沪教版九年级数学上21.5反比例函数(共2课时)优秀教学设计
- 格式:doc
- 大小:233.50 KB
- 文档页数:7
沪科版数学九年级上册21.5《反比例函数》教学设计1一. 教材分析《反比例函数》是沪科版数学九年级上册第21.5节的内容,这部分内容是在学生已经掌握了函数概念、正比例函数的基础上进行的。
本节内容主要介绍反比例函数的定义、性质和图像,以及如何利用反比例函数解决实际问题。
教材通过具体的例子引导学生理解反比例函数的概念,并通过大量的练习让学生熟练掌握反比例函数的性质和图像。
二. 学情分析九年级的学生已经具备了一定的函数知识,对于正比例函数的概念和性质有一定的了解。
但是,反比例函数的概念和性质与正比例函数有很大的不同,学生可能难以理解和接受。
此外,学生的数学思维能力和解决问题的能力参差不齐,对于一些抽象的数学概念,部分学生可能难以理解。
三. 教学目标1.理解反比例函数的概念,掌握反比例函数的性质。
2.能够绘制反比例函数的图像,并运用反比例函数解决实际问题。
3.培养学生的数学思维能力和解决问题的能力。
四. 教学重难点1.反比例函数的概念和性质。
2.反比例函数图像的绘制和运用。
五. 教学方法1.讲授法:讲解反比例函数的概念和性质,引导学生理解反比例函数的本质。
2.示例法:通过具体的例子,让学生学会如何绘制反比例函数的图像,并运用反比例函数解决实际问题。
3.讨论法:学生进行小组讨论,让学生在讨论中掌握反比例函数的知识,提高学生的合作能力。
六. 教学准备1.教学课件:制作反比例函数的教学课件,包括反比例函数的概念、性质、图像等方面的内容。
2.练习题:准备一些关于反比例函数的练习题,用于巩固所学知识。
3.教学工具:准备黑板、粉笔等教学工具。
七. 教学过程1.导入(5分钟)通过提问方式引导学生回顾正比例函数的概念和性质,为新课的学习做好铺垫。
2.呈现(10分钟)讲解反比例函数的概念,引导学生理解反比例函数的本质。
通过具体的例子,让学生学会如何绘制反比例函数的图像。
3.操练(10分钟)让学生独立完成一些关于反比例函数的练习题,巩固所学知识。
《反比率函数》教课设计教课目的1、理解反比率函数的观点,能判断两个变量之间的关系是不是函数关系,从而辨别此中的反比率函数.2、能依据实质问题中的条件确立反比率函数的关系式.3、能判断一个给定函数能否为反比率函数.经过探究现实生活中数目间的反比率关系,领会和认识反比率函数是刻画现实世界中特定数目关系的一种数学模型.教课重难点反比率函数的观点教课过程一、创建情形情境 1:(1)小华的爸爸清晨骑自行车带小华到15千米外的镇上去赶集,回来时让小华乘坐公共汽车,用的时间少了.假定两人经过的行程一样,并且自行车和汽车的速度都不变,爸爸要小华找出从家里到镇上的时间和乘坐不一样交通工具的速度之间的关系.和其余实质问题同样,要探究两个变量之间的关系,应先采用适当的符号表示变量,再依据题意列出相应的函数关系式.设小华乘坐交通工具的速度是v千米 /时,从家里到镇上的时间是t小时.因为在匀速运动中,时间=行程÷速度,所以t=__________ _.当行程一准时,速度与时间成什么关系?(2)学校课外生物小组的同学准备自己着手,用旧围栏建一个面积为 24平方米的矩形饲养场.设它的一边长为x(米),求另一边的长 y (米)与x的函数关系式.剖析依据矩形面积可知:xy=24,即 y=_____________.这个情境是学生熟习的例子,中间的关系式学生都列得出来,鼓励学生踊跃思虑、议论、合作、沟通,最后让学生议论出:当两个量的积是一个定值时,这两个量成反比率关系,如xy=m(m为一个定值 ),则x与y成反比率.情境 2:汽车从南京出发开往上海(全程约 300km),全程所用时间t(h)随速度 v(km/h) 的变化而变化.问题: (1)你能用含有 v的代数式表示 t吗?(2)利用 (1)的关系式达成下表:v/68911(km/h) 0000020t/h(3)速度 v是时间 t的函数吗?为何?(1)指引学生察看、议论行程、速度、时间这三个量之间的关系,得出关系式 s=vt,指导学生用这个关系式的变式来达成问题(1).(2)指引学生察看、议论,并运用(1)中的关系式填表,并察看变化的趋向,指引学生用语言描绘.