24.1垂径定理整合
- 格式:ppt
- 大小:905.50 KB
- 文档页数:22
专题24.1 垂径定理【典例1】如图,在以点O为圆心的两个同心圆中,大圆的弦AB交小圆于C、D两点.(1)求证:AC=BD;(2)连接OA、OC,若OA=6,OC=4,∠OCD=60°,求AC的长.(1)过O作OH⊥CD于H,根据垂径定理得到CH=DH,AH=BH,即可得出结论;(2)过O作OH⊥CD于H,连接OD,由垂径定理得CH=DH=12CD,再证△OCD是等边三角形,得CD=OC=4,则CH=2,然后由勾股定理即可解决问题.(1)证明:过O作OH⊥CD于H,如图1所示:∵OH⊥CD,∴CH=DH,AH=BH,∴AH﹣CH=BH﹣DH,∴AC=BD;(2)解:过O作OH⊥CD于H,连接OD,如图2所示:则CH=DH=12 CD,∵OC=OD,∠OCD=60°,∴△OCD是等边三角形,∴CD=OC=4,∴CH=2,∴OH=∴AH∴AC=AH﹣CH=2.1.(2022•芜湖一模)已知⊙O的直径CD=10,AB是⊙O的弦,AB=8,且AB⊥CD,垂足为M,则AC 的长为( )A.B.C.D.【思路点拨】连接OA,由AB⊥CD,根据垂径定理得到AM=4,再根据勾股定理计算出OM=3,然后分类讨论:当如图1时,CM=8;当如图2时,CM=2,再利用勾股定理分别计算即可.【解题过程】解:连接OA,∵AB⊥CD,∴AM=BM=12AB=12×8=4,在Rt△OAM中,OA=5,∴OM=3,当如图1时,CM=OC+OM=5+3=8,在Rt△ACM中,AC=当如图2时,CM=OC﹣OM=5﹣3=2,在Rt△ACM中,AC=故选:C.2.(2022春•江夏区校级月考)如图,在⊙O中,弦AB=5,点C在AB上移动,连结OC,过点C作CD⊥OC交⊙O于点D,则CD的最大值为( )A.5B.2.5C.3D.2【思路点拨】连接OD,如图,利用勾股定理得到CD,利用垂线段最短得到当OC⊥AB时,OC最小,再求出CD即可.【解题过程】解:连接OD,如图,∵CD⊥OC,∴∠DCO=90°,∴CD=当OC的值最小时,CD的值最大,而OC⊥AB时,OC最小,此时D、B两点重合,∴CD=CB=12AB=12×5=2.5,即CD的最大值为2.5,故选:B.3.(2022•山海关区一模)已知⊙O的直径CD=10,CD与⊙O的弦AB垂直,垂足为M,且AM=4.8,则直径CD上的点(包含端点)与A点的距离为整数的点有( )A.1个B.3个C.6个D.7个【思路点拨】利用勾股定理得出线段AD和AC的长,根据垂线段的性质结合图形判断即可.【解题过程】解:∵CD是直径,∴OC=OD=12CD=12×10=5,∵AB⊥CD,∴∠AMC=∠AMD=90°,∵AM=4.8,∴OM==1.4,∴CM=5+1.4=6.4,MD=5﹣1.4=3.6,∴AC=8,AD=6,∵AM=4.8,∴A点到线段MD的最小距离为4.8,最大距离为6,则A点到线段MD的整数距离有5,6,A点到线段MC的最小距离为4.8,最大距离为8,则A点到线段MC的整数距离有5,6,7,8,直径CD上的点(包含端点)与A点的距离为整数的点有6个,故选:C.4.(2022•博山区一模)如图,在平面直角坐标系中,半径为5的⊙E与y轴交于点A(0,﹣2),B(0,4),与x轴交于C,D,则点D的坐标为( )A.0)B.(−4+0)C.(−40)D.0)【思路点拨】过O点作EH⊥AB于H,EF⊥CD于F,连接ED,如图,根据垂径定理得到CF=DF,AH=BH=3,所以OH=1,再利用勾股定理计算出EH=4,则EF=1,OF=4,接着利用勾股定理计算出FD,然后计算出OD,从而得到D点坐标.