概率论在实际生活中的应用
- 格式:doc
- 大小:6.45 MB
- 文档页数:30
概率论的应用概率论是数学的一个分支,主要研究随机现象发生的规律和概率计算等问题。
它作为一门重要的科学工具,广泛应用于各个领域,包括统计学、金融、物理学、生物学等。
本文将介绍概率论在实际生活中的应用,并探讨其在不同领域中的重要性和影响。
一、金融领域的应用概率论在金融领域中有着广泛的应用,特别是在风险管理和投资决策中。
通过概率论的方法,可以对金融市场的波动性进行分析和预测,帮助投资者制定合理的投资策略。
例如,在股票市场中,可以利用概率论来计算股票价格的波动范围和概率,以便更好地控制投资风险。
另外,在风险管理方面,概率论也可以应用于计算不同投资组合的风险,并帮助投资者评估其投资组合的回报和风险水平。
二、统计学中的应用概率论是统计学的基础,统计学从概率论中得到了许多有用的方法和理论。
在样本调查和数据分析中,概率论可以用于计算估计量的置信区间和检验假设的显著性水平。
同时,概率论还提供了许多统计模型,如正态分布、泊松分布和二项分布等,用于描述和分析观测数据的分布特征。
通过这些概率模型,统计学可以通过样本数据对总体参数进行推断和预测,为决策提供科学的依据。
三、物理学中的应用物理学是一门实验性科学,概率论在物理学中有着广泛的应用。
在量子力学中,概率论被用来描述微观粒子的运动和相互作用。
根据概率论的原理,我们可以计算出不同量子态的概率,从而预测粒子在不同位置和能级上的出现概率。
此外,概率论还被应用于热力学和统计力学领域,用于描述和分析大量粒子的行为和性质。
四、生物学中的应用生物学是研究生命现象和生物系统的科学,而概率论在生物学中有着广泛的应用。
在基因组学和遗传学中,概率论可以用于预测遗传信息的传递和表达。
通过计算基因重组和基因突变的概率,可以帮助解释和预测生物进化的过程和机制。
此外,在生物统计学中,概率论也是重要的工具,它被用于计算生物实验数据的显著性和可信度,从而推断实验结果的有效性和可靠性。
总结:概率论是一门具有广泛应用的学科,它在金融、统计学、物理学和生物学等领域都有着重要的应用。
生活中的概率论
生活中处处充满了不确定性和变数,而概率论正是一门研究不确定性的数学分支。
在我们日常生活中,概率论也扮演着重要的角色,影响着我们的决策和行为。
首先,我们可以从日常生活中的抉择开始说起。
无论是选择买彩票还是投资股票,我们都需要考虑到不确定性和风险。
概率论可以帮助我们计算出每种选择的可能性,从而帮助我们做出更加明智的决策。
比如,当我们考虑是否要买彩票时,我们可以用概率论来计算中奖的可能性,从而决定是否值得投入资金。
其次,概率论也可以帮助我们理解生活中的偶然事件。
比如,当我们在街上走路时,突然下起了大雨,这种偶然事件就可以用概率论来解释。
我们可以计算出下雨的可能性,从而在未来的行程中做出相应的安排。
另外,概率论还可以帮助我们理解生活中的风险和机会。
在面对风险时,我们可以用概率论来评估风险的大小,从而采取相应的措施来降低风险。
而在面对机会时,我们也可以用概率论来评估机会的大小,从而更好地把握机会,取得成功。
总之,生活中的概率论无处不在,它可以帮助我们理解不确定性和变数,从而更加理性地面对生活中的抉择、偶然事件、风险和机会。
因此,了解和运用概率论对我们的生活至关重要。
数学教学中的概率论在现实生活中的应用探讨在我们的日常生活中,数学无处不在,而概率论作为数学的一个重要分支,更是有着广泛而深刻的应用。
从我们每天做出的决策,到各种社会现象的分析,概率论都在发挥着它独特的作用。
在数学教学中,让学生理解概率论并认识到它在现实生活中的应用,不仅能够激发学生的学习兴趣,还能培养他们运用数学解决实际问题的能力。
首先,概率论在保险行业中扮演着至关重要的角色。
保险公司在制定各种保险产品的费率时,需要依靠概率论来计算风险发生的概率。
