气敏元件的加热功率与温度的关系
- 格式:docx
- 大小:45.30 KB
- 文档页数:8
电子功能材料实验课后思考题答案一、纳米SnO2材料的制备方法主要有三类:1)从气相中合成纳米SnO2,这种方法主要有溅射法、蒸渡法、化学气相淀积法等。
这种方法微粒尺寸为几埃,使用于有机离子盐,材料精确可控,要求设备精度高。
2)液相中合成纳米SnO2,这种方法主要有化学沉积法、醇盐水解法、溶胶-凝胶法等。
使用广泛,大多数金属盐类都可溶,均一性好,尤其做混合组分时优点明显,但产量小,产率低,有损失,适合科研院所,仪器设备简单。
3)固相中合成纳米SnO2,这种方法主要包括固相反应法、机械粉碎法和金属盐分解等。
最原始的方法,高温煅烧的方法,耗能反应,产物均匀性差,原理简单,操作容易。
2、制备SnO2粉体材料的原理?采用沉淀法,沉淀法是在金属盐类的水溶液中,控制适当的条件使沉淀剂与金属离子反应,产生水合氧化物或难容化合物,使溶质转化为沉淀,然后经分离、干燥或热分解而得到纳米颗粒。
SnCl4?5H2O遇水后水解,形成氢氧化氧锡白色沉淀:SnCl4?5H2O + H2O = SnO(OH)2↓+ 4HCL加热可使水解生成的SnO(OH)2 在酸性溶液中进一步转变成Sn4+,在氨水作用下形成Sn(OH)4 白色沉淀。
SnCl4?5H2O + 4NH3?H2O = Sn(OH)4↓+ 4NH4Cl所形成的Sn(OH)4沉淀物,颗粒较细,有时不易离心沉淀,可适当加热进行陈化,然后再离心清洗。
沉淀物经干燥、灼烧后即得到SnO2气敏材料。
Sn(OH)4 = SnO2 +2H2O3、在制备 SnO2超微粉体材料过程中影响材料颗粒度大小的工艺条件有哪些?为什么?1)原材料种类。
SnCl4,氨水。
2)配制溶液的浓度。
SnCl4,氨水浓度不能太大,反应速度快,最终产物颗粒大小不均匀;浓度太低,会延长反应时间,使得产物最终长大,发生成核长大过程。
3)反应速度。
4)反应结束溶液PH值。
PH值在酸性范围时,所得到的SnO2对还原性气体敏感;PH值在碱性范围时,所得到的SnO2对氧化性气体敏感,并且随着PH 值的增大,SnO2颗粒尺寸先下降,上升,再下降,上升。
气敏元件的加热功率与温度的关系张开文*************(2012.11.16)一、加热器的设计加热器的设计实际是加热器在达到热平衡后,使整个元件的工作温度达到使用的温度要求。
它包括载体及其上面的敏感体、加热器、导电电极、和引出线。
当加热器施加工作的加热电压U H时,其施加的加热功率P H=U H*I H该功率产生的热量Q使整个基体发热,平衡后达到一定的工作温度。
在实际的工作过程中不可避免的有热量的损失。
热损失包括对流、传导和辐射。
辐射损失的热量最大。
损失的热量散发到周围的环境中,余下的热量就使整个元件加热。
当施加的电功率产生的热量在某一个温度下平衡时,整个基体的温度就不再上升,保持在一个相对稳定的温度点上。
设:施加的功率P H=U H*I H,产生的功W=P H*t t—时间1)基体温升的热量Q1 Q1=CMΔTC=比热(J/g.℃) M=质量g ΔT=(T-T0)温升2)、耗散的热量Q2 Q2=αS(T-T0)α=散热系数 W/cm2.℃ S=表面积 cm2T=基体温度℃ T0=环境温度℃3)、当施加的电压产生的热能W与基体温升和耗散的热量达到平衡时:即W=Q1+Q2 则 P H t =W=Q1+Q2 = CMΔT+αS(T-T0)微分得:P H dt= CMΔTdt+αS(T-T0)dt阶微分方程得:T=T0+P H/αs(1-e-αs/cm.t) 当t→∞ T=T0+P H/αs当 t=3CM/αs 时(t总是可以达到3CM/αs的)那么:T=T0+P/αs(1-e-3)=T0+0.95P H/αs上式表示:基体的温度等于环境温度加上施加的加热功率除以散热系数和基体表面积的0.95倍。
当环境温度、加热功率、基体的表面积和散热系数确定后就能算出基片的温度。
但是散热系数很难确定,实际要想比较准确的计算出基片的是困难的。
因此基体的温度设计最简单的方法就是通过试验获得比较容易。
二、悬挂式片时气敏元件的功率与基片温度(1)元件的功率这里主要是指元件的加热功率P H。
温度过高对气敏传感器灵敏度下降的原因下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!本店铺为大家提供各种类型的实用资料,如教育随笔、日记赏析、句子摘抄、古诗大全、经典美文、话题作文、工作总结、词语解析、文案摘录、其他资料等等,想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you! In addition, this shop provides you with various types of practical materials, such as educational essays, diary appreciation, sentence excerpts, ancient poems, classic articles, topic composition, work summary, word parsing, copy excerpts, other materials and so on, want to know different data formats and writing methods, please pay attention!随着工业自动化的不断发展,气敏传感器在各个领域的应用越来越广泛。