【解题过程】解:过O点作EH⊥AB于H,EF⊥CD于F,连接ED,如图,则CF=DF,AH=BH∵A(0,﹣2),B(0,4),∴AB=6,∴BH=3,∴OH=1,在Rt△BHE中,EH4,∵四边形EHOF为矩形,∴EF=OH=1,OF=EH=4,在Rt△OEF中,FD==∴OD=FD﹣OF=4,∴D(4,0).故选:B .5.(2022•新洲区模拟)如图,点A ,C ,D 均在⊙O 上,点B 在⊙O 内,且AB ⊥BC 于点B ,BC ⊥CD 于点C ,若AB =4,BC =8,CD =2,则⊙O 的面积为( )A .125π4B .275π4C .125π9D .275π9【思路点拨】利用垂径定理和勾股定理建立方程求出ON ,再求出半径后,根据圆面积的计算方法进行计算即可.【解题过程】解:如图,连接OA 、OC ,过点O 作OM ⊥CD 于M ,MO 的延长线于AB 延长线交于N ,则四边形BCMN 是矩形,∵OM ⊥CD ,CD 是弦,∴CM =DM =12CD =1=BN ,∴AN =AB +BN =4+1=5,设ON =x ,则OM =8﹣x ,在Rt △AON 、Rt △COM 中,由勾股定理得,OA 2=AN 2+ON 2,OC 2=OM 2+CM 2,∵OA =OC ,∴AN 2+ON 2=OM 2+CM 2,即52+x 2=(8﹣x )2+12,解得x =52,即ON =52,∴OA 2=52+(52)2=1254,∴S⊙O=π×OA2=1254π,故选:A.6.(2021秋•延平区校级期末)在Rt△ABC中,∠C=90°,BC=3,AC=4,D、E分别是AC、BC上的一点,且DE=3,若以DE为直径的圆与斜边AB相交于M、N,则MN的最大值为( )A.910B.65C.85D.125【思路点拨】由题意可知,C、O、G三点在一条直线上OG最小,MN最大,再由勾股定理求得AB,然后由三角形面积求得CF,最后由垂径定理和勾股定理即可求得MN的最大值.【解题过程】解:过O作OG⊥AB于G,连接OC、OM,∵DE=3,∠ACB=90°,OD=OE,∴OC=12DE=32,只有C、O、G三点在一条直线上OG最小,∵OM=3 2,∴只有OG最小,GM才能最大,从而MN有最大值,过C作CF⊥AB于F,∴G和F重合时,MN有最大值,∵∠ACB=90°,BC=3,AC=4,∴AB==5,∵12AC•BC=12AB•CF,∴CF=AC×BCAB=4×35=125,∴OG=CF﹣OC=125−32=910,∴MG===6 5,∴MN=2MG=12 5,故选:D.7.(2022•吴忠模拟)如图,AB是⊙O的直径,且CD⊥AB于E,若AE=1,∠D=30°,则AB= 4 .【思路点拨】根据含30度角的直角三角形的性质求出AD,根据垂径定理求出AC=AD,求出AC=AD=2,根据圆周角定理求出∠ACB=90°,∠B=∠D=30°,再根据含30度角的直角三角形的性质得出AB=2AC即可.【解题过程】解:∵CD⊥AB,∴∠AED=90°,∵AE=1,∠D=30°,∴AD=2AE=2,∠ABC=∠D=30°,∵AB⊥CD,AB过圆心O,∴AC=AD,∴AC=AD=2,∵AB是⊙O的直径,∴∠ACB=90°,∴AB=2AC=2×2=4,故答案为:4.8.(2022•烟台模拟)如图,AB是⊙O的直径,弦CD交AB于点P,AP=4,BP=12,∠APC=30°,则CD的长为【思路点拨】过O作OI⊥CD于I,连接OD,求出半径OD=OA=8,求出OP,根据含30度角的直角三角形的性质求出OI,根据勾股定理求出DI,根据垂径定理求出DI=CI,再求出CD即可.【解题过程】解:过O作OI⊥CD于I,连接OD,则∠OID=∠OIP=90°,∵AP=4,BP=12,∴直径AB=4+12=16,即半径OD=OA=8,∴OP=OA﹣AP=8﹣4=4,∵∠IPO=∠APC=30°,∴OI=12OP=12×4=2,由勾股定理得:DI==∵OI⊥CD,OI过圆心O,∴DI=CI=即CD=DI+CI=故答案为:9.