们的身高和体重一样是可以测量的。
●而约翰·希克斯则尝试了只在序数性效用的假定下,也取得了很多的研究成果。
希克斯认为,效用的数值表现只是为了表达偏好的顺序,并非效用的数值。
因此,从分析消费者行为的方法来看,基数效用论者采用边际效用分析方法,序数效用论者采用无差异曲线分析方法。
从教科书等内容判断,现在比较通用的应该是后者的序数性效用。
1.1.效用概念的提出——圣彼得堡悖论圣彼得堡悖论是尼古拉·伯努利在1738年提出的一个概率期望值悖论。
它来自于一种掷币游戏,圣彼得堡游戏。
游戏规则为:掷出正面或者反面为成功,游戏者如果投掷成功,得奖金2元,游戏结束;若不成功,继续投掷,二次成功得奖金4元,游戏结束;这样,游戏者如果投掷不成功就反复继续投掷,直到成功,游戏结束。
如果n 次投掷成功,得奖金2n 元,游戏结束。
首先,我们用公式1()k kk E X x p ∞==∑来计算这个游戏收益的数学期望值:23423411111()2222222222n n E X n n ==⨯+⨯+⨯+⨯++⨯= 从理论上来说,该游戏的期望值是无穷大的。
按照概率的理论,多次试验的结果将会接近于其数学期望。
这就出现了计算的期望值与实际情况的“矛盾”。
如果仅仅以期望值标准,我们将无法给这个游戏进行定价。
圣彼得堡悖论反映了决策理论和实际之间的差别。
人们总是不自觉地把模型与实际问题进行比较,但决策理论模型与实际问题并不是一个东西;圣彼得堡问题的理论模型是一个概率模型,它不仅是一种理论模型,而且本身就是一种统计的 “近似的”模型。
效用、风险与风险态度简介效用是指个体对各种选择或决策结果的主观评价,也可以理解为满足程度或心理感受。
效用理论是经济学中一个重要的概念,用来描述个体在面临选择时如何进行决策。
根据效用理论,人们在做决策时会选择能够带来最大效用的选项。
风险是指在不确定性条件下,预期可能发生的不确定结果。
在风险决策中,个体往往需要在多个可能的结果之间做出选择,每个结果都有相应的概率。
风险与效用理论密切相关,因为个体会考虑不同结果的效用大小来决定选择哪个风险。
风险态度是指个体对风险的态度和偏好。
不同的人对风险会有不同的态度。
有些人可能更喜欢谨慎的决策,更倾向于避免风险,他们会选择较为确定的选项。
而有些人可能更愿意冒险,更容忍风险,他们愿意冒更高的风险来追求更高的收益。
风险态度可以分为三类:风险厌恶、风险中性和风险偏好。
风险厌恶者倾向于选择较为保守的选项,他们对于风险敏感,更倾向于避免风险。
风险中性者对风险持中立态度,他们会权衡风险与回报,选择平衡的选项。
而风险偏好者则更愿意承担风险,他们会选择更高的概率获得更高回报的选项。
风险态度会对决策产生影响。
不同的风险态度会导致不同的选择。
对于企业来说,了解员工的风险态度可以帮助管理者更好地分配任务和确定激励措施。
对于投资者来说,了解自己的风险态度可以帮助他们选择适合自己的投资组合。
然而,风险在决策中也存在一定的风险。
一些决策者可能会过于乐观或过于悲观地估计风险。
过于乐观的估计可能会导致对风险的低估,而过于悲观的估计则可能会导致对风险的高估。
这种偏差估计可能导致做出错误的决策或选择。
综上所述,效用、风险和风险态度是决策中非常重要的概念。
了解效用理论、风险和自身的风险态度可以帮助个体更好地进行决策,并在不确定条件下做出最优的选择。
然而,在决策中也需要注意风险的偏差和错误估计的可能性。
效用、风险和风险态度是现代经济学和决策理论中的重要概念,对于个体和组织的决策过程具有重要的影响。
在经济学和金融学中,效用函数常常用来衡量个体对不同选择或决策结果的主观评价。
效用、风险与风险态度简介效用、风险与风险态度简介在现代社会中,效用、风险及风险态度是经济学、金融学等领域中非常重要的概念。
效用是指个体对于某种物品、行为或决策的满意程度,而风险则是指不确定因素对于结果的影响程度。
而个体对于风险的态度则是指个体对于风险的认知、评估和处理的方式以及个体在面临风险时的心理反应。
本文将对效用、风险和风险态度进行简要介绍。
首先,在经济学中,效用是指个体对一种物品、行为或决策所获得的满意程度。
经济学家利用效用函数来度量个体的效用水平,并通过最大化效用来指导个体的决策行为。
效用函数一般具有边际递减的特点,即随着个体在某种物品、行为或决策上的消费或参与程度的增加,其所获得的附加满意度将递减。
其次,风险是指不确定因素对于结果的影响程度。
在经济学和金融学中,风险往往是指在投资或决策过程中可能发生的损失或不确定性。
