道路交通信号控制系统解决方案
- 格式:doc
- 大小:13.57 MB
- 文档页数:48
城市交通信号优化控制总结随着城市交通流量的快速增长,城市交通信号优化控制变得越来越重要。
本文将总结城市交通信号优化控制的应用现状、挑战以及相关解决方案,并提出未来的发展方向。
一、城市交通信号优化控制的应用现状城市交通信号优化控制旨在通过合理的信号配时来提高交通效率,减少交通拥堵。
目前,主要的应用现状包括以下几个方面:1. 信号配时调控技术通过采用智能交通系统、传感器和控制算法等技术手段,实现对交通信号的自动调节,提高交通流量的处理能力和通行效率。
2. 交通信号协调控制技术通过协调不同路口的信号配时,减少交通拥堵和交通事故,提高交通流畅性。
这种技术多应用于主干道和关键路段。
3. 交通状态监测与预测技术通过监测交通状态,利用数据分析和模型预测,实现交通信号的动态调整,及时应对交通拥堵和突发事件。
二、城市交通信号优化控制面临的挑战尽管城市交通信号优化控制具有广泛的应用前景,但也面临着一些挑战:1. 数据获取与处理获取准确和可靠的实时交通数据困难,而且海量数据的处理也是一个挑战。
缺乏有效的数据处理工具和算法,限制了交通信号优化控制的精准性和效果。
2. 多源信息整合与共享交通信号优化控制需要涉及多个部门和单位的数据和信息,但存在信息孤岛、数据交互困难等问题,需要建立统一的数据共享平台和标准。
3. 动态性和复杂性城市交通具有动态和复杂的特征,交通流量在不同时间和地点的变化不确定性大。
如何针对不同情景做出及时准确的信号调整,是一个亟待解决的问题。
三、城市交通信号优化控制的解决方案为了克服挑战,提高城市交通信号优化控制的效果,以下是几个解决方案:1. 引入人工智能技术人工智能技术,如机器学习和深度学习,能够通过对历史数据的学习和模式识别,预测交通流量,优化信号配时方案,提高交通效率。
2. 建立综合交通数据平台建立综合的交通数据平台,整合交通监测、道路状态、车辆轨迹等数据,提高数据获取和处理的效率,为信号优化控制提供更准确的支持和决策。
2024年交通信号控制优化服务解决方案一、背景分析随着城市化进程的不断加快,道路交通问题也变得日益突出。
交通拥堵、事故频发等问题严重影响了人们的出行效率和交通安全。
因此,交通信号控制优化成为了解决交通问题的重要途径。
二、问题分析当前交通信号控制系统存在一些问题:1. 传统的交通信号控制方法缺乏灵活性,无法根据实时交通流量情况进行动态调整。
2. 传统的交通信号控制方法往往只考虑车辆流量,而忽略了行人和自行车等非机动车辆的需求。
3. 交通信号控制系统中的数据采集和处理能力有限,无法实现精准的交通信号控制。
三、解决方案为了解决上述问题,我们提出以下交通信号控制优化服务解决方案:1. 引入智能化技术:利用人工智能、大数据等技术对交通信号进行优化控制。
通过采集道路上的实时交通数据,包括车辆流量、行人流量、非机动车流量等,结合交通信号控制算法,实现动态调整信号时长和配时方案。
2. 考虑多种交通参与方:在信号控制优化中,不仅要考虑机动车的流量,还需要考虑行人和非机动车辆的需求。
对于行人和非机动车辆来说,信号配时方案应该更加倾向于提供更多的过街时间,并通过智能化系统实时响应行人和非机动车的需求。
3. 数据采集和处理升级:采用先进的传感技术和视频监控系统,实时采集和处理道路交通数据。
通过分析数据,提升信号控制的准确性和精确性,进一步优化交通信号控制效果。
四、关键技术1. 多源数据集成:整合不同交通数据源,包括交通流量数据、行人流量数据、非机动车流量数据等,提供全面的数据支持。
2. 实时数据处理:利用大数据和人工智能技术,对实时数据进行分析和处理。
通过模型预测和实时调整,优化信号控制策略。
3. 智能信号控制算法:基于实时数据和优化目标,开发智能化的信号控制算法。
根据交通流量和需求变化,动态地调整信号配时方案,实现最优化控制。
五、预期效果实施交通信号控制优化服务解决方案后,预计可以达到以下效果:1. 交通拥堵减少:通过优化信号配时,合理调节道路交通流量,降低交通拥堵现象。
《新型交通信号控制系统施工方案(智能交通管理)》一、项目背景随着城市的快速发展和汽车保有量的不断增加,交通拥堵问题日益严重。
传统的交通信号控制系统已经难以满足现代交通管理的需求。
为了提高交通效率,改善交通状况,提升城市交通管理水平,决定实施新型交通信号控制系统项目。
新型交通信号控制系统采用先进的智能技术,能够实时监测交通流量,自动调整信号灯时间,实现交通信号的智能化控制。
该系统将大大提高道路通行能力,减少交通拥堵,降低交通事故发生率,为市民提供更加安全、便捷、高效的出行环境。
二、施工步骤1. 现场勘查- 组织专业技术人员对施工区域进行详细的现场勘查,了解道路状况、交通流量、周边环境等情况。
- 确定交通信号控制设备的安装位置、线路走向、基础施工要求等。
2. 基础施工- 根据设计要求,进行交通信号控制设备基础的施工。
基础施工包括挖掘、浇筑混凝土、预埋管线等工作。
- 确保基础的强度和稳定性,满足设备安装的要求。
3. 设备安装- 安装交通信号控制机、信号灯、倒计时器、车辆检测器等设备。
- 按照设备安装说明书进行正确安装,确保设备的牢固性和可靠性。
4. 线路敷设- 敷设交通信号控制设备之间的连接线路,包括电源线、信号线、通信线等。
- 线路敷设应符合相关标准和规范,确保线路的安全、可靠。
5. 系统调试- 对安装好的交通信号控制系统进行调试,包括设备调试、软件调试、系统联调等。
- 调试过程中,要对系统的各项功能进行测试,确保系统能够正常运行。
6. 验收交付- 组织相关部门对施工完成的交通信号控制系统进行验收。