情境 3:用函数关系式表示以下问题中两个变量之间的关系:(1)一个面积为 6400m2的长方形的长 a(m)随宽 b(m)的变化而变化;(2)某银行为资助某社会福利厂,供给了20万元的无息贷款,该厂的均匀年还款额 y(万元 )随还款年限 x(年)的变化而变化;(3)游泳池的容积为 5000m3,向池内灌水,注满水所需时间 t(h)随灌水速度 v(m3/h)的变化而变化;(4)实数 m与n的积为- 200, m随n的变化而变化 .问题:(1)这些函数关系式与我们从前学习的一次函数、正比率函数关系式有什么不一样?(2)它们有一些什么特点?(3)你能概括出反比率函数的观点吗?一般地,形如 y=ks(k为常数, k≠0)的函数称为反比率函数,其中x是自变量, y是x的函数, k是比率系数 . 二、例题教课例1:以下关系式中的 y是x的反比率函数吗?假如是,比率系数 k 是多少?(1)y=x;(2)y=3;(3)y=-3;(4)y=1-3;(5)y= 2 1 ;15x1x x x(6)y=x+2;(7)y=1.32x例题 2:已知变量 y与x成反比率,且当 x=2时y=9(1)写出 y与x之间的函数分析式和自变量的取值范围.例题 3:(1)已知变量 y与x-5成反比率,且当 x=2时y=9,写出 y与x 之间的函数分析式.(2)已知变量 y-1与x成反比率,且当 x=2时 y=9,写出 y与x之间的函数分析式.小结:要确立一个反比率函数的分析式,只要求出比率系数k.如果已知一对自变量与函数的对应值,就能够先求出比率系数,而后写出所要求的反比率函数.例题 4:设汽车前灯电路上的电压保持不变,采用灯泡的电阻为R (Ω),经过电流的强度为 I(A).(1)已知一个汽车前灯的电阻为30Ω,经过的电流为 0.40A,求 I 关于R的函数分析式,并说明比率系数的实质意义.(2)假如接上新灯泡的电阻大于30Ω,那么与本来的对比,汽车前灯的亮度将发生什么变化?下边我们来研究反比率函数的图象.画出反比率函数y 6的图象.x这个函数中自变量 x的取值范围是不等于零的一确实数,列出x 与y的对应值表:由这些有序实数对,能够在直角坐标系中描出相应的点 (-6,-1)、(-3,- 2)、(-2,- 3)等,用圆滑曲线将各点挨次连起来,就获得反比率函数的图象,如下图.这类图象往常称为双曲线.因为反比率函数y6的图象是曲线型的,且分红两支.对此,x学生第一次接触有必定的难度,所以需要分几个层次来探究:(1)能够先预计,比如:地点(图象所在象限、图象与坐标轴的交点等 )、趋向 (上涨、降落等 );(2)方法与步骤:利用描点作图.反比率函数 y k(k≠0)的图象是由两个分支构成的曲线. x(1)当k>0时,函数的图象在第 ____、____象限,在每个象限内,曲线从左向右降落,也就是在每个象限内y随x的增添而 _________;(2)当k<0时,函数的图象在第 ______、_____象限,在每个象限内,曲线从左向右上涨,也就是在每个象限内 y随x的增添而 ________ ___.甲乙两地相距 100千米,一辆汽车从甲地开往乙地,试写出汽车抵达乙地所用的时间与汽车速度的函数关系式,并画出函数的图象.由题意可知, t,v成反比率函数关系,此外要注意v的取值范围,v>0.100解:由 s=vt,得 t=v用描点法画出函数的图象.三、讲堂小结这节课你学到了什么?还有哪些疑惑?四、课后作业教材课后习题.。
沪科版数学九年级上册21.5《反比例函数》教学设计1一. 教材分析《反比例函数》是沪科版数学九年级上册第21.5节的内容,本节课主要介绍了反比例函数的定义、性质及图象。
通过本节课的学习,使学生能够理解反比例函数的概念,掌握反比例函数的性质,能够运用反比例函数解决实际问题。
二. 学情分析学生在学习本节课之前,已经学习了函数的概念、一次函数和二次函数的知识,具备了一定的函数基础。
但反比例函数的概念和性质相对较为抽象,学生可能难以理解和接受。
因此,在教学过程中,需要注重引导学生通过实例感受反比例函数的特点,培养学生的抽象思维能力。
三. 教学目标1.知识与技能:使学生理解反比例函数的概念,掌握反比例函数的性质,能够运用反比例函数解决实际问题。
2.过程与方法:通过观察实例,引导学生发现反比例函数的规律,培养学生的抽象思维能力。