风险具有概率性和不确定性,个体在进行决策时需要综合考虑风险的大小和发生的概率。
风险的存在对于个体的决策行为具有重要影响,不同的个体对于相同的风险可能有不同的反应。
最后,个体对于风险的态度是指个体对于风险的认知、评估和处理的方式以及个体在面临风险时的心理反应。
个体的风险态度可以分为不同类型,如风险厌恶型、风险中立型和风险偏好型。
不同的个体在面对相同的风险时可能会有不同的态度和决策行为。
风险态度的形成受到多种因素的影响,包括个体的经济状况、教育水平、性别、年龄等。
在实际应用中,效用、风险和风险态度的概念在个体和组织的决策行为以及金融市场的研究中具有重要价值。
例如,在投资决策中,个体在面对不同的投资选项时会综合考虑效用和风险,选择对个体来说效用最大、风险最小的投资组合。
而在金融市场中,个体的风险态度对于金融资产的定价和市场波动具有重要影响。
然而,效用、风险和风险态度也存在一定的风险和限制。
首先,个体的效用函数往往是主观的,难以准确度量个体的满意程度。
其次,风险的概率和大小往往是不确定的,个体的风险态度和决策行为可能受到信息不对称、认知偏差等因素的影响。
FRM模型丨效用函数和风险偏好的辨析
1.效用历史沿革
效用的概念是丹尼尔·伯努利(不是数学家伯努利,但是他们都是伯努利家族的。
)在解释圣彼得堡悖论时提出的,目的是挑战以金额期望值作为决策的标准,证明期望收益并不是人们在做决策时的唯一衡量标准。
经济学家对于效用的理解是有一个过程的。
●19世纪的威廉姆·斯坦利·杰文斯、里昂·瓦尔拉斯和阿尔弗雷德·马歇尔等早期经济
学家认为效用如同人们的身高和体重一样是可以测量的。
●而约翰·希克斯则尝试了只在序数性效用的假定下,也取得了很多的研究成果。
希
克斯认为,效用的数值表现只是为了表达偏好的顺序,并非效用的数值。
因此,从分析消费者行为的方法来看,基数效用论者采用边际效用分析方法,序数效用论者采用无差异曲线分析方法。
从教科书等内容判断,现在比较通用的应该是后者的序数性效用。
1.1.效用概念的提出——圣彼得堡悖论
圣彼得堡悖论是尼古拉·伯努利在1738年提出的一个概率期望值悖论。
它来自于一种掷币游戏,圣彼得堡游戏。
游戏规则为:掷出正面或者反面为成功,游戏者如果投掷成功,
得奖金2元,游戏结束;若不成功,继续投掷,二次成功得奖金4元,游戏结束;这样,游戏者如果投掷不成功就反复继续投掷,直到成功,游戏结束。
如果n 次投掷成功,得奖金2n 元,游戏结束。
首先,我们用公式1()k k
k E X x p ∞==∑来计算这个游戏收益的数学期望值:
23423411111()2222222222
n n E X n n ==⨯+⨯+⨯+⨯++⨯= 从理论上来说,该游戏的期望值是无穷大的。
按照概率的理论,多次试验的结果将会
接近于其数学期望。
这就出现了计算的期望值与实际情况的“矛盾”。
如果仅仅以期望值标准,我们将无法给这个游戏进行定价。
圣彼得堡悖论反映了决策理论和实际之间的差别。
人们总是不自觉地把模型与实际问
题进行比较,但决策理论模型与实际问题并不是一个东西;圣彼得堡问题的理论模型是一个概率模型,它不仅是一种理论模型,而且本身就是一种统计的 “近似的”模型。
在实际问题涉及到无穷大的时候,这种近似可能会带来极大的误差。
效用的概念首次由丹尼尔·伯努利在其对于对这个悖论的解答中提出。
在丹尼尔•伯努
利1738年的论文里,提出了效用的概念来说明以金额期望值作为决策标准的片面性。
论文提出了大效用原理:在风险和不确定条件下,个人的决策行为准则是为了获得大期望效用值而非大期望金额值。
2. 基数效用论
基数效用论基本观点是:效用是可以计量并可以加总求和的。
基数效用论采用边际效用的分析法。
这个理论有两个主要假设:1. 效用量可以具体衡量;2. 边际效用(MU )递减规律。
2.1.效用曲线
效用曲线是用于反映决策者对风险态度的一种曲线,又可以被称作"偏好曲线"。
通常以益损值为横坐标,以效用值为纵坐标,把决策者对风险态度的变化在此坐标系中描点而拟合成一条曲线。
常见的效用曲线分为保守型、激进型、中间型和混合型四种,如图:
II为保守型:表示效用随着损益值的增多而递增,递增速度越来越慢,边际效用递减,这种类型厌恶风险。
III为激进型:表示效用随着损益值的增多而递增,而递增速度越来越快,即边际效用递增,这种类型风险偏好。
I为中间型:表示决策的效用与决策损益的货币效果成线性关系,这种效用函数的决策者对决策风险抱中立态度。