- 验收合格后,将系统交付使用,并提供相关的技术资料和培训服务。
三、材料清单1. 交通信号控制机2. 信号灯(红、黄、绿)3. 倒计时器4. 车辆检测器5. 电缆、电线6. 管材7. 混凝土8. 基础预埋件9. 螺丝、螺母等紧固件10. 工具及设备(如起重机、电焊机、测试仪等)四、时间安排1. 现场勘查:[具体日期区间 1],共计[X]天。
道路交通信号控制系统解决方案道路交通信号控制系统解决方案阅读提示一、文档类别智能交通基线方案。
智能交通基线方案。
二、适用性简述适用于城市道路交通信号控制系统,支持多时段控制、感应控制、无缆线协调控制等多种信号控制方式。
多种信号控制方式。
三、关联可参考文档某智能交通-系统产品手册(08道路交通信号控制系统)道路交通信号控制系统)文档控制序号 修订内容 修订时间 修订人 审核人1 形成版本 2014-02-25 郑华荣2 增加视频车检器介绍 2014-07-07 郑华荣以下方案正文目录 (11)第1章 概述 .................................................................................. (11)1.1 应用背景 ............................................................................................ (11)1.2 行业现况及问题 ................................................................................. (33)第2章 设计原则、依据 ................................................................ (33)2.1. 设计原则 ............................................................................................ (55)2.2. 设计依据 ............................................................................................ (66)第3章 系统设计 ........................................................................... (66)3.1 系统结构 ............................................................................................ (66)3.2 系统组成 ............................................................................................ (77)3.3 功能设计 ............................................................................................3.3.1 交通参数采集、统计功能交通参数采集、统计功能 (7)3.3.2 信号灯配时控制功能 (8)3.3.2.1 多时段控制多时段控制 (8) (99)3.3.2.2 感应控制 ................................................................................. (111)3.3.2.3 无缆线协调控制(绿波控制) ............................................... (113)3.3.2.4 行人过街按钮控制 .................................................................3.3.2.5 公交优先控制 ........................................................................ (113) (114)3.3.2.6 全红控制 ............................................................................... (114)3.3.2.7 闪光控制 ............................................................................... (115)3.3.2.8 手动控制 ...............................................................................3.3.3 设备故障检测、处理功能设备故障检测、处理功能 (16) (116)3.3.3.1 严重故障 ............................................................................... (117)3.3.3.2 一般故障 ...............................................................................3.3.3.3 故障存储与发送故障存储与发送 (18) (118)3.3.4 信号机状态监视功能 .................................................................3.3.4.1 版本信息 ............................................................................... ............................................................................... 