3.情感态度与价值观:激发学生学习反比例函数的兴趣,培养学生积极探究的精神。
四. 教学重难点1.反比例函数的概念及其性质。
2.反比例函数图象的特点。
五. 教学方法1.情境教学法:通过观察实例,引导学生发现反比例函数的规律。
2.启发式教学法:在教学过程中,引导学生积极思考,培养学生的抽象思维能力。
3.小组合作学习:鼓励学生之间相互讨论、交流,共同探究反比例函数的知识。
六. 教学准备1.教学课件:制作反比例函数的教学课件,包括实例、图象等。
2.教学素材:准备一些与反比例函数相关的实例,如广告单、报纸等。
3.教学设备:投影仪、计算机等。
七. 教学过程1.导入(5分钟)利用实例引入反比例函数的概念,如广告单上的优惠券、报纸上的广告等。
引导学生观察实例中的数量关系,提出问题:“这些实例中是否存在某种数量关系?它们之间有什么联系?”2.呈现(15分钟)呈现反比例函数的定义和性质,通过讲解和示范,使学生理解反比例函数的概念。
同时,展示反比例函数的图象,让学生观察图象的特点。
3.操练(15分钟)让学生分组讨论,分析实例中的数量关系,找出反比例函数的规律。
21.5反比例函数第2课时反比例函数的图象和性质教学目标1.会用描点法画出反比例函数的图象,并掌握反比例函数图象的特征; 2.理解并掌握反比例函数的性质。
教学重难点 【教学重点】反比例函数的图象和性质。
【教学难点】根据具体条件合理利用反比例函数的图象和性质。
课前准备 课件等。
教学过程一、情境导入已知某面粉厂加工出4000吨面粉,厂方决定把这些面粉全部运往B 市.所需要的时间t (天)和每天运出的面粉总重量m (吨)之间有怎样的函数关系?你能在平面直角坐标系中形象地画出这个函数关系的图象吗?二、合作探究探究点一:反比例函数的图象和性质 【类型一】反比例函数图象的画法例1 在同一平面直角坐标系中画出反比例函数y =5x 和y =-5x的图象.解:(1)列表:(2)描点:以表中各组对应值作为点的坐标,在直角坐标系内描(3)连线:在各象限内,分别用光滑的曲线顺次连接各点,即可得到函数y =5x 和y =-5x的图象,如图.【类型二】反比例函数的性质例2 在反比例函数y =-1x的图象上有三点(x 1,y 1),(x 2,y 2),(x 3,y 3),若x 1>x 2>0>x 3,则下列各式正确的是( )A .y 3>y 1>y 2B .y 3>y 2>y 1C .y 1>y 2>y 3D .y 1>y 3>y 2.解析:本题方法较多,一是根据x 1,x 2,x 3的大小即可比较;二是画出草图,根据反比例函数的性质比较;三是利用特值法.(方法一)比较法:由题意,得y 1=-1x 1,y 2=-1x 2,y 3=-1x 3,因为x 1>x 2>0>x 3,所以y 3>y 1>y 2.(方法二)图象法:如图,在直角坐标系中做出y =-1x的草图,描出符合条件的三个点,观察图象直接得到y 3>y 1>y 2.(方法三)特殊值法:设x 1=2,x 2=1,x 3=-1,则y 1=-12,y 2=-1,y 3=1,所以y 3>y 1>y 2.故选A.方法总结:此题的三种解法中,图象法直观明了,具有一般性;特殊值法最简单,这种方法对于解答选择题很有效,要注意学会使用.探究点二:反比例函数与一次函数的综合 【类型一】反比例函数与一次函数图象的综合例3 在同一直角坐标系中,函数y =kx -k 与y =k x(k ≠0)的图象大致是( )解析:在同一直角坐标系中,函数y =kx -k 与y =k x(k ≠0)的图象只有两种情况,当k >0时,y =k x 分布在第一、三象限,此时y =kx -k 经过第一、三、四象限;当k <0时,y =k x分布在第二、四象限,此时y =kx -k 经过第一、二、四象限.故选D.方法总结:判断函数图象分布是否正确,主要通过假设条件,根据函数的图象及性质判断,若与选项一致则正确;若相矛盾,则错误.【类型二】反比例函数与一次函数图象与性质的综合例4 如图所示,一次函数y =ax +b 的图象与反比例函数y =k x的图象交于M 、N 两点.(1)求反比例函数与一次函数的表达式;(2)根据图象写出使反比例函数的值大于一次函数的值的x 的取值范围.