,
得
y
=
50 3
.
例3 已知 y (2 k)xk25 是反比例函数,
求k的值.
解:依题意得
k 2 5 1
∴ k =±2.
又∵ (2-k)≠0, ∴ k ≠ 2. ∴ k = -2.
练习
已知 y 与 x2 成反比例,并且当 x=3
时 y=4,求 x=1.5 时 y 的值.
k
解:设 y x2 ∵当x=3时,y=4, ∴ 4 k 9
∴k 36 即y 36 . x2
∴ 当 x =1.5时,y=16.
小结:
1. 请问反比例函数的定义是什么? 2.反比例函数的定义中,我们应该注意哪些问题?
R
例2 已知 y 是 x 的反比例函数, 当x=5 时,y=10.
(1) 写出y与x的函数关系式; (2) 当x=3时,求y的值.
解 (1)因为y是x的反比例函数,
所以设
y
=
k x
.
因为当x=5时,y=10,
所以有
10
=
k 5
.
解得 k = 50.
因此
y
=
50 x
.
(2)把x=3代入
y
=
50 x
y kx1
其中k为常数 且k≠0
做一做
2.下列问题中,变量间的对应关系 可以用怎样的函数表达式表示?
(1) 已知矩形的面积为120 cm2, 矩形的长y(cm)
随宽x(cm)的变化而变化; y 120 x
(2) 在直流电路中, 电压为220 V, 电流I(A)
随电阻R(Ω)的变化而变化.
I 220
你还记得函数的定义吗?
在一个变化过程中有两个变量x 和y,如果对于x在某一个范围 内的每一个确定值,y都有唯一 确定的值与它对应,那么y就叫 做x的函数.