118 3.3.4.2 通道状态 ............................................................................... ............................................................................... 118 3.3.4.3 检测器脉冲检测器脉冲 ............................................................................ ........................................................................... 119 3.3.4.4 协调状态 ............................................................................... ............................................................................... 119 3.3.4.5 交通数据 ............................................................................... ............................................................................... 119 3.3.4.6 信号机事件信号机事件 ............................................................................ ........................................................................... 220 3.3.5 校时功能校时功能 ................................................................................... ................................................................................... 220 3.3.6 无线传输功能(可配)无线传输功能(可配) .............................................................. 21 3.3.7 信号机特征参数导入/导出导出 ......................................................... 21 3.3.8 扩展功能扩展功能................................................................................... ................................................................................... 221 第4章 前端子系统设计 .............................................................. .. (23)23 4.1 系统架构设计系统架构设计 ................................................................................... ................................................................................... 223 4.2 线圈布设 .......................................................................................... .......................................................................................... 224 4.3 信号灯布设原则 ............................................................................... ............................................................................... 225 4.3.1 基本原则基本原则 ................................................................................... ................................................................................... 225 4.3.2 安装数量安装数量 ................................................................................... ................................................................................... 226 4.3.3 机动车信号灯安装位置机动车信号灯安装位置 .............................................................. 27 4.3.4 非机动车信号灯安装位置非机动车信号灯安装位置 .......................................................... 29 4.3.5 人行横道信号灯安装位置人行横道信号灯安装位置.......................................................... 30 第5章 网络传输子系统设计 ....................................................... ....................................................... 3131 第6章 后端管理子系统 .............................................................. .. (32)32 6.1 平台概述 .......................................................................................... .......................................................................................... 332 6.2 平台功能设计平台功能设计 ................................................................................... ................................................................................... 332 6.2.1. 状态显示及控制 ........................................................................ ........................................................................ 332 6.2.2. 勤务预案功能............................................................................ ........................................................................... 334 6.2.3. 故障报警预处理功能 ................................................................. ................................................................. 334 6.2.4. 交通流数据统计功能 ................................................................. .. (3)346.2.5. 运维管理................................................................................... ................................................................................... 335 6.2.6. 日志管理................................................................................... ................................................................................... 336 第7章 核心设备介绍.................................................................. .................................................................. 3737 7.1 交通信号控制机 ............................................................................... ............................................................................... 