解析:(1)把点N (-1,-4)代入y =k x即可求出反比例函数解析式,进而求出点M ,再把M 、N 代入一次函数即可求出一次函数的解析式;(2)由图象可知当反比例函数的值大于一次函数的值时x 的取值范围是x <-1或0<x <2. 解:(1)由反比例函数定义可知k =(-1)×(-4)=4.∴y =4x,而M (2,m )在反比例函数图象上.∴m =42=2,∴M (2,2).将M 、N 两点坐标代入一次函数解析式得⎩⎪⎨⎪⎧2a +b =2,-a +b =-4,解得⎩⎪⎨⎪⎧a =2,b =-2,∴y =2x -2;(2)由图中观察可知,x 的取值范围为x <-1或0<x <2. 方法总结:分别利用反比例函数和一次函数的定义求出其解析式,根据图象形态和性质判断,在解题过程中要考虑全面,不要漏解.探究点三:反比例函数y =k x(k ≠0)中k 的几何意义例5 如图所示,两个反比例函数y =4x 和y =2x在第一象限内的图象分别是C 1和C 2,设点P 在C 1上,PA ⊥x 轴于点A ,交C 2于点B ,则△POB 的面积为________.解析:根据反比例函数y =k x (k ≠0)系数k 的几何意义得S △POA =12×4=2,S △AOB =12×2=1,∴S △POB =S △POA -S △AOB =2-1=1.方法总结:本题考查了反比例函数y =k x (k ≠0)系数k 的几何意义,从反比例函数y =k x(k ≠0)图象上任取一点P 向x 轴(或y 轴)作垂线,垂线与坐标轴交点、点P 与原点的连线段围成的直角三角形的面积都是|k |2. 三、板书设计反比例函数的图象和性质⎩⎪⎪⎪⎨⎪⎪⎪⎧图象⎩⎪⎨⎪⎧形状:双曲线位置:⎩⎪⎨⎪⎧当k >0时,两支双曲线分别位于第一、三象限当k <0时,两支双曲线分别位于第二、四象限画法:列表、描点、连线(描点法)性质⎩⎪⎨⎪⎧性质:当k >0时,在每一象限内,y 的值随x 值的增大而减小当k <0时,在每一象限内,y 的值随x 值的增大而增大反比例函数图象中比例系数k 的几何意义教学反思通过学生自己动手列表、描点、连线,提高学生的作图能力.理解函数的三种表示方法及相互转换,对函数进行认识上的整合.通过对反比例函数图象的全面观察和比较,发现函数自身的规律,概括反比例函数的有关性质.让学生积极参与到数学学习活动中,增强他们对数学学习的好奇心与求知欲.。
沪科版数学九年级上册21.5《反比例函数》教学设计2一. 教材分析《反比例函数》是沪科版数学九年级上册第21.5节的内容,本节课主要让学生掌握反比例函数的定义、性质及图象。
通过学习反比例函数,学生能更好地理解函数的概念,培养其数学思维能力。
二. 学情分析九年级的学生已经学习了函数、比例等基础知识,具备一定的逻辑思维能力。
但部分学生对抽象的函数概念理解较困难,对反比例函数的图象和性质认识不足。
因此,在教学过程中,需要关注学生的个体差异,引导学生通过观察、实践、思考、探讨来理解反比例函数的本质。
三. 教学目标1.知识与技能:让学生掌握反比例函数的定义、性质及图象,能够运用反比例函数解决实际问题。
2.过程与方法:通过观察、实践、思考、探讨,培养学生的数学思维能力。
3.情感态度与价值观:激发学生对数学的兴趣,培养学生合作、探究的精神。
四. 教学重难点1.重点:反比例函数的定义、性质及图象。
2.难点:反比例函数在实际问题中的应用。
五. 教学方法采用问题驱动、案例引导、合作探讨的教学方法,充分发挥学生的主体作用,教师引导学生观察、实践、思考、探讨,从而掌握反比例函数的知识。
六. 教学准备1.准备相关案例和图片,用于导入和巩固环节。
2.准备反比例函数的PPT,用于呈现和操练环节。
3.准备练习题,用于家庭作业环节。
七. 教学过程1.导入(5分钟)利用生活中的实例,如商场打折、比例尺等,引导学生回顾已学的函数和比例知识。
然后提出问题:“如果函数解析式为y=k/x,那么k的取值范围是什么?”让学生思考并回答。
2.呈现(10分钟)利用PPT呈现反比例函数的定义、性质及图象,引导学生观察并总结反比例函数的特点。
同时,通过案例引导,让学生了解反比例函数在实际生活中的应用。
3.操练(10分钟)让学生分组讨论,每组选取一个实例,运用反比例函数解决问题。
教师巡回指导,解答学生遇到的问题。
4.巩固(5分钟)呈现一些有关反比例函数的练习题,让学生独立完成。