例如,汽车保险的费率设定就考虑了车辆的类型、驾驶员的年龄和驾驶记录、事故发生的历史数据等众多因素。
通过对这些数据的分析和概率计算,保险公司能够大致估计出不同情况下发生事故的可能性,从而确定合理的保险费用,既能保证公司的盈利,又能为被保险人提供适当的保障。
其次,概率论在投资领域也有着广泛的应用。
投资者在做出投资决策时,需要评估不同投资项目的风险和收益。
通过概率论的方法,可以对股票价格的波动、债券的违约概率等进行分析和预测。
例如,在股票投资中,通过对历史数据的研究和概率模型的建立,可以估计出某只股票价格上涨或下跌的概率,从而帮助投资者做出更明智的投资决策。
但需要注意的是,概率论只是提供一种参考和分析工具,投资市场的复杂性和不确定性仍然存在,不能完全依赖概率预测来进行投资。
在医学领域,概率论同样发挥着重要作用。
疾病的诊断和治疗往往需要基于概率的判断。
医生在面对症状相似的患者时,需要根据疾病的发病率、症状的出现频率以及各种检查结果的准确性等概率信息,来做出最有可能的诊断。
例如,在癌症筛查中,通过检测某种标志物的阳性率和假阳性率,可以评估该检测方法的可靠性,帮助医生决定是否需要进一步的检查和治疗。
概率论在质量控制方面也有着不可忽视的应用。
工厂在生产产品时,需要确保产品的质量符合一定的标准。
通过抽样检验和概率统计的方法,可以在不检测全部产品的情况下,对整批产品的质量做出合理的估计。
概率论在生活中的应用举例
概率论是一门统计学的分支,它研究了事件发生的可能性以及其结果的分布情况。
概率论在生活中有许多应用,下面是一些例子:
金融市场风险分析:投资者在进行投资决策时,可以使用概率论来分析市场风险,从而决定是否进行投资。
保险业:保险公司使用概率论来评估保险事故发生的概率,并使用这些信息来设计保险计划和计算保费。
医学研究:医学研究人员常常使用概率论来研究患病概率和疾病治愈概率,以及药物治疗的有效性和安全性。
电视节目播出时间安排:电视台会使用概率论来分析不同节目播出时间对收视率的影响,并安排节目播出时间以达到最佳效果。
游戏设计:游戏开发商会使用概率论来设计游戏的随机事件,例如转轮游戏中的转轮转动结果。
工厂生产过程控制:工厂管理人员可以使用概率论来分析生产过程中可能出现的故障概率,并采取预防措施来保证生产过程的顺畅进行。
这些只是概率论在生活中的应用的一小部分例子,实际上概率论在许多领域都有广泛的应用。
浅析概率论在生活中的应用毕业论文(一)概率论作为一门研究随机事件概率规律的学科,不仅在理论研究中有着广泛的应用,也逐渐渗透到我们的日常生活中,无论是从商业、医疗、技术等方面,都得到了广泛应用。
本文就从以下几个方面简要探讨概率论在生活中的应用。
1. 保险行业保险行业一直是概率统计学的应用领域之一。
在保险业中,保险公司要根据统计数据和概率论的知识对客户进行风险分析并制定相应的保险方案。
比如,在车险中,保险公司会根据客户的性别、年龄、车型等信息计算出客户的出险概率,从而制定出相应的保险费用。
这种保险费用制定方式不仅使保险公司能够更加科学地进行风险评估,降低了客户的保险成本,也使得保险公司更加准确地控制保险赔付率,保证了公司的盈利能力。
2. 医学概率论在医学领域中应用广泛。
例如在病人诊断中,一系列试验和检查结果需要根据概率理论进行分析和判断。
医学研究还涉及到新药的测试。
在这种情况下,概率统计学的方法被用来评估患者使用新药的风险,以及新药的作用和副作用。
此外,在流行病学中,概率统计学方法被用来分析疾病的传播和预测未来的疫情。
3. 投资股票交易也是概率论的应用领域之一。
投资者需要了解股票价格变动的概率规律,并且基于概率统计学方法进行分析和预测未来股票价格的趋势。
这需要投资者利用历史数据和统计模型来模拟和预测股票价格。
这种预测方法具有一定的误差,但也给投资者提供了一定的参考信息。
4. 体育竞技体育竞技也是概率论的应用领域。