337 7.2 视频车检器....................................................................................... ...................................................................................... 339 第8章 系统特点......................................................................... ......................................................................... 4141 8.1. 灵活适应的控制方案 ........................................................................ ........................................................................ 441 8.2. 设备快速维护及修复 ........................................................................ ........................................................................ 441 8.3. 独立、稳定的故障检测处理.............................................................. 41 8.4. 开放式NTCIP 协议........................................................................... (442)第1章 概述1.1 应用背景随着我国汽车拥有量的持续增加和城镇化水平的日益提高,道路交通量的增长速度和人口向城市的聚集速度也在不断加快,由此进一步加剧了城市的交通问题。
大华道路交通信号控制系统解决方案方案概述交通信号控制系统在现代智能交通领域是极其重要的组成部分。
利用先进的交通信号控制系统,可以有效管理交通流量,增进城市道路畅通水平。
各种先进的道路交通管理方案,最终都要依靠交通信号控制系统来实现。
在国内市场,各地应用的主流信号控制系统绝大多数都是国外品牌,比如英国的SCOOT,澳大利亚的SCATS,西门子的ACTRA等,但这些品牌信号机售价高、二次开发受限、对基础建设要求较高,不符合大多数项目需求;国内生产研发信号机的厂家也达到170余家,但从整体水平来看,普遍存在科研水平不高、标准符合度差、功能单一等问题。
目前国内城市大部分交叉口都已设置了信号控制机进行信号控制。
个别距离较近的小路口未设置信号机,交通秩序混乱,引发交通局部拥堵,一些流量较大的路口在高峰时段使用临时信号机,对维护交通秩序起到一些作用,但是部分车辆驾驶员不遵守临时信号机放行顺序,闯红灯现象严重,存在较大的安全隐患,另外临时信号灯无法与上下游路口进行协调控制,在高峰期间极易造成下游路口排队溢出,造成交通拥堵。
已建信号机大多是单点定时控制信号机,无法进行中心联网控制,各路口信号配时不能根据实时交通量进行调节,致使高峰时段路口排队较长,需民警现场指挥交通,占用大量警力资源。
已建信号机部分可进行中心联网控制,但只能做到简单控制,无法进行区域协调控制,道路通行能力利用不够,交通拥堵时有发生,交通信号控制路口之间不协调,车辆行驶不畅通,信号控制不灵活,停车次数和延误较大,通行效率低下。
解决方案交通信号控制系统是智能交通管理系统的核心,其主要功能是自动协调和控制整个控制区域内交通信号灯的配时方案,均衡路网内交通流运行,使停车次数、延误时间及环境污染减至最小,充分发挥道路系统的交通效益。
必要时,可通过控制中心人工干预,直接控制路口信号机执行指定相位,强制疏导交通。
大华交通信号控制系统采用三级分布式递阶控制结构:中心控制级,区域控制级,路口控制级。
交通信号控制优化服务解决方案范文一、引言随着城市化进程的加快和车辆数量的增加,交通拥堵问题已经成为城市发展中亟待解决的难题。
传统的交通信号控制方式已经无法满足城市交通的需求,因此需要采用优化策略来提高交通信号的运行效率和交通网络的吞吐量。
本文针对交通信号控制优化服务,提出了一种解决方案,并对其进行详细阐述。
二、问题描述交通信号控制优化的目标是减少交通拥堵,提高交通效率和交通网络的吞吐量。
要实现这一目标,需要解决以下几个问题:1. 时序优化:根据交通流量的变化情况,合理调整交通信号的时序,以确保交通流的顺畅。
2. 交通流预测:通过分析历史数据和当前交通状况,预测未来的交通流量,以便及时调整交通信号控制策略。
3. 路口协调:通过优化交通信号时序和相位配时,实现路口的协调通行,提高道路的通行能力。
4. 交通信号控制系统优化:通过改进交通信号控制系统的算法和策略,提高系统的运行效率和稳定性。
三、解决方案为了解决上述问题,我们提出了如下的交通信号控制优化解决方案:1. 数据采集与分析通过布设传感器和摄像头等设备,实时采集交通流量、车辆速度等交通数据,并对数据进行处理和分析,以获取交通状况的实时信息。
2. 交通流预测基于历史数据和实时数据,利用数据挖掘和机器学习算法,建立交通流预测模型。
通过预测未来的交通流量和拥堵情况,及时调整交通信号控制策略。