沪科版数学九年级上册21.5《反比例函数》(第2课时)教学设计一. 教材分析《反比例函数》是沪科版数学九年级上册第21.5节的内容,本节课主要让学生掌握反比例函数的定义、性质及图象,能够运用反比例函数解决实际问题。
本节课内容是学生在学习了正比例函数的基础上进行学习的,对于学生来说,反比例函数较为抽象,不易理解。
因此,在教学设计中,要注重引导学生通过观察、分析、归纳等方法,理解反比例函数的概念,掌握其性质和图象。
二. 学情分析九年级的学生已经具备了一定的函数知识,对于正比例函数的概念和图象有一定的了解。
但是,对于反比例函数,由于其抽象性,学生可能存在理解上的困难。
因此,在教学过程中,要关注学生的学习情况,针对学生的困惑进行解答,帮助学生建立反比例函数的概念,理解其性质和图象。
三. 教学目标1.知识与技能:让学生掌握反比例函数的定义,理解其性质和图象,能够运用反比例函数解决实际问题。
2.过程与方法:通过观察、分析、归纳等方法,培养学生探究问题的能力,提高学生的逻辑思维能力。
3.情感态度与价值观:激发学生学习数学的兴趣,培养学生勇于探究、积极思考的精神。
四. 教学重难点1.反比例函数的定义及其性质。
2.反比例函数图象的特点。
五. 教学方法采用问题驱动法、案例分析法、小组合作法等教学方法,引导学生通过观察、分析、归纳等方法,理解反比例函数的概念,掌握其性质和图象。
六. 教学准备1.准备相关的教学案例和实际问题,用于引导学生运用反比例函数解决实际问题。
2.准备反比例函数的图象和性质的PPT,用于辅助教学。
七. 教学过程1.导入(5分钟)利用生活中的实例,如广告牌的面积一定,引出反比例函数的概念。
引导学生回顾正比例函数的知识,为新知识的学习做好铺垫。
2.呈现(10分钟)通过PPT展示反比例函数的图象和性质,引导学生观察、分析,总结出反比例函数的定义及其性质。
3.操练(10分钟)让学生分组讨论,选取一些实际问题,运用反比例函数进行解决。
沪科版数学九年级上册21.5《反比例函数》教学设计一. 教材分析沪科版数学九年级上册第21.5节《反比例函数》是本册教材的重要内容之一,本节内容是在学生已经掌握了函数的概念、正比例函数的基础上进行学习的。
本节课的主要内容是让学生了解反比例函数的概念、性质及其图象,学会用反比例函数解决实际问题。
二. 学情分析九年级的学生已经具备了一定的函数知识,对正比例函数的概念、性质及其图象有一定的了解,但学生的数学基础参差不齐,部分学生对函数的概念理解不深刻,对函数的图象分析能力较弱。
此外,学生对于实际问题与函数关系的理解也有待提高。
三. 说教学目标1.知识与技能目标:让学生掌握反比例函数的概念,了解反比例函数的性质,学会绘制反比例函数的图象,并能够运用反比例函数解决实际问题。
2.过程与方法目标:通过观察、分析、归纳等方法,让学生自主探索反比例函数的性质,培养学生的逻辑思维能力和解决问题的能力。
3.情感态度与价值观目标:激发学生对数学学习的兴趣,培养学生积极思考、合作交流的学习态度,使学生感受数学在生活中的应用。
四. 说教学重难点1.教学重点:反比例函数的概念、性质及其图象。
2.教学难点:反比例函数的性质的推导和理解,反比例函数图象的分析。
五. 说教学方法与手段1.教学方法:采用问题驱动法、案例分析法、小组合作学习法等,引导学生主动探究、归纳总结。
2.教学手段:利用多媒体课件、实物模型、反比例函数图象软件等,辅助教学,提高教学效果。
六. 说教学过程1.导入新课:通过展示实际问题,引导学生思考问题与函数的关系,引出反比例函数的概念。
2.自主探究:让学生通过观察、分析、归纳等方法,自主探索反比例函数的性质,教师给予引导和指导。
3.合作交流:学生分组讨论,分享各自的探究成果,互相学习和借鉴。
4.性质总结:教师引导学生总结反比例函数的性质,加深学生对知识的理解。
5.绘制图象:让学生利用反比例函数软件或手绘图象,绘制反比例函数的图象,观察图象的性质。