(2022•桥西区校级模拟)如图,AB是⊙C的弦,直径MN⊥AB于点O,MN=10,AB=8,如图以O为原点建立坐标系.我们把横纵坐标都是整数的点叫做整数点,则线段OC长是 3 ,⊙C上的整数点有 12 个.【思路点拨】过C作直径UL∥x轴,连接AC,根据垂径定理求出AO=BO=4,根据勾股定理求出OC,再得出答案即可.【解题过程】解:过C作直径UL∥x轴,连接CA,则AC=12×10=5,∵MN过圆心C,MN⊥AB,AB=8,∴AO=BO=4,∠AOC=90°,由勾股定理得:CO3,∴ON=5﹣3=2,OM=5+3=8,即A(﹣4,0),B(4,0),M(0,8),N(0,﹣2),同理还有弦QR=AB=8,弦WE=TS=6,且WE、TS、QR都平行于x轴,Q(﹣4,6),R(4,6),W(﹣3,7),E(3,7),T(﹣3,﹣1),S(3,﹣1),U(﹣5,3),L (5,3),即共12个点,故答案为:3;12.10.(2022•商城县三模)如图所示的网格中,每个小正方形的边长均为1,点A、B、C均在小正方形的顶点上,点C 同时也在AB 上,若点P 是BC 的一个动点,则△ABP 面积的最大值是 −8 .【思路点拨】作AB 的垂直平分线交AB 于D ,交AB 于E ,圆心为0,则点O 在DE 上,连接AE 、BE ,CF ⊥OE 于F ,如图,设⊙O 的半径为r ,OD =x ,利用勾股定理得到r 2=x 2+42①,r 2=(x +2)2+22②,则利用②﹣①可求出得x =2,所以r =DE =2,然后根据三角形面积公式,点P 点与点E 重合时,△ABP 面积的最大值.【解题过程】解:作AB 的垂直平分线交AB 于D ,交AB 于E ,圆心为0,则点O 在DE 上,连接AE 、BE ,CF ⊥OE 于F ,如图,设⊙O 的半径为r ,OD =x ,在Rt △BOD 中,r 2=x 2+42①,在Rt △OCF 中,r 2=(x +2)2+22②,②﹣①得4+4x +4﹣16=0,解得x =2,∴OD =2,∴r =∴DE =OE ﹣OD =2,∵点P 是BC 的一个动点,∴点P 点与点E 重合时,△ABP 面积的最大值,最大值为12×8×(2)=8.故答案为:8.11.(2022春•徐汇区校级期中)如图,AB是⊙O的弦,D为半径OA的中点,过D作CD⊥OA交弦AB于点E,且CE=CB,若BE=2AE,CD=5,那么⊙O的半径为【思路点拨】先证明△AFO和△BCE是等边三角形,设DE=x,根据CD=5列方程,求出x得到AD【解题过程】解:如图,记DC与⊙O交于点F,连接AF、OF、OB,过点C作CT⊥AB于点T,连接OE,OT.∵D为半径OA的中点,CD⊥OA,∴FD垂直平分AO,∴FA=FO,又∵OA=OF,∴△AOF是等边三角形,∴∠OAF=∠AOF=∠AFO=60°,∵CE=CB,CT⊥EB,∴ET=TB,∵BE=2AE,∴AE=ET=BT,∵AD=OD,∴DE∥OT,∴∠AOT=∠ADE=90°,∴OE=AE=ET,∵OA=OB,∴∠OAE=∠OBT,∵AO=BO,AE=BT,∴△AOE≌△BOT(SAS),∴OE=OT,∴OE=OT=ET,∴∠ETO=60°,∴∠OAB=∠OBA=30°,∠AED=∠CEB=60°,∴△CEB是等边三角形,∴CE=CB=BE,设DE=x,∴AE=2x,BE=CE=4x,∴CD=5x=5,∴x=1,∴AD∴AO=故答案为:12.(2022•盐城)证明:垂直于弦AB的直径CD平分弦以及弦所对的两条弧.【思路点拨】先根据已知画图,然后写出已知和求证,再进行证明即可.【解题过程】如图,CD为⊙O的直径,AB是⊙O的弦,AB⊥CD,垂足为M.求证:AM=BM,AC=BC,AD=BD.证明:连接OA、OB,∵OA=OB,∴△OAB是等腰三角形,∵AB⊥CD,∴AM=BM,∠AOC=∠BOC,∴AC=BC,AD=BD.13.