3. 路口协调通过优化交通信号时序和相位配时,实现路口的协调通行。
采用优化算法,自动计算出最优的交通信号时序和相位配时方案,从而提高路口的通行能力。
4. 交通信号控制系统优化改进交通信号控制系统的算法和策略,提高系统的运行效率和稳定性。
采用分布式控制系统,可以实现多路口的协调控制,提高交通网络的吞吐量。
同时,引入智能化的交通信号控制算法,可以根据实时交通情况自动调整信号控制策略。
5. 可视化监控与调度系统通过建立交通信号控制的可视化监控与调度系统,实时监控交通状况,并进行调度控制。
2023年交通信号控制优化服务解决方案一、背景介绍交通拥堵已成为当代城市面临的一个普遍问题。
随着城市化进程的不断推进,道路总长度的增加并没有能够跟上车辆数量的增长,导致交通流量大幅度增加,交通拥堵问题日益严重。
为了解决这个问题,交通信号控制优化服务在2023年的城市交通管理中起着至关重要的作用。
二、问题分析交通拥堵的主要原因是道路上车辆数量超过了道路承载力,为了解决这个问题,交通信号控制优化服务应该着眼于以下几个方面:1. 路网监控:通过在重要的路段和交叉口安装视频监控设备,实时监控交通情况,包括道路上的车辆流量、道路状况和交通事故情况等。
2. 数据分析:采集和分析交通监控数据,包括车辆的流量、速度和状况等。
数据分析可以发现交通流量高峰时段和拥堵点,为交通信号控制优化服务提供数据支持。
3. 预测模型:基于历史数据和数据分析结果,建立交通流量预测模型,可以预测未来某一时刻的交通情况。
预测模型可以为交通信号控制优化服务提供预测结果,指导交通信号控制的决策。
4. 优化算法:根据交通监控数据、预测模型和道路网络拓扑结构等,设计合适的优化算法,来优化交通信号控制策略。
优化算法可以根据实时的交通情况动态调整信号控制策略,使交通流量尽可能地顺畅。
三、解决方案1. 建立智能交通信号控制系统:基于现有的交通信号灯设备,建立智能交通信号控制系统。
通过与交通信号灯设备相连,实现对交通信号的远程监控和控制。
2. 部署视频监控设备:在重要的路段和交叉口安装视频监控设备,实时监控交通情况。
通过视频监控设备,可以获取交通监控数据,提供给数据分析和预测模型使用。
3. 数据分析和预测模型:根据交通监控数据,进行数据分析,分析交通流量、速度和状况等。
基于数据分析结果,建立交通流量预测模型,预测未来某一时刻的交通情况。
4. 设计优化算法:根据交通监控数据、预测模型和道路网络拓扑结构等,设计合适的优化算法。
优化算法可以根据实时的交通情况动态调整信号控制策略,使交通流量尽可能地顺畅。
交通信号控制优化服务解决方案1概述交通信号控制优化服务是借助专业团队对交通信号控制方面进行挖掘,以更加有效地缓解目前由于机动车数量过快增长而造成路网交通运行压力增大,道路硬件资源增长严重失衡这一问题。
具体服务内容包括:⏹对交通信号控制理论及相关技术进行总结,规范信号优化工作流程,落实责任,建立统一化与个性化相结合的交通信号管理模式,保证交通信号合理运行,满足各种条件下道路交通参与者的通行需要。
⏹通过对相关路口进行周期性调查,及时发现存在不足并予以改善、跟踪,从而不断提高其运行水平。
⏹通过路口排查和调研,对有条件进行协调控制的路口设计协调控制方案,降低协调控制路口的行车延误,提高交叉口服务能力。
⏹以周报、月报和专项分析报告总结归纳工作开展情况及完成效果,有计划性的回检评价历史优化路口,提炼可取之处及考虑不周的地方,对未来将有可能发生变化的交叉口或路段有一定预测性。
2服务内容2.1交通信号管理基础工作(1)交通信号控制理论及相关技术总结交通信号控制理论及相关技术的总结包括对交通信号控制相关理论的总结和对现今主流信号控制模式及方法的总结2部分内容。
⏹对交通信号控制相关理论的总结包括对信号控制涉及的相关参数的总结、对通过能力的总结及对信号路口对车流停滞作用的总结3部分内容。
⏹对现今主流信号控制模式及方法的总结包括对单点信号控制模式与方法的总结、对交通信号子区划分的模式与方法的总结、对主干道交通信号协调控制模式与方法的总结、对同类型交通信号路口协调控制模式与方法的总结、对长距离交通信号协调控制模式与方法的总结以及对区域协调控制模式与方法的总结六大类涵盖点、线、面三个层次的信号控制与协调方法的相关技术理论的总结。
在对交通信号控制相关理论的总结基础上,根据各地市信号路口特点,重点对适用该地信号控制特点的信号控制模式及方法进行总结。
⏹单点信号控制主要包括单点定时信号控制、单点感应信号控制和单点自适应信号控制三种方式。
智慧交通解决方案引言概述:智慧交通解决方案是指通过应用先进的技术和创新的思维,解决城市交通拥堵、安全问题等交通难题的方法。
智慧交通解决方案的出现,为城市交通管理带来了新的机遇和挑战。
本文将从五个方面详细阐述智慧交通解决方案的内容。
一、智能交通信号控制系统1.1 实时交通监测:利用传感器和摄像头等设备,实时监测道路上的交通流量和拥堵情况,为交通信号控制提供准确的数据支持。
1.2 自适应信号控制:根据实时的交通流量和拥堵情况,自动调整信号灯的时长和配时,优化交通流动,减少拥堵。
1.3 优先级调度:根据不同交通工具的优先级,合理调度信号灯,提高公交车、救护车等优先通行的效率,提升整体交通效果。
二、智能交通管理平台2.1 数据集成与分析:将各类交通数据整合到一个平台,通过数据分析和算法优化,实现对交通状况的全面监控和分析,为决策提供科学依据。
2.2 信息发布与预警:通过交通管理平台,向驾驶员和市民发布实时的交通信息和预警,帮助他们避开拥堵路段,提高出行效率。
2.3 交通调度与指挥:通过平台的交通调度功能,实现对交通资源的合理调度和指挥,提高交通管理的效率和准确性。