IV为混合型:表示损益额不太大时,决策者追求风险属于激进型,但当损益额增大到一定数量时,就转化为保守型,厌恶风险,其实这种类型更符合实际。
3.序数效用论
序数效用论基本观点是:效用作为一种心理现象无法计量,也不能加总求和,只能表示出满足程度的高低与顺序,因此,效用只能用序数来表示。
序数效用论主要采用无差异曲线的分析法。
无差异曲线早是从效用曲线得来的,而效用曲线本来是基数效用论中的概念。
这个理论有两个主要假设:1. 完备性,即指每个人对每一种商品都能说出偏好顺序。
2. 可传递性,即消费者对不同商品的偏好是有序的,连贯一致的。
3. 不充分满足性,即
消费者认为商品数量总是多一些好。
3.1.无差异曲线
无差异曲线所表示的含义可以用U(X11,X21) =U(X12,X22)来表达。
差异曲线上的任何一点所代表的两种物品的不同组合所提供的总效用或总满足水平都是相等的,因此消费者愿意选择其中任何一种组合。
我们通常所见的无差异曲线如下图:
Good Y
Good X
Indifference curves
这类图像是无差异曲线中的一种,存在假设前提条件:
1.消费者的偏好是无限的,在同一平面上可以有无数条无差异曲线。
2.越多的消费产品总能给消费者带来更大的效用。
4. 效用函数
运用无差异曲线只能分析两种商品的组合,而运用效用函数则能分析更多种商品的组
合。
效用函数(), , , U U x y z =⋯可以衍生出很多种表达式。
通常我们接触到的都是期望效用函数,又叫做冯·诺依曼—摩根斯坦效用函数(VNM 函数)。
如果某个随机变量X 以概率P i 取值x i ,i=1,2,…,n ,而某人在确定地得到x i 时的效用为u(x i ),那么,该随机变量带
来效用是:()()()()()1122 ? ?
? ?n n U X E u X Pu x P u x P u x ==++⎤⎣+⎡⎦,其中,E[u(X)]
表示关于随机变量X 的期望效用。
首先需要明确的一点是,在这个理论体系下,做决策的依据永远utility 。
能为你带来utility
的方面有很多: 可能是这个东西的实用价值,也可能是强烈的个人喜好(preference ),我们可以将这些因素挨个分开计量,并组合考虑。
我们所说的风险偏好也就是这里所说的
preference ,属于计量效用时,所有考虑因素当中的一个。
我们通常在讲utility 的时候,用的是两个商品来举例,比如说苹果和梨:在苹果和梨的
价格相等的情况下,我比起苹果更喜欢吃梨,我手里如果有两个梨,你要用三个苹果跟我换我才愿意做这笔交易。
这个地方隐藏了一个假设:我手里的东西越多越好,越多我得到的效用越高,而实际情况并不一定是这样的。
只是因为大多数人都是手中拿到的东西越多
5 4 3
2
越好,所以我们在计量一般资产的效用时都以效用系数默认为正为前提条件。
我们在这里选取我们在衡量资产组合效用时常见的一个期望效用函数来进行分析:
()212
p U A E r σ=+。
我们需要明确,这里讲风险和组合收益当做两个单独的商品来衡量它们分别所带来的效用。
4.1. 风险偏好辨析
这种对于效用系数默认为正的情况在我们对资产组合的效用进行效用测量的时候就会出现问题。
在使用()212
p U A E r σ=+进行计量的时候,我们的刻画标准有两个,一个是收益,一个是风险。
这个式子隐含了一个前提假设:人们对于多的收益会有偏好,对于风险人们的偏好方向未定。
由此引申出风险偏好有三种不同的方向:风险追求者,风险中性者,风险厌恶者。
风险效用图如下:
Good X Good Y
所以在式子()212
p U A E r σ=+,风险和收益是互相补偿的关系。
在带来的效用一
A
定的情况下,对于风险厌恶者,我们才会说风险越高,我们所要求的回报越高。
关系如下图:
5. 总结
总的来说,我们可以通过下图来明确风险偏好到底作用在决策论中的哪一点,从而避免我们将风险偏好与收益偏好相混淆。
Indifference curves
slope down ward
D
金程FRM有过30余人的全职金融研发团队,精英从业人员,拥有丰富的实际操作经验和丰富教学经验,金程开创性地推出各类学习平台,配合独特的“3+2”教学模式,推出了面授、在线两种个性化的班型,帮助考生循序渐进地提升专业知识,让学员不受时间和地域限制跟随名师学习。
Welcome To Download !!!
欢迎您的下载,资料仅供参考!。