21.5反比例函数第1课时反比例函数教学目标【知识与技能】1.理解反比例函数的概念,能判断一个给定的函数是否为反比例函数.2.能根据实际问题中的条件确定反比例函数的表达式,体会函数的模型思想.【过程与方法】从现实情境和已有知识经验出发,经历抽象反比例函数的过程,让学生建立初步的符号感,发展学生的抽象思维能力.【情感、态度与价值观】通过创设情境让学生经历在实际问题中探索数量关系的过程,养成用数学思维方式解决实际问题的习惯.重点难点【重点】反比例函数的概念和应用.【难点】理解反比例函数的含义.教学过程一、复习回顾师:什么是正比例函数?它的两个变量之间有什么关系呢?学生回答.教师多媒体课件出示:1.下列函数中,哪些是正比例函数?(1)y=3x-1;(2)y=x2;(3)y=3x;(4)y=-;(5)y=;(6)x=;(7);(8)y=.学生回答.教师多媒体课件出示:2.观察下列函数,它们有什么特点?(1)-y=-;(2)y=;(3)y=;(4)y=.生:……师:我们知道正比例函数都可以写成y=kx的形式,这些函数呢?它们都可以写成哪种形式?生:写成y=(k为常数,且k≠0)的形式.二、共同探究,获取新知1.给出定义.师:我们把这个等式进行变形,两边同乘以x,就变为xy=k,因为k为常数,所以x和y的乘积是一定的,这就是我们小学学过的反比例关系.教师板书:一般地,函数y=(k为常数,且k≠0)叫做反比例函数.教师多媒体课件出示:(1)下列选项中,两个变量之间的关系为反比例关系的是()A.匀速行驶的过程中,行驶的路与时间的关系B.体积一定,物体的质量与密度的关系C.质量一定,物体的体积与密度的关系D.长方形的长一定,它的周长与宽的关系(2)京沪高速公路全长约为1 262 km,汽车沿京沪高速公路从上海驶往北京,汽车行完全程所需要的时间t(h)与行驶的平均速度v(km/h)之间有怎样的关系?变量t是v的反比例函数吗?(3)三角形的面积为6,它的底y与底边上的高x之间的函数关系式为.教师找三生回答.2.例题讲解.【例1】已知参加施工的人数y与完成某项工程的时间x天成反比例关系.当施工人数为4时,10天能完成这项工程.现要求8天完成这项工程,应选派多少人去施工?师:你知道这种问题应该怎么解决吗?生:知道,用待定系数法.师:具体的思路是什么呢?生:先求出y与x之间的函数关系式,然后把天数代入,求出人数.师:这里哪两个量是成反比例的?生:人数y与时间x天.师:那么我们可以怎样它们之间的关系?生:设y=.师:然后怎么做呢?教师找一生回答.生:当x=10时,y=4,代入上式,得k=40,即y=.将x=8代入上式,得y==5.师:你回答得太好了!因此,当要求8天完成这项工程时,应选派5个人去施工.【例2】在压力不变的情况下,某物体承受的压强pPa是它的受力面积Sm2的反比例函数,如图.(1)求p与S之间的函数表达式;(2)当S=0.5时,求物体承受的压强p的值.解:(1)根据题意,设p=.函数图象经过点(0.1,1 000),代入上式,得1 000=.解方程,得k=100.答:p与S之间的函数表达式为p=(p>0,S>0).(2)当S=0.5时,p==200.答:当S=0.5时,物体承受的压强p的值为200.三、练习新知,加深理解教师找两生板演教材第44页练习的第2题,其余同学在下面做,然后集体订正,得到:解:(1)设ρ=,把V=10,ρ=1.43代入这个式子得到k=14.3,所以ρ与V之间的函数关系式为:ρ=;(2)把V=2代入上式,得ρ==7.15.所以当V=2 m3时,氧气的密度ρ为7.15 kg/m3.教师多媒体课件出示:1.某村有耕地200 hm2,人口数量x逐年发生变化,该村人均耕地面积y hm2与人口数量x之间有怎样的关系?2.某市距省城248 km,汽车由该市驶往省城,汽车行驶全程所需的时间t h与行驶的平均速度v km/h之间有怎样的关系?3.当电压U一定时,通过电阻的电流I与电阻的阻值R之间有怎样的关系?师:请同学们看这几个问题,你能得到题中两个量之间的关系吗?学生读题,思考.教师找三生回答,然后集体订正得到:1.y=;2.t=;3.I=.教师多媒体课件出示:为建设社会主义新农村,某地方政府准备修建一条连接各村庄的水泥路.修路时需要运输的土石方总量为1.2×108 m3,某运输承接了这项运输土石方的任务.(1)请写出运输公司平均每天的工作量y(m3/天)与完成运输任务所需的时间t(天)之间的函数关系式;(2)这个运输公司共有100辆汽车,每天一共运送土石方6×105 m3,那么该公司完成全部运输任务需要多长时间?教师找两生板演,其余同学在下面做,然后集体订正.