在足球比赛中,根据球队近期表现、场地、天气等因素,可以利用概率理论来预测哪个球队有更大的获胜概率。
此外,在比赛中,也需要根据概率理论来决定是否采用进攻或者防守策略等。
总结而言,概率论在我们的生活中扮演着重要的角色。
可以帮助我们做出明智的决策,减少我们所面临的风险,并提升我们的成功概率。
因此,概率论的知识对于每个人来说都是十分必要的。
概率论在现实生活中的应用概率论是数学中的一个重要分支,它研究事物发生的可能性和规律性。
现实生活中,概率论可以广泛应用于各个领域,如统计学、金融、医学、工程等。
本文将介绍概率论在现实生活中的几个应用场景。
一、风险评估与决策分析概率论在风险评估和决策分析中发挥了重要作用。
在金融领域,投资者可以利用概率论来评估不同投资组合的风险和收益潜力,从而做出投资决策。
在保险业,保险公司可以利用历史数据和概率论计算出不同保险产品的风险和赔付概率,以确定合理的保费。
此外,在项目管理和运营决策中,概率论也可以帮助管理者评估各种风险和不确定性因素,从而做出适当的决策。
二、医学与流行病学研究概率论在医学与流行病学研究中起到了重要的作用。
在流行病学中,可以使用概率模型来预测传染病的传播速度和范围,以及评估公共卫生政策的有效性。
在医学诊断中,概率论可以帮助医生评估患者患某种疾病的可能性,并做出相应的治疗决策。
概率论还可以用于药物疗效评估、基因研究等领域。
三、质量控制与信号处理概率论在质量控制和信号处理领域也有广泛应用。
在工程领域,概率论可以用来评估产品的质量和可靠性,从而进行质量优化和故障预测。
在通信系统中,概率论可以用来研究和设计最佳的信号传输方案。
此外,概率论还在图像处理、声音识别等领域有着重要的应用,例如通过概率模型进行人脸识别和语音识别。
四、运输与排队系统优化概率论在运输与排队系统优化中也有重要作用。
在交通运输领域,可以使用概率论来分析和预测交通拥堵情况,从而制定交通优化措施。
在物流领域,概率论可以用来优化货物运输路径和仓储管理,提高运输效率和降低成本。
此外,概率论还可以用来优化排队系统,如银行、餐厅等处的队列管理,减少等待时间和提高客户满意度。
五、游戏理论与赌博分析概率论在游戏理论和赌博分析中有其独特的应用。
在游戏理论中,概率论可以帮助研究者分析和设计各种策略游戏,预测参与者的行为,并评估游戏的公平性和收益性。
在赌博分析中,概率论可以用来计算不同赌博策略的胜率和预期收益,帮助玩家优化自己的下注策略。
概率论与数理统计在生活中的应用
概率论和数理统计在生活中应用广泛,以下是一些例子:
1. 投资,包括股票和证券。
投资者需要评估不同股票和证券的风险和收益率。
概率论和数理统计可以帮助投资者预测股票和证券的未来表现。
2. 保险。
保险公司需要评估风险和确定保险费。
概率论和数理统计可以帮助保险公司确定保险费的最佳水平,同时仍然可以满足其保险计划的财务责任。
3. 运输。
航空公司,铁路公司和公路运输公司都需要评估其运输系统的效率和容量。
概率论和数理统计可以帮助他们预测交通瓶颈和需求峰值。
4. 质量控制。
制造商需要确定其产品的质量,以确保产品符合消费者期望和法律标准。
概率论和数理统计可以帮助制造商评估其生产过程的标准差,并识别可能导致批次缺陷的因素。
5. 医疗保健。
医生和研究人员需要评估药物和治疗方案的疗效和安全性。
概率论和数理统计可以帮助他们确定最佳治疗方法,并评估新药或治疗方法的效果和副作用。
总之,概率论和数理统计在各行各业中都有广泛的应用。
它们提供了工具和技术,可以帮助人们做出基于数据的决策,并更好地了解和管理风险。
概率论与数理统计在日常生活中的应用毕业论文(1)概率论与数理统计在日常生活中的应用概述随着大数据时代的到来,概率论与数理统计成为了一门越来越重要的学科。
在日常生活中,我们经常需要运用概率论与数理统计的知识去解决各种问题,如预测天气、交通状况、股市涨跌等等。
本文将探讨概率论与数理统计在日常生活中的应用。