(2021秋•鼓楼区校级期末)如图,AB是⊙O的直径,弦CD⊥AB于点E,若BE=5,CD=6,求AE 的长.【思路点拨】根据垂径定理和勾股定理求出圆的半径,进而求出AE的长即可.【解题过程】解:如图,连接OC,∵CD⊥AB,AB是直径,∴CE=DE=12CD=3,在Rt△COE中,设半径为r,则OE=5﹣r,OC=r,由勾股定理得,OE2+CE2=OC2,即(5﹣r)2+32=r2,解得r =3.4,∴AE =AB ﹣BE =3.4×2﹣5=1.8,答:AE 的长为1.8.14.(2021秋•芜湖月考)如图,在△ABC 中AB =5,AC =4,BC =2,以A 为圆心,AB 为半径作⊙A ,延长BC 交⊙A 于点D ,试求CD 的长.【思路点拨】过点A 作AE ⊥BD 于点E ,如图,则DE =BE ,利用双勾股得到AC 2﹣CE 2=AB 2﹣BE 2,即42﹣(BE ﹣2)2=52﹣BE 2,解方程得到BE =134,然后计算BD ﹣BC 即可.【解题过程】解:过点A 作AE ⊥BD 于点E ,连接AD ,如图,则DE =BE ,在Rt △ACE 中,AE 2=AC 2﹣CE 2,在Rt △ABE 中,AE 2=AB 2﹣BE 2,∴AC 2﹣CE 2=AB 2﹣BE 2,即42﹣(BE ﹣2)2=52﹣BE 2,解得BE =134,∴CD =BD ﹣BC =2BE ﹣2=2×134−2=92.答:CD 的长为92.15.(2022•江西开学)如图,在⊙O 中,弦AB ∥CD ,AB =8,CD =6,AB ,CD 之间的距离为1.(1)求圆的半径.(2)将弦AB 绕着圆心O 旋转一周,求弦AB 扫过的面积.【思路点拨】(1)过点O作OF⊥CD于点F,交AB于点E,连接OA、OD,即可得出DF=CF=3,再因为AB∥CD,则可得到OE⊥AB,进而得到AE=BE=4,最后根据勾股定理计算即可;(2)先判断出将弦AB绕着圆心O旋转一周,得到的图形,再根据圆面积公式计算即可.【解题过程】解:(1)如图,过点O作OF⊥CD于点F,交AB于点E,连接OA、OD,则DF=CF=3,∵AB∥CD,∴OE⊥AB,∴AE=BE=4,设OE=x,则OF=x+1,根据题意可得:x2+42=(x+1)2+32,∴x=3,∴=5;(2)将弦AB绕着圆心O旋转一周,得到的图形是以点O为圆心,以3为半径的圆与以5为半径的圆所围成的环形,故弦AB扫过的面积为π×52﹣π×32=16π.16.(2021秋•玄武区校级月考)如图,AB是⊙O直径,弦CD⊥AB于点E,过点C作DB的垂线,交AB 的延长线于点G,垂足为点F,连结AC.(1)求证:AC=CG;(2)若CD=EG=8,求⊙O的半径.【思路点拨】(1)利用等角的余角证明∠D=∠G,再根据圆周角定理得到∠A=∠D,所以∠A=∠G,从而得到结论;(2)连接OC,如图,设⊙O的半径为r,根据等腰三角形的性质和垂径定理得到AE=EG=8,EC=ED=4,则OE=8﹣r,利用勾股定理得r2=(8﹣r)2+42,然后解方程即可.【解题过程】(1)证明:∵DF⊥CG,CD⊥AB,∴∠DEB=∠BFG=90°,∵∠DBE=∠GBF,∴∠D=∠G,∵∠A=∠D,∴∠A=∠G,∴AC=CG;(2)解:连接OC,如图,设⊙O的半径为r.∵CA=CG,CD⊥AB,∴AE=EG=8,EC=ED=4,∴OE=AE﹣OA=8﹣r,在Rt△OEC中,∵OC2=OE2+EC2,∴r2=(8﹣r)2+42,解得r=5,∴⊙O的半径为5.17.(2022•白云区二模)已知:如图,A,B是半圆O上的两点,CD是⊙O的直径,∠AOD=80°,B是AD 的中点.(1)在CD上求作一点P,使得AP+PB最短;(2)若CD=4cm,求AP+PB的最小值.