三、智能交通安全监控系统3.1 视频监控:利用高清摄像头和图像识别技术,对道路上的交通情况进行实时监控,及时发现交通事故和违规行为。
3.2 交通违法检测:通过图像识别和车牌识别技术,对交通违法行为进行自动检测和记录,提高交通违法查处的效率。
3.3 事故预警与处理:通过交通监控系统,实时监测交通事故的发生,并及时发送预警信息,为救援和处理提供便利。
四、智能停车管理系统4.1 车位导航与查询:通过智能停车管理系统,为驾驶员提供实时的停车位导航和查询服务,减少停车时间和寻找车位的困扰。
4.2 车位预约与支付:通过手机App等工具,实现车位的预约和在线支付,提高停车场的利用率和管理效率。
4.3 停车场监控与管理:通过视频监控和车位计数器等设备,实时监控停车场的使用情况,提供停车场管理的数据支持和决策依据。
交通信号控制系统解决方案道路交通信号控制系统解决方案杭州海康威视系统技术有限公司2014年07月阅读提示文档控制以下方案正文目录第1章概述 (1)1.1应用背景 (1)1.2行业现况及问题 (1)第2章设计原则、依据 (3)2.1.设计原则 (3)2.2.设计依据 (5)第3章系统设计 (6)3.1系统结构 (6)3.2系统组成 (6)3.3功能设计 (7)3.3.1交通参数采集、统计功能 (7)3.3.2信号灯配时控制功能 (8)3.3.2.1多时段控制 (8)3.3.2.2感应控制 (9)3.3.2.3无缆线协调控制(绿波控制) (11)3.3.2.4行人过街按钮控制 (12)3.3.2.5公交优先控制 (13)3.3.2.6全红控制 (13)3.3.2.7闪光控制 (14)3.3.2.8手动控制 (15)3.3.3设备故障检测、处理功能 (15)3.3.3.1严重故障 (16)3.3.3.2一般故障 (16)3.3.3.3故障存储与发送 (17)3.3.4信号机状态监视功能 (17)3.3.4.2通道状态 (18)3.3.4.3检测器脉冲 (18)3.3.4.4协调状态 (18)3.3.4.5交通数据 (19)3.3.4.6信号机事件 (19)3.3.5校时功能 (20)3.3.6无线传输功能(可配) (20)3.3.7信号机特征参数导入/导出 (20)3.3.8扩展功能 (21)第4章前端子系统设计 (22)4.1系统架构设计 (22)4.2线圈布设 (23)4.3信号灯布设原则 (24)4.3.1基本原则 (24)4.3.2安装数量 (25)4.3.3机动车信号灯安装位置 (26)4.3.4非机动车信号灯安装位置 (27)4.3.5人行横道信号灯安装位置 (28)第5章网络传输子系统设计 (30)第6章后端管理子系统 (31)6.1平台概述 (31)6.2平台功能设计 (31)6.2.1.状态显示及控制 (31)6.2.2.勤务预案功能 (33)6.2.3.故障报警预处理功能 (33)6.2.4.交通流数据统计功能 (33)6.2.6.日志管理 (35)第7章核心设备介绍 (36)7.1交通信号控制机 (36)7.2视频车检器 (37)第8章系统特点 (40)8.1.灵活适应的控制方案 (40)8.2.设备快速维护及修复 (40)8.3.独立、稳定的故障检测处理 (40)8.4.开放式NTCIP协议 (41)交通信号控制系统解决方案1第1章 概述1.1 应用背景随着我国汽车拥有量的持续增加和城镇化水平的日益提高,道路交通量的增长速度和人口向城市的聚集速度也在不断加快,由此进一步加剧了城市的交通问题。
为了解决城市交通问题,我们的国家、各级政府和研究机构一直在致力于寻求解决的方案和各种措施。
然而,进入21 世纪以来,我们普遍看到的情况却是,我国的城市交通问题不但没有得到根本性的解决,而且愈演愈烈。
这样的城市路况背景下,引入一套先进的交通信号控制系统显得尤为重要。
科学的交通信号灯控制系统能在有限的道路空间上,合理地分时、分路、分车种、分流向使用道路,使路网交通压力均分,实现道路交通的有序、高效运行。
1.2 行业现况及问题目前我国各城市都加大力度进行基础设施建设和城市改造建设,交通信号控制系统作为ITS 的一个子系统,各个城市都建设了许多。
信号控制系统普遍采用多时段定时信号机、感应式信号机和集中协调式信号机。
但各地普遍存在重建设、轻应用的问题,且系统建成后,如何更好的使用,如何更好地发挥其效果,各地都比较欠缺。
绝大多数城市,各路口信号控制建立时间前后相差较远,各路口信号控制机类型并不统一。
城市管理者逐渐发现设备类型的繁多、相互之间的不兼容给交通信号控制系统进一步扩充、发展带来了一系列的问题,主要表现在:技术力量和专业人员配备不够;系统建设后期管理和维护问题;设备的兼容性和稳定性差;控制策略不够优化;单个系统覆盖范围小。
第2章设计原则、依据2.1.设计原则以上文分析结果为出发点,在总体原则上,我们按照“技术上的先进性,使用上的稳定性,产品的集成化,升级上的可拓展性,操作上的友好性”进行系统设计。
先进性系统的设计应该具有技术先进性,所采用的理念、技术应当是业内领先的,并能代表未来的发展方向。
在系统设计过程中,充分借鉴、利用国内外的先进技术和成功经验,在系统结构上和设备选型上精益求精,将这些代表行业发展趋势的先进技术有机结合在一起,设计出一套性能优异的交通信号控制系统。
整个设计具有一定的超前意识而不局限于目前的使用条件和规模。
稳定性交通信号控制系统是一个系统牵涉面广、运行环境恶劣、不间断使用的复杂系统。
系统设计时要统筹考虑所用设备和控制系统,符合当前技术和交通管理部门管理工作的发展方向,同时系统选用成熟的技术,减少系统的技术风险。
集成化前端信号机应高度集成信号输入模块、数据处理与存储模块、主控优化模块、信号输出模块。