概率论在日常生活中的应用1. 预测天气天气预报是概率论在生活中的一个主要应用。
预测天气需要分析各种气象指标,如温度、湿度、气压、风速等,然后运用概率论模型进行预测。
预测天气的准确性取决于预报员的专业知识以及概率论模型的正确性。
2. 估计风险概率论还可以用于估计风险。
在日常生活中我们经常面临各种风险,如信用卡盗刷、保险赔偿等等。
通过运用概率论,我们可以估计将来的概率,从而采取相应的措施来降低风险。
3. 预测股市涨跌股市涨跌的预测也是概率论在生活中的应用之一。
预测股市涨跌需要分析各种数据,如公司财务数据、市场趋势等等,并将其转换为概率进行预测。
4. 探索游戏规律概率论还可以用于探索各种游戏规律。
例如,玩扑克牌时,我们可以通过概率论计算出某张牌下一次出现的概率,从而更好地规划自己的出牌策略。
数理统计在日常生活中的应用1. 处理数据数理统计可以帮助我们处理各种数据,如调查数据、商业数据等。
通过运用数理统计方法,我们可以更好地理解数据,并从中提取关键信息。
2. 做出决策决策是生活中的一个重要环节,而数理统计可以帮助我们做出正确的决策。
例如,在选择一种产品时,我们可以通过比较其销售数据、用户满意度等数据,从而做出更好的决策。
3. 质量控制数理统计还可以用于质量控制。
通过对生产过程中的数据进行分析,我们可以发现并改善产品质量问题,从而提高产品质量和生产效率。
4. 预测趋势数理统计在预测趋势方面也有广泛的应用。
例如,在分析某个产业或市场的发展趋势时,我们可以通过数理统计方法来预测未来的走势,并据此制定相应的战略。
结论概率论与数理统计作为一门重要学科,在日常生活中发挥着越来越大的作用。
概率论的应用领域
概率论是数学的一个重要分支,它研究随机现象和不确定性。
概率论在很多领域都有广泛的实际应用价值,以下是一些具体的例子:
1.数据分析与统计学:概率论是统计学的基础,广泛应用于数据分析、预测和决策。
例如,企业和政府可以基于统计数据预测经济走势,科学家可以分析实验数据得出结论。
2.金融和保险:金融和保险领域的决策和风险管理都依赖于概率论。
例如,保险公司
利用概率计算保费和赔付风险,投资者根据概率分析选择投资策略。
3.计算机科学与人工智能:概率论在计算机科学中扮演着重要角色,特别是在机器学
习和人工智能领域。
例如,概率模型被用于自然语言处理、图像识别、语音识别等任务中。
4.工程和物理:在工程和物理领域,概率论被用来估计不确定性和计算风险。
例如,
在建筑工程中,工程师需要考虑材料失效的概率,以确保建筑物的安全性。
5.生物学和医学:在生物学和医学领域,概率论被用于分析基因突变、疾病传播等现
象,以及临床试验的结果分析。
6.通信和信息论:概率论在通信系统的设计和分析中起着关键作用,例如信道编码、
解码和信号处理等方面。
7.集成电路和半导体:在半导体制造过程中,概率论被用于估计产品的可靠性和寿命,
以及不良品的产生概率。
8.社会科学:在经济学、心理学、社会学等社会科学领域,概率论也被用于研究人类
行为和社会现象。
9.游戏和娱乐:概率论在赌博、博彩、游戏设计等娱乐领域也有广泛的应用,例如计
算赌博游戏的赔率、设计游戏规则等。
概率论在实际生活中的应用举例《概率论在实际生活中的应用举例》嘿,小伙伴们!你们知道概率论吗?这玩意儿可神奇啦,在咱们的日常生活里到处都有它的影子呢!就比如说抽奖吧,每次看到商场里那种大大的抽奖箱,我心里就直痒痒。
你想啊,那么多人都想抽到大奖,可大奖就那么几个,这可不就是概率论在起作用嘛!每次抽奖,我都会在心里默默算,我中奖的概率到底有多大呢?是像天上掉馅饼那么难,还是有那么一点点希望?还有买彩票,哇塞,那简直就是概率的大舞台!那么多彩票,就那么几个头奖,这概率小得就像在大海里找一颗特别的小沙子。
我经常听到有人说:“说不定我就是那个幸运儿呢!”可我就在想,这得多难呀?这概率低得吓人,难道真能轮到自己?再说说玩游戏,像扔骰子。