【思路点拨】(1)作出B关于CD的对称点B′,连接AB′,交CD于P点,P就是所求的点;(2)延长AO交圆与E,连接OB′,B′E,可以根据圆周角定理求得∠AOB′的度数,根据等腰三角形的性质求得∠A的度数,然后在直角△AEB′中,解直角三角形即可求解.【解题过程】解:(1)作BB′⊥CD,交圆于B′,然后连接AB′,交CD于P点,P就是所求的点;(2)延长AO交圆于E,连接OB′,B′E.∵BB′⊥CD∴BD=B′D,∵∠AOD=80°,B是AD的中点,∴∠DOB′=12∠AOD=40°.∴∠AOB′=∠AOD+∠DOB′=120°,又∵OA=OB′,∴∠A=180°−∠AOB′2=30°.∵AE是圆的直径,∴∠AB′E=90°,∴直角△AEB′中,B′E=12AE=12×4=2,∴AB′=.18.(2022•中山市模拟)已知:如图,在⊙O中,AB、AC为互相垂直的两条弦,OD⊥AB,OE⊥AC,D、E 为垂足.(1)若AB=AC,求证:四边形ADOE为正方形.(2)若AB>AC,判断OD与OE的大小关系,并证明你的结论.【思路点拨】(1)连接OA,根据垂径定理得出AE=CE,AD=BD,根据AB=AC求出AE=AD,再根据矩形的判定和正方形的判定推出即可;(2)根据勾股定理得出OE2=OA2﹣AE2,OD2=OA2﹣AD2,根据AB>AC求出AD>AE,再得出答案即可.【解题过程】(1)证明:连接OA,∵OD⊥AB,OE⊥AC,OD和OE都过圆心O,∴∠OEA=∠ODA=90°,AE=CE,AD=BD,∵AC=AB,∴AE=AD,∵AB、AC为互相垂直的两条弦,∴∠EAD=90°,即∠OEA=∠EAD=∠ODA=90°,∴四边形EADO是正方形(有一组邻边相等的矩形是正方形);(2)解:OD<OE,证明:∵AB>AC,AE=CE,AD=BD,∴AD>AE,在Rt△ODA和Rt△OEA中,由勾股定理得:OE2=OA2﹣AE2,OD2=OA2﹣AD2,∴OD2<OE2,即OD<OE.19.(2022•全椒县一模)如图,⊙O中两条互相垂直的弦AB,CD交于点E.(1)OM⊥CD于点M,CD=24,⊙O的半径长为OM的长.(2)点G在BD上,且AG⊥BD交CD于点F,求证:CE=EF.【思路点拨】(1)连接OD,由垂径定理和勾股定理可得答案;(2)连接AC,由垂直的定义及等腰三角形的性质可得结论.【解题过程】(1)解:如图,连接OD,∵OM⊥CD,OM过圆心,CD=24,∴DM=CM=12CD=12,∠OMD=90°,由勾股定理得,OM=4,即OM的长为4;(2)证明:如图,连接AC,∵AG⊥BD,∴∠DGF=90°,∴∠DFG+∠D=90°,∵AB⊥CD,∴∠CEA=90°,∴∠C+∠EAC=90°,∵∠EAC=∠D,∠DFG=∠AFC,∴∠C=∠AFC,∴AF=AC,∵AB⊥CD,∴CE=EF.20.(2022•合肥模拟)如图,在⊙O中,AB,AC为弦,CD为直径,AB⊥CD于E,BF⊥AC于F,BF与CD相交于G.(1)求证:ED=EG;(2)若AB=8,OG=1,求⊙O的半径.【思路点拨】(1)连接BD,容易得到∠GBE和∠DBE相等,利用ASA证明△BGE和△BDE全等即可;(2)连接OA,设OA=r,则DG=r+1,根据ED=EG容易求出OE=r−12,再根据垂径定理求出AE的值,最后在Rt△OAE中根据勾股定理求出r的值即可.【解题过程】(1)证明:如图:连接BD,∵AB⊥CD于E,BF⊥AC于F,∴∠CFG=∠GEB,∵∠CGF=∠BGE,∴∠C=∠GBE,∵∠C=∠DBE,∴∠GBE=∠DBE,∵AB⊥CD于E,∴∠GEB=∠DEB,在△GBE和△DBE中,∠GEB=∠DEBBE=BE∠GBE=∠DBE,∴△BGE≌△BDE(ASA),∴ED=EG.