四、课堂小结师:通过本节课的学习,你有什么收获?学生回答.教学反思在这节课中,我认为最成功之处是比较充分地调动了学生的积极性、主动性.通过让学生回忆正比例函数,然后引出与它相反的反比例函数,用它们的对比吸引了学生的注意力,充分引发了学生学习的兴趣,从而使得这节课能得以发挥.由于学生的兴趣得以激发,所以在教授新课的过程中,师生得以互动.这节课让学生得到了一个良好的自主学习的环境,整节课学生积极举手发言,场面比较热烈.在课程设计中,将反比例函数比较数学化的问题实际化,从实际出发又回到实际也是比较合理的.由于现在学生知识面的扩大,数学教学应该为实际服务越来越被大家接受,因此我认为联系实际是很重要的.第2课时反比例函数的图象与性质教学目标【知识与技能】1.知道反比例函数的图象是双曲线,利用描点法画反比例函数的图象,说出它的性质.2.能利用反比例函数的图象和性质解决有关问题.【过程与方法】1.经历对反比例函数图象的观察、分析、讨论、概括过程,总结出它的性质.2.探索反比例函数的图象的性质,体会并掌握用数形结合思想解决数学问题的方法.【情感、态度与价值观】调动学生的主观能动性,积极参与数学活动,培养合作、交流意识,提高观察、分析、抽象的能力.重点难点【重点】反比例函数的图象和性质.【难点】反比例函数图象的画法及其性质的归纳.教学过程一、回顾交流,问题牵引教师多媒体课件出示:1.什么叫做反比例函数?下列函数中哪些是反比例函数?y=,y=-,y=6x+,y=-4x+1.反比例函数的定义中需要注意什么?2.一次函数y=kx+b(k≠0)的图象是一条直线,那么反比例函数的图象是什么样的呢?3.画函数图象的一般步骤是什么?师:请同学们回答以上问题.学生抢答.二、师生互动,探求新知师:下面我们来画一个反比例函数y=的图象.它的取值范围是什么呢?生:x≠0.师:对,所以我们取x的值时,应取不等于0的数.请同学们根据作图的一般步骤作出这个函数的图象.学生作图,教师巡回指导.师:你能说出这个图象的特征吗?生甲:它的图象在一、三象限.生乙:在每个象限内,函数值y随x值的增大而减小.师:图象与坐标轴有交点吗?学生观察后回答,图象的两个分支都无限接近x轴和y轴,但永远不与它们相交.师:你能根据它的表达式分析一下出现这种现象的原因吗?学生交流、讨论.师:一条线若与x轴相交,交点的纵坐标为多少?生:为0.师:若与y轴相交,交点的横坐标呢?生:为0.师:那表达式的图象不会与x轴和y轴相交,说明了什么?生:x和y都不能为0.师:你们太聪明了!你能说说为什么x和y都不能为0吗?学生讨论.生:因为y=变形后是xy=6,若x、y中有一个为0,则它们的积就是0了.师:对,你分析得太好了!这个图形的形状有什么特点呢?生:……师:如果点P(x0,y0)在函数y=的图象上,那么,与点P关于原点成中心对称的P'的坐标应是什么?生:(-x0,-y0).师:这个点在函数y=的图象上吗?学生思考后回答:在.师:为什么?生:因为当(x0,y0)在这个图象上时,有y0=,即x0y0=6,所以(-x0)(-y0)=6,-y0=,所以(-x0,-y0)也在y=的图象上.因此,你能得到什么结论?生:y=的图象关于原点成中心对称.师:现在请同学们在同一平面坐标系中画出反比例函数y=-与y=的图象,然后观察这两个图象,看它们之间有什么关系?学生作图.师:观察函数y=-和y=的图象,你能发现它们的共同特征以及不同点吗?每个图象的象限分别位于哪几个象限?在每个象限内,y随x的变化如何变化?学生观察图象后回答.师:请同学们在课本第46页图21-29中画出函数y=-的图象.学生作图.三、归纳与概括师:观察并比较函数y=与y=-的图象,你能分别就k>0和k<0两种情况总结反比例函数y=(k 为常数,且k≠0)的性质吗?师生一起总结出:反比例函数y=(k为常数,且k≠0)的性质吗?师生一起总结出:反比例函数y=(k为常数,且k≠0)有下列性质:(1)当k>0时,两支曲线分别位于第一、三象限,在每个象限内,y随x的增大而减小;(2)当k<0时,两支曲线分别位于第二、四象限,在每个象限内,y随x的增大而增大.师:同学们都总结得不错!下面让就我们一起用刚才总结出来的规律来解决几个问题.教师读题,学生在下面思考.1.已知点M(-2,3)在双曲线y=上,则下列各点一定在该双曲线上的是()A.