扔出个六的概率是六分之一,有时候我就盼着能扔出个六,可它就是不出现,急得我直跺脚,心里喊着:“怎么就这么难呀!”还有哦,比如考试的时候。
老师说这次考试会出一些难题,那我就得琢磨琢磨,遇到难题的概率有多大?我会不会正好碰上那些我不会的?哎呀,想想就紧张!我有一次和小伙伴们一起玩猜硬币正反面的游戏。
大家都瞪大眼睛,紧张地盯着那枚硬币。
我心里嘀咕着:“这次该是正面了吧?”结果一连好几次都猜错,我那个郁闷呀!这不就是概率在捉弄人嘛!我跟爸爸聊天的时候,说到这些,爸爸笑着说:“孩子,生活中到处都是概率,就像走路会遇到不同的风景一样。
”妈妈也凑过来说:“是呀,比如天气预报说下雨的概率是多少,咱们就得决定要不要带伞。
”你看,概率论是不是就在我们身边,影响着我们的每一个决定和每一次期待呢?它就像一个神秘的魔法师,悄悄地掌控着一些事情的可能性。
所以啊,小伙伴们,咱们可得好好学学概率论,这样才能在生活中做出更明智的选择,不被那些不确定的事情弄得晕头转向!你们说是不是呀?。
概率论在实际生活中的应用第一章绪论1.1 概率论的发展人类认识到随机现象的存在是很早的。
从太古时代起,估计各种可能性就一直是人类的一件要事。
早在古希腊哲学家就已经注意到必然性与偶然性问题;我国春秋时期也已有可考词语(辞海);即使提到数学家记事日程上的可考记载,也至少可推到中世纪。
有史记载15世纪上半叶,就已有数学家在考虑这类问题了。
如在意大利数学家帕乔利(L.pacioli)1494年出版的《算术》一书中就有以下问题:两人进行赌博,规定谁先获胜6场谁为胜者。
一次,当甲已获胜5场,乙也获胜2场时,比赛因故中断。
那么,赌注该如何分配呢?所给答案为将赌注分成7份,按5:2分给甲乙两人。
当卡丹(Cardan Jerome,1501—1576)看到上述问题时,以为所给分法不妥。
他考虑到接下去比赛的几种可能结果,并确定赌注应按10:1来分配(现在看来,其分法也是错误的)。
卡丹著有《论赌博》一书,其中提出一些概率计算问题。
如掷两颗骰子出现的点数和的各种可能性等。
此外,卡丹与塔塔利亚(Tartaglia Niccolo,1500—1557)还考虑了人口统计、保险业等问题。
但是他们的研究工作,对数学家来说,赌博味道太浓了一些,以致数学家们对其嗤之以鼻。
近代自然科学创始人之一—伽利略(Galileo,1564—1642)解决了以下问题:同时投下三颗骰子,点数和为9的情形有6种:(1、2、6)、(1、3、5)、(1、4、4)、(2、2、5)、(2、3、4)和(3、3、3)。
点数和为10的情形也有6种:(1、3、6)、(1、4、5)、(2、2、6)、(2、3、5)、(2、4、4)和(3、3、4),那么出现点数和为9与10的机会应相同,而经验告知,出现10的机会比出现9的机会要多,原因何在?伽利略利用列举法得出同时掷三颗骰子出现点数和为9的情形有25种,而出现点数和为10的情形却有27种。
可见,已经产生了概率论的某些萌芽。
概率概念的要旨只是在17世纪中叶法国数学家帕斯卡与费马的讨论中才比较明确。
他们在往来的信函中讨论"合理分配赌注问题"。
该问题可以简化为:19世纪后期,极限理论的发展成为概率论研究的中心课题,俄国数学家切比雪夫在这方面作出了重要贡献。
他在1866年建立了关于独立随机变量序列的大数定律,使伯努利定理和泊松大数定理成为其特例。
切比雪夫还将棣莫弗--拉普拉斯极限定理推广为更一般的中心极限定理。
切比雪夫的成果后又被他的学生马尔可夫(A.A.Makpob,1856—1922)发扬光大,推进了20世纪概率论发展的进程。
19世纪末,概率论在统计物理等领域的应用提出了对概率论基本概念与原理进行解释的需要。
另外,科学家们在这一时期发现的一些概率论悖论也揭示出古典概率论中基本概念存在的矛盾与含糊之处,其中最著名的是所谓“贝特朗悖论”。