(2)解:如图:连接OA,设OA=r,则DG=r+1,由(1)可知ED=EG,∴OE=r−1 2,∵AB⊥CD于E,AB=8,∴AE=BE=4,∴在Rt△OAE中,根据勾股定理得:OE2+AE2=OA2,即(r−12)2+42=r2,解得:r=13 3,即⊙O的半径为13 3.21.(2021•遵义一模)在《折叠圆形纸片》综合实践课上,小东同学展示了如下的操作及问题:(1)如图1,⊙O1的半径为4cm,通过折叠圆形纸片,使得劣弧AB沿弦AB折叠后恰好过圆心O1,求,AB长;(2)如图2,O2C⊥弦AB,垂足为点C,劣弧AB沿弦AB折叠后经过O2C的中点D,AB=10cm,求⊙O 的半径.【思路点拨】(1)过点O1作O1F⊥AB于F,得出O1F=12O1F,再根据勾股定理,即可得出结论;(2)同(1)的方法先判断出O2C=2rcm,再根据勾股定理建立方程求解,即可得出结论.【解题过程】解:(1)如图1,过点O1作O1F⊥AB于F,并延长O1F交虚线劣弧AB于E,∴AB=2AF,由折叠知,EF=O1F=12O1E=12×4=2(cm),连接O1A,在Rt△O1FA中,O1A=4,根据勾股定理得,AF cm),∴AB=2AF=;(2)如图2,延长O2C交虚线劣弧AB于G,由折叠知,CG=CD,∵D是O2C的中点,∴CD=O2D,∴CG=CD=O2D,设⊙O2的半径为3rcm,则O2C=2r(cm),∵O2C⊥弦AB,∴AC=12AB=5(cm),连接O2A,在Rt△ACO2中,根据勾股定理得,(3r)2﹣(2r)2=25,∴r∴O2A=3r=cm),即⊙O2的半径为.22.(2021•浙江自主招生)以O为圆心,1为半径的圆内有一定点A,过A引互相垂直的弦PQ,RS.求PQ+RS的最大值和最小值.【思路点拨】设OA=a(定值),过O作OB⊥PQ,OC⊥RS,B、C为垂足,设OB=x,OC=y,0≤x≤a,(0≤y≤a),由勾股定理得出x,y,a的关系,再由垂径定理PQ和RS,最后由完全平方公式求得最大值和最小值.【解题过程】解:如图,设OA=a(定值),过O作OB⊥PQ,OC⊥RS,B、C为垂足,设OB=x,OC=y,0≤x≤a,(0≤y≤a),且x2+y2=a2.所以PQ=2PB=RS=所以PQ+RS=2∴(PQ+RS)2=4(2﹣a2而x2y2=x2(a2﹣x2)=﹣(x2−a22)2+a44.当x2=a22时,(x2y2)最大值=a4 4.此时PQ+RS=当x2=0或x2=a2时,(x2y2)最小值=0,=2(1+此时(PQ+RS)最小值。
BB24.1.2 垂直于弦的直径——垂径定理(第一课时)一、知识探究1、圆既是 图形,又是 图形。
对称轴是 ,对称中心是 。
2、按要求作图(1)作⊙O 的任意一条弦AB ;(2)过圆心O ,作垂直于弦AB 的直径CD ,交AB 于点E 。
观察并回答:问题1:通过观察,在该图中有没有相等的线段:问题2:通过观察,在该图中有没有相等的弧: 证明过程:已知:CD 是⊙O 的直径,且CD ⊥AB 。
求证:AE=BE结论:垂径定理: 的直径 ,并且 。
几何语言的写法:∵ ∴强调:(1) ;(2) ;(3) (4) ;(5) 二、例题解析例1:在⊙O 中,弦AB 长8cm ,圆心O 到AB 的距离为3cm ,则⊙O 半径为例2:⊙O 的半径为5,M 是⊙O 内一点,OM=3,则过M 点的最短弦的长为例3:如图:已知线段AB 交⊙O 于C 、D 两点,若AC=BD ,求证:OA=OB 。
三、课堂练习:1、在⊙O 中,弦AB 长8cm ,⊙O 半径为5cm ,圆心O 到AB 的距离为2、在⊙O 中,⊙O 半径为5cm ,圆心O 到弦AB 的距离3cm ,则弦AB 的长为3、在半径为R 的⊙O 中,有长为R 的弦AB ,那么O 到AB 的距离为4、如图,在以O 为圆心的两个同心圆中,大圆的弦AB 交小圆与C 、D 两点。
求证:AC=BD 。