其中信号输入模块支持多种不同格式的信号输入,无需配备其他转接、辅助设备;信号输出模块支持多种驱动信号输出,支持有线、无线数据传输方式。
高度集成化的信号机可实现路口不同交通设备的集成控制和信息共享,包括交通信号控制设备、交通诱导屏、电子警察、视频监控,使交通信号控制机具有较强的实时控制、协调能力,以适应智能交通系统发展的要求。
可拓展性不同客户的诉求是不同的,这就要求我们的核心架构具有足够的灵活性,具有良好的分层、模块化设计。
针对不同的应用场景可以实现灵活、快速的定制,及时响应客户需求。
系统应采用灵活、开放的模块化设计,赋予结构上极大的灵活性,为系统扩展、升级及可预见的管理模式的改变留有余地。
采用开放性和通用性好的系统软、硬件技术,提供与其它交通管理系统联接的接口,以适应交通管理业务不断发展的需要,最大限度地保护系统的长期投资。
易用性与易维护性系统主要使用人员为交警和有关领导,从满足交警实战需要出发,系统采用简洁、友好的人机界面,具有多媒体化操作设计,在出现系统故障时,能够简便快捷的进行处理。
前端设备支持远程升级和远程故障排除功能,维护便捷,降低系统运维管理成本。
同时可自动检测系统中设备的运行状态,并给出详细参数,以辅佐管理人员及时准确地判断和解决问题。
使用稳定易用的硬件和软件,完全不需借助任何专用维护工具,既降低了对管理人员进行专业知识的培训费用,也节省了日常频繁地维护费用。
2.2.设计依据《道路交通信号控制机》(GA/47-2002)《道路交通信号控制机安装规范》(GA/T489-2004)《道路交通信号倒计时显示器》(GA/T508-2004)《城市交通信号控制系统术语》(GA/T509-2004)《城市道路交通信号控制方式适用规范》(GA/T527-2005)《人行横道信号灯控制设置规范》(GA/T851—2009)《道路交通信号控制机与车辆检测器间的通信协议》(GA/T920-2010)《交通信号控制机与上位机间的数据通信协议》(GB/T20999-2007)《道路交通信号灯设置与安装规范》(GB/14886-2006)《道路交通信号灯》(GB/14887-2011)《道路交通信号控制机》(GB/25280-2010)其他国家相关的政策法令、法规文件。
第3章系统设计3.1系统结构环形线圈信号机视频车检器信号机光纤收发器光纤收发器传输网络图注:光纤网线中心平台信号/控制线・・・・・・图 1 系统结构示意图3.2系统组成交通信号控制系统由前端子系统、网络传输子系统以及后端管理子系统三大部分组成,实现对路口交通信号配时方案的自动控制、优化,同时系统还兼具交通参数采集功能,能够实时采集、统计交通流信息,供配时优化软件使用。
前端子系统以信号机为主体,可根据信号机本身或中心下发的指令改变道路交通信号灯状态,调节配时并控制道路交通信号灯运行。
同时兼具交通参数采集功能,支持采集、处理、存储流量、占有率、排队长度等交通参数,以供交通信号配时优化软件使用,同时供交通疏道和交通组织与规划使用。
网络传输子系统负责数据的传输与交换。
中心网络主要由接入层交换机以及核心交换机组成。
后端管理子系统由区域计算机和中心管理平台组成。
区域计算机主动对前端交通流数据进行分析,自适应的选择合适的信号配时方案,并实时下发到各个路口对应的信号机。
中心管理平台负责实现对辖区内相关数据的汇聚、处理、存储、应用、管理与共享。
3.3功能设计3.3.1交通参数采集、统计功能前端信号机配备有车检板,支持地埋线圈的接入,可实现控制区域内车流量、占有率、车速、排队长度等交通参数的采集、处理和存储。
交通信号控制系统可根据前端独立的车辆信息来直接调整对应信号灯的绿信比,也可根据区域整体的车流状况对信号灯配时方案进行针对性的区域协调。
同时这部分交通参数信息也可提供到其他相关联的交通管理系统使用。
图 2 交通参数统计功能示意图除了地感线圈的检测方式外,本系统还支持其他检测方式的接入,如微波、视频等,可充分共享现有的交通资源达到交通优化管理的目的。
信号机支持接入视频车检器,具体的应用介绍参加下文“核心设备介绍”部分。
3.3.2信号灯配时控制功能本系统支持灵活的信号灯控制方案配置。
主要控制方式描述如下。
3.3.2.1多时段控制多时段控制,根据交通需求变化情况,把一天的时间分成若干个控制时段,随时间的推移,按预置的方案自动运行。
各个方案运行期间信号周期、绿信比、相序不随道路状况的变化而变化。
多时段控制特别适合于交通量相对规律的交叉口,其信号配时方案是根据典型状况的历史交通数据制定的。
图 3 多时段控制方案图3.3.2.2感应控制感应控制,信号机根据车辆检测器测得的交通流数据来调节信号配时的控制方式。
感应控制的前提是建立检测器与相位的对应关系,这里包括车辆检测器和行人检测器。
在交通量变化大而不规则、难于用定时控制处置的交叉口,以及在必须降低对主要干道干扰的交叉口上,用感应控制效益更大。
干道上的感应控制相位在感应时间窗口内接收到来自检测器的请求,则增加一个延长绿的绿灯相位时间,以保证车辆能顺利通过该路口。
感应控制下默认运行最小绿灯时间,根据车辆检测信号递进增加绿灯时间,直到没有通行请求或增大到最大绿灯时间。
图 4 感应控制示意图时长t ,表示延长绿时间,感应控制后,绿灯时间增长至T+t图 5 感应控制时间轴变化支路上的感应控制这种系统,在每个交叉口的支路上安装检测器,支路检测有车时,仅允许支路不影响主街连续通行的前提下,可得到基本配时方案内的部分绿灯时间,并根据交通检测的结果,支路的绿灯一有可能就尽快结束,初始原则按照最小绿灯时间给予放行;支路上没有车辆时,绿灯将一直分配给主干线,保证主干线的通畅运行。