1899年由法国学者贝特朗(J.Bertrand)提出:在半径为r的圆内随机选择弦,计算弦长超过圆内接正三角形边长的概率根据“随机选择”的不同意义,可以得到不同的答案。
这类悖论说明概率的概念是以某种确定的实验为前提的,这种实验有时由问题本身所明确规定,有时则不然。
因此,贝特朗等悖论的矛头直指概率概念本身,尤其是拉普拉斯的古典概率定义开始受到猛烈批评。
这样,到19世纪,无论是概率论的实际应用还是其自身发展,都强烈地要求对概率论的逻辑基础作出更加严格的考察。
鉴此,1900年夏,38岁的德国代表希尔伯特(D.Hilbort,1862—1943)在世界数学家大会上提出了建立概率公理系统的问题。
这就是著名的希尔伯特23问题之中的第6个问题。
这就引导一批数学家投入了这方面的工作。
最早对概率论来严格化进行尝试的,是俄国数学家伯恩斯坦和奥地利数学家冯·米西斯(R.von Mises,1883—1953)。
他们都提出了一些公理来作为概率论的前提,但他们的公理理论都是不完善的。
作为测度论的奠基人,博雷尔(Borel)在1905年指出概率论理论如果采用测度论术语来表述将会方便许多,并首先将测度论方法引入概率论重要问题的研究,特别是1909年他提出并在特殊情形下解决了随机变量序列,服从强大数定律的条件问题.博雷尔的工作激起了数学家们沿这一崭新方向的一系列探索,其中尤以原苏联数学家科尔莫戈罗夫(A.H.Kolmogorov,1903—1987)的研究最为卓著。
从二十世纪二十年代中期起,科尔莫戈罗夫开始从测度论途径探讨整个概率论理论的严格表述。
1926年,他推导了弱大数定律成立的主要条件,后又对博雷尔提出的强大数定律问题给出了一般的结果,推广了切比雪夫不等式,提出了科尔莫戈罗夫不等式,创立了可数集马尔可夫链理论,他最著名的工作是1933年以德文出版的经典性著作《概率论基础》。
科尔莫戈罗夫是莫斯科函数论学派领导人鲁金的学生,对实际函数论的运用可以说是炉火纯青。
他在这部著作中建立起集合测度与事件概率的类比、积分与数学期望的类比、函数正交性与随机变量独立性的类比,等等。
这种广泛的类比终于赋予了概率论以演绎数学的特征。
科尔莫戈罗夫的公理系统逐渐获得了数学家们的普遍承认,由于公理化,概率论成为一门严格的演绎科学,取得了与其他数学分支同等的地位。
科尔莫戈罗夫热爱教育事业,经常在大学生和进修生中挑选人才,参加讨论班。
1934年,他与概率论另一位创始人辛钦共同主持概率论讨论班。
在他们培养的学生中有6位成为前苏联科学院院士或通信院士。
1980年科尔莫戈罗夫荣获沃尔夫奖。
公理化概率论首先使随机过程的研究获得了新的起点,随机过程作为随时间变化的偶然量的数学模型,是现代概率论研究的重要主题。
莱维(P.Levy)从1938年开始创立研究随机过程的新方法,即着眼于轨道性质的概率方法。
1948年出版的《随机过程与布朗运动》,提出了独立增量过程的一般理论,并以其为基础极大地推进了对作为一类特殊马尔可夫过程的布朗运动的研究。
1939年维尔(J.Ville)引进“鞅”这个名称,但鞅论的奠基人是美国概率论学派的代表人物杜布(J.LDoob)。
杜布从1950年开始对鞅概念进行了系统的研究而使鞅论成为一门独立的分支。
鞅论使随机过程的研究进一步抽象化,不仅丰富了概率论的内容,而且为其他数学分支如调和分析、复变函数、位势理论等提供了有力的工具。
从1942年开始,日本数学家伊藤清引进了随机积分与随机微分方程,为一门意义深远的数学新分支——随机分析的创立与发展奠定基础。
1.2 随机现象与概率在自然界和现实生活中, 一些事物都是相互联系和不断发展的。
在它们彼此间的联系和发展中,根据它们是否有必然的因果联系,可以分成两大类:一类是确定性的现象,指在一定条件下,必定会导致某种确定的结果。
如,在标准大气压下,水加热到100℃,就必然会沸腾。
事物间的这种联系是属于必然性的。
另一类是不确定性的现象。