5、如图,AB 是⊙O 的直径,弦CD ⊥AB 于点P ,CD=10cm ,AP ∶PB=1∶5 ,求的⊙O 半径。
24.1.2 垂直于弦的直径——垂径定理的推论(第二课时)一、知识回顾垂径定理: 的直径 ,并且 。
按要求作图(1)在⊙O (2)作弦(3)连接问题1:⊙O 的直径CD 与弦AB 有怎样的位置关系: 问题2:该图中有没有相等的弧 证明过程:已知:CD 是⊙O 的直径,并且平分弦AB ,求证:CD ⊥AB 。
结论:垂径定理的推论: 的直径 ,并且 三、例题解析例1:已知⊙O 的半径OA=10㎝,弦AB=16㎝,P 为弦AB 上的一个动点,则OP 的最短距离为典型练习:1、下面四个命题中正确的一个是( )A .平分一条直径的弦必垂直于这条直径B .平分一条弧的直线垂直于这条弧所对的弦C .弦的垂线必过这条弦所在圆的圆心D .圆内平分一条弧和它所对弦的直线必过这个圆的圆心 2、下列命题中,正确的是( ).A .过弦的中点的直线平分弦所对的弧B .过弦的中点的直线必过圆心C .弦所对的两条弧的中点连线垂直平分弦,且过圆心D .弦的垂线平分弦所对的弧3、⊙O 的直径为10,弦AB 的长为8,M 是弦AB 上的动点,则OM 的长的取值范围是( ) (A )5OM 3≤≤ (B )5OM 4≤≤ (C )5OM 3<< (D )5OM 4<<4、如图所示,若⊙O 的半径为13cm ,点P 是弦AB 上一动点,且到圆心的最短距离5cm ,则弦AB 的长为______________ . 四、课堂练习1、已知:如图,AB 是⊙O 的弦,半径OC ⊥AB 于点D ,且AB=8m ,OC=5m ,则DC 的长为(1) (2) (3)2、如图,在⊙O 中,直径AB 丄弦CD 于点M ,AM=18,BM=8,则CD 的长为__________ . 3、如图,∠PAC=30°,在射线AC 上顺次截取AD=3cm ,DB=10cm ,以DB 为直径作⊙O 交射线AP 于E 、F 两点,则线段EF 的长是_________ cm .4、已知圆的半径为5cm ,一弦长为8cm ,则弦的中点到弦所对弧的中点的距离为__ _____。
24.1.2 垂直于弦的直径授课题目:垂直于弦的直径一、教材分析1、作为《圆》这章的第一个重要性质,它研究的是垂直于弦的直径和这弦的关系。
2、该性质是圆的轴对称性的演绎,也是今后证明圆中线段相等、角相等、弧相等、垂直关系的重要依据,同时为后面圆的计算和作图提供了方法和依据,所以它在教材中处于非常重要的作用。
二、教学目标1、知识目标:(1)充分认识圆的轴对称性。
(2)利用轴对称探索垂直于弦的直径的有关性质,掌握垂径定理。
(3)运用垂径定理进行简单的证明、计算和作图。
2、能力目标:(1)让学生经历“实验—观察—猜想—验证—归纳”的研究过程,培养学生动手实践、观察分析、归纳问题和解决问题的能力。
(2)让每个学生动手、动口、动眼、动脑,培养学生直觉思维能力。
3、情感目标:通过实验操作探索数学规律,激发学生的好奇心和求知欲同时培养学生勇于探索的精神。
三、教学关键:圆的轴对称性的理解四、教学重点:垂直于弦的直径的性质及其应用。
五、教学难点:1、垂径定理的证明。
2、垂径定理的题设与结论的区分。
六、教学辅助:多媒体、可折叠的圆形纸板。
七、教学方法本节课采用的教学方法是“主体探究式”。
整堂课充分发挥教师的主导作用和学生的主体作用,注重学生探究能力的培养,鼓励学生认真观察、大胆猜想、小心求证。
令学生参与到“实验--观察--猜想--验证--归纳”的活动中,与教师共同探究新知识最后得出定理。
学生不再是知识的接受者,而是知识的发现者,是学习的主人。