(3,-2)B.(-2,-3)C.(2,3)D.(3,2)【答案】A2.若A(a1,b1),B(a2,b2)是反比例函数y=图象上的两个点,且a1<a2,则b1与b2的大小关系是()A.b1<b2B.b1=b2C.b1>b2D.不能确定【答案】D3.已知A是反比例函数y=上的一点,自点A向y轴作垂线,垂足为T.若S△AOT=3,则此函数的关系式为.【答案】y=±4.直线y=x与反比例函数y=的图象交于A、B两点,过点A作AC垂直于y轴,垂足为C,则△ABC 的面积为.【答案】45.在反比例函数y=的图象的每一条曲线上,y都随x的增大而减小.(1)求k的取值范围;(2)在曲线上取一点A,分别向x轴、y轴作垂线段,垂足分别为B、C,坐标原点为O,若四边形ABOC的面积为6,求k的值.【答案】(1)∵在图象的每条曲线上,y随x的增大而减小,∴k>0;(2)设A(x0,y0),则由已知应有|x0y0|=6,即|k|=6,又∵k>0,∴k=6.四、应用所学,解决问题【例】已知反比例函数y=.(1)如果这个函数的图象经过点(-3,5),求k的值;(2)如果这个函数的图象在它所处的象限内,函数y随x的增大而减小,求k的取值范围.解:(1)因为函数的图象经过点(-3,5),代入函数的表达式,得5=.解方程,得k=-7.(2)根据题意,有2k-1>0.解不等式,得k>.师:下面我们通过进一步的练习巩固反比例函数的性质:1.在某一电路中,保持电压U不变,电流I(安培)与电阻R(欧姆)之间的关系是:U=IR,当电阻R=5欧姆时,电流I=2安培,则电流I(安培)是电阻R(欧姆)的函数,且I与R之间的函数关系式是.师:请大家交流后回答.生:电流I(安培)是电阻R(欧姆)的反比例函数,关系式为I=.师:回答正确,很好!下面请大家再思考一个问题:2.已知△ABC的面积为12,则△ABC的高h与它的底边a的函数关系式为.生:h=.师:回答正确,同学们掌握得都很好!继续思考下面的问题:3.如果反比例函数y=的图象位于第二、四象限,那么m的取值范围为.生:由1-3m<0,得-3m<-1,∴m>.4.已知点A(-2,y1),B(-1,y2)都在反比例函数y=(k<0)的图象上,则y1与y2的大小关系(从大到小)为.生:y2>y1.师:好!通过上面几道题的练习,同学们已经基本掌握了反比例函数的性质,那么我们更上一层楼,思考下面几道题:1.若点P是反比例函数y=的图象上的一点,PD⊥x轴于D,则△POD的面积为.2.三个反比例函数在x轴上方的图象,y1=,y2=,y3=.由此得到()A.k1>k2>k3B.k3>k2>k1C.k2>k1>k3D.k3>k1>k2师:大家可以独立完成此题,如有困难再进行交流.学生交流、讨论.师:请同学们举手回答.生:第1题答案为1.师:请你解释一下.生:因为反比例函数的表达式又可以写成xy=k,即图象上的点的横、纵坐标的积就是k的值,由题意得xy=2.又xy=S△POD,∴S△POD=1.师:回答正确!哪位同学业来回答第2题?生:由反比例函数的性质可知,k2>k1,又k3>k2,所以k3>k2>k1,答案为B.师:很好!通过这节课的学习,同学们已经基本掌握了反比例函数的性质,那么下面同学们能不能自己出两个有关反比例函数的问题?写出函数表达式,与同伴进行交流.师生互动,交流.五、课堂小结师生总结回顾本节课所学的内容.反比例函数的图象和性质:形状:反比例函数的图象称为双曲线;位置:当k>0时,两支曲线分别位于第一、三象限内;当k<0时,两支曲线分别位于第二、四象限内;增减性:当k>0时,在每一象限内,y随x的增大而增大.图象的发展趋势:反比例函数的图象无限接近于x、y轴,但永远不能到达x、y轴.对称性:反比例函数y=的图象关于坐标原点对称.教学反思本节课通过学生自主探索,合作交流,以认知规律为主线,以发展能力为目标,以从直观感受到分析归纳为手段,培养学生的合情推理能力和积极的情感态度,促进良好的数学观的形成.在教学手段上,本节课大量使用多媒体辅助教学,既能体现知识的背景材料,又能引起学生的注意力,有效地节省了时间,增大了课堂容量.生动形象的动画演示,动感强,直观性好,既加深了学生的理解,又培养了学生的抽象思维能力,同时也向学生渗透了归纳类比、数形结合的数学思想方法.。