这类现象在一定条件下的结果是不确定的。
例如,同一个工人在同一台机床上加工同一种零件若干个,它们的尺寸总会有一点差异。
又如,在同样条件下进行小麦品种的人工催芽试验,各颗种子的发芽情况也不尽相同有强弱和早晚之别等。
为什么在相同的情况下会出现这种不确定的结果呢?这是因为,人们说的“相同条件”是指一些主要条件来说的,除了这些主要条件外,还会有许多次要条件和偶然因素是人们无法事先预料的。
这类现象,人们无法用必然性的因果关系,对现象的结果事先做出确定的答案。
事物间的这种关系是属于偶然性的,这种现象叫做偶然现象,或者叫做随机现象。
概率,简单地说,就是一件事发生的可能性的大小。
比如:太阳每天都会东升西落,这件事发生的概率就是100%或者说是1,因为它肯定会发生。
而太阳西升东落的概率就是0,因为它肯定不会发生。
但生活中的很多现象是既有可能发生,也有可能不发生的,比如某天会不会下雨、买东西买到次品等等,这类事件的概率就介于0和100%之间, 或者说0和1之间。
在日常生活中无论是股市涨跌,还是发生某类事故,但凡捉摸不定、需要用“运气”来解释的事件,都可用概率模型进行定量分析。
不确定性既给人们带来许多麻烦,同时又常常是解决问题的一种有效手段甚至唯一手段。
第二章概率知识的应用概率论研究随机现象的统计规律性:数理统计研究样本数据的搜集、整理、分析和推断的各种统计方法,这其中又包含两方面的内容:试验设计与统计推断。
试验设计研究合理而有效地获得数据资料的方法。
统计推断则是对已经获得的数据资料进行分析,从而对所关心的问题做出尽可能精确的估计与判断。
概率论是一门与现实生活紧密相连的学科,不过大多数人对这门学科的理解还是很平凡的:投一枚硬币,0.5的概率正面朝上,0.5的概率反面朝上,这就是概率论嘛。
学过概率论的人又多以为这门课较为理论化,特别是像母函数,极限定理等内容与现实脱节很大,专业性很强。
其实如果我们用概率论的方法对日常生活中的一些看起来比较平凡的内容做些分析,常常会得到深刻的结果。
本文中通过对具体的事例的分析讨论,体会概率论的知识在体育,经济,农业,风险决策,博采中的应用。
2.1从北京奥运会看概率在体育项目中的体现和应用举世瞩目的北京奥运会已经圆满落下帷幕,但精彩的奥运会比赛给我们留下了美好的回忆。
而在充满变数的奥运竞赛里面,隐藏着很多概率方面的问题,并且起了非常重要的作用。
“绿色奥运,人文奥运,科技奥运”是北京奥运会的理念, 奥运会涉及到概率方面的应用也是科技奥运的体现。
2.1.1 运用几何概率分析射箭比赛成绩的高低射箭比赛中使用的环靶为圆形(图2.1)所示,环靶自中心向外分别为黄、红、蓝、黑和白五种颜色的等宽同心圆区。
每一色区内又以一条细线分为两个等宽区,这样就构成了10个等宽的环区。
中心“+”标出,称为针孔。
环心至环边,10个环区依次记为10环,9环,8环,…射中某环区即的相应环分。
箭杆与环线之间没有距离时,按射中高环区计分。
直观理解,越靠近靶心的位置得分越高的原因是因为越靠近靶心的位置越难射中。
下面从概率的角度来描述射中靶位不同地方的难易程度。
图2.1 圆形环靶 假设这10个同心圆最内层的黄色的小圆的半径为r,外层同心圆的半径依次为2r,3r,r,…,10r 。
从而最内层的黄色小圆的面积为2r π,外层的同心圆环的面积依次为32r π,52r π,72r π,92r π,112r π,132r π,152r π,172r π,192r π。
为便于说明,假设运动员射箭的时候不会脱靶,并且射中环靶上的位置是随机的,则由几何概率的定义,射中最内环的十环的概率为0.01,射中九环的概率为0.03。
环数逐渐降低,射中该环数的概率却依次增加,分别为0.05,0.07,0.09,0.11,0.13,0.15,0.17,0.19。
可见利用几何概率的方式,我们可以更简便地理解越靠近靶心的位置越难射中,越靠近靶心分数越高。