八、教学过程:1、情景创设(1分钟)情景问题:赵州桥主桥拱的跨度(弧所对的弦的长)为37.4m, 拱高(弧的中点到弦的距离)为7.2m ,你能求出赵州桥主桥拱的半径吗?(ppt )把一些实际问题转化为数学问题2、回顾旧识(2分钟)我们已经学习过对称的有关概念,下面复习两道问题1)什么是轴对称图形? 2)我们学习过的轴对称图形有哪些?(电脑上直观的动画演示,运用几何画板演示沿上述图形对称轴对折图形的动画)3、引入新课(4分钟)问:(1)我们所学的圆是不是轴对称图形? (2)如果是,它的对称轴是什么? 拿出一张圆形纸片,沿着圆的任意一条直径对折,重复做几次,你发现了什么?由此你能得到什么结论?:(1)圆是轴对称图形。
姓名: 24.1 垂径定理学习目标1、理解圆是轴对称图形,过圆心的直线都是它的对称轴.通过复合图形的折叠方法得出猜想垂径定理,并辅以逻辑证明加予理解.2、理解垂径定理并灵活运用垂径定理及圆的概念解决一些实际问题.重难点、关键1.重点:垂径定理及其运用.2.难点与关键:探索并证明垂径定理及利用垂径定理解决一些实际问题.学习过程一、复习引入1、什么是圆?右边的圆如何表示?2.什么是弦、直径、弧、半圆?写出右图中的弦与弧:二、探索新知每位同学制作一个圆形纸片,通过折叠,旋转,看看你有什么发现?1.圆是轴对称图形吗?如果是,它的对称轴是什么?•你能找到多少条对称轴?2.如图,AB 是⊙O 的一条弦,作直径CD ,使CD ⊥AB ,垂足为M .图形的认识:如右图中,线段AB 叫做弦,直径CD ⊥AB 于M , 则垂线段OM 叫做弦心距,垂线段CM 、DM 叫做拱高, (1)如图是轴对称图形吗?如果是,其对称轴是什么?(2)你能发现图中有哪些等量关系?用轴对称的性质说一说你理由.通过以上证明你能得出什么结论:3、判断下列命题是否正确:(1)垂直于弦的直径平分弦,并且平分弦所对的两条弧;(2)平分弦的直径垂直于弦,并且平分弦所对的两条弧;(3)垂直平分弦的直线必过圆心,并且平分弦所对的两条弧;(4)平分弧的直径必垂直平分弧所对的弦;4、利用垂径定理解决有关计算:如上图,在⊙O 中,已知弦AB=8cm ,弦心距OM=3cm ,求⊙O 的半径?B参照课本P80-81页解决赵州桥主桥半径的解法解决下面的例题:例1.如图,一条公路的转弯处是一段圆弦(即图中弧CD ,点O 是弧CD 的圆心,•其中弦CD=600m ,E 为弧CD 上一点,且OE ⊥CD ,垂足为F ,EF=90m三、应用拓展例2.有一石拱桥的桥拱是圆弧形,如图24-5所示,距离CD=18m ,当洪水泛滥,水面距离拱顶小于4m 时,必须采取紧急措施,某次暴雨后,水面上涨至MN 处,此时水面宽MN=32m ,是否需要采取紧急措施?请说明理由.四、归纳小结(学生归纳,老师点评)2.圆是轴对称图形,任何一条直径所在直线都是它的对称轴. 3.垂径定理及其推论以及它们的应用.五、反馈练习: 一、选择题. 1.如图1,如果AB 为⊙O 的直径,弦CD ⊥AB 于E ,下列结论中,错误的是( ). A .CE=DE B . C .∠BAC=∠BAD D .AC>AD2.如图2,⊙O 的直径为10,圆心O 到弦AB 的距离OM 的长为3,则弦AB 的长是( ) A .4 B .6 C .7 D .83.如图3,在⊙O 中,P 是弦AB 的中点,CD 是过点P 的直径,•则下列结论中不正确的是( )A .AB ⊥CD B .∠AOD=∠BODC .D .PO=PD 二、填空题1.如图4,AB 为⊙O 直径,E 是弧BC 中点,OE 交BC 于点D , BD=3,AB=10,则AC=_____. 2.如图,P 为⊙O 内一点,在图中分别画出经过点P 的最长的弦, 经过点P 最短的弦,若OP=3cm ,⊙O 半径为5cm ,则经过P 点的 最短弦长为________;最长弦长为_______.三、综合提高题 1.如图,⊙O 直径AB 和弦CD 相交于点E ,AE=2,EB=6,∠DEB=30°,求弦CD 长.⌒ ⌒ BD BC =⌒ ⌒ BCAC =B A。