第17卷第3期 湖南工程学院学报 Vo1.17.No .32007年9月 Journalof Hunan I nstitute of Engineering Sep t .2007收稿日期3基金项目湖南省教育厅科研基金资助项目(558)作者简介邓永和(),男,讲师,研究方向气敏智能材料、计算物理学WO 3基燃气敏感元件的研制邓永和1,王冬青1,胡爱钦1,于风梅2(1.湖南工程学院数理系,湖南湘潭411104;2.湖南工程学院数理系应用物理0601班,湖南湘潭411104) 摘 要:在三氧化钨粉体材料中加入4wt %瓷粉,以恒温600℃烧结1h 制成旁热式厚膜可燃性气体敏感元件.采用静态电压测量法,研究了元件的加热功率与元件灵敏度的关系,讨论了元件的响应与恢复特性.实验结果显示:WO 3基元件在加热功率为600m W 时能开发成理想的乙醇、丙酮和汽油敏感元件.关键词:气体敏感元件;WO 3基;灵敏度;旁热式中图分类号:TP212.2 文献标识码:A 文章编号:1671-119X (2007)03-0031-030 引 言三氧化钨粉体材料是较早期研究开发的半导体气敏材料之一,先后出现了以三氧化钨为基体,添加贵金属催化剂制作出了还原性气体的气敏元件[1][2],并相继出现了用于检测H 2S [3][4]、NO 2[5][6]、N O x [7]、NH 3[8]等气敏元件.以上的工作比较全面的探讨了WO 3基元件对单一气体的气敏特性,取得了较好的研究成果,而目前对WO 3基元件在某一个相近系列的气体群或混合气体内探讨元件的气敏性能一直很少报道.有一些文献[1][2][4]显示气敏元件在制备过程中,添加剂的不同,会直接影响到材料的气敏特性.近年来,随着人们生活水平和环保意识的加强,人们对气敏元件提出了更高、更广的要求,在以三氧化钨为基体的元件中添加少量其他物质,能很好的改变元件对敏感气体的选择性和提高元件的灵敏度,因此备受国内外学者的关注.目前天然气、煤气等已经被广泛应用到生活与生产中,汽油、酒精等易挥发的可燃性气体也和人们的生活密切相关,研究一种能够迅速准确的检测这些与生活密切相关的可燃性气体的敏感元件是必要的,也能够适用于矿区可燃性气体浓度的检测,有效地避免安全事故的发生.1 试 验1.1 元件材料与制作工艺试验过程中在三氧化钨分析纯中按物质的质量比加入4%的瓷粉经球磨,采用传统的工艺制作成旁热式厚膜气敏元件,放入马弗炉中以恒温600℃烧结1h,放在空气中自然冷却,用金属铂作为电极,普通的自制绕线电阻作为加热电阻.1.2 测试原理图1 测试原理图 测试电路原理图如图1所示,利用元件电阻的变化引起回路中电阻R L 两端电压的变化,用电压表:2007-0-20:0C 7:1974-:.测量R L 两端电压V L ,测量回路电源采用稳定性很强的电压源,其中V H 为加热电压,V C 为测试电路的工作电压,V S 为元件在一定体积分数的被测气体中R L 两端电压,V 0为元件在空气中R L 两端电压,试验采用静态电压法测试.元件的静态电阻值R [1]:R =(V C V L-1)R L ;(1)元件对被测气体的灵敏度β[1]:β=V S V 0;(2)实验过程中,在一定气体浓度中,R L 两端电压变化到在同样的气体组分与浓度中R L 两端稳定电压的70%和90%时所经历的时间为响应时间;元件从被测气体中置于空气中,R L 两端电压变化到空气中稳定R L 两端电压的70%和90%时所经历的时间为恢复时间.2 实验结果与讨论2.1 气敏特性从表1中可以看出,在不同的加热功率下,元件对相同浓度的各种气体的灵敏度不同,且灵敏度峰值所对应的加热功率也不同,反映了元件对不同气体敏感时的工作温度要求是不同的,要使元件对气体的敏感性能最优,要求我们选择一个比较适合的工作温度.表1显示汽油在加热功率增加的过程中,灵敏度一直呈下降趋势,在低加热功率时,具有很高表1 气体的体积分数为10-3,元件的灵敏度β与加热功率的关系气体200m W 300mW 400m W 500m W 600m W 700m W 800m W 汽油52.1343.0229.2619.5913.879.188.24丙酮 2.457.9314.1518.2717.9318.5815.15乙醇2.16 4.248.079.169.648.237.85CH 4 1.05 1.10 1.16 1.20 1.301.35 1.24CO1.131.281.321.191.161.121.10的灵敏度,远远大于其它的气体,表现出很高的气体选择性.主要是因为低温时,汽油分子在元件表面吸附能力较强,随工作温度的增加吸附能力在下降,元件的灵敏度也会下降,对于汽油外的其他被测气体,元件的加热功率增加到一定时,气体与元件表面的吸附反应加强了,故灵敏度在增加.当加热功率大于700mW 时,元件的灵敏度都下降了,主要表现为由于元件温度的升高,元件本身的电阻率增加比较大,元件与气体的吸附反应能力也在减小,由吸附反应引起的电阻率的减小以及由工作温度增加引起的电阻率增加相互抵消一部分,元件的灵敏度下降了对于除汽油外的其它气体元件在加热功率为600mW 时,元件的灵敏度是比较大的,灵敏性能比较好.实验元件在加热功率为600mW 时,元件对被测气体的灵敏度β与气体浓度的关系见表2,元件对丙酮和汽油很敏感,其次是对乙醇,元件对低浓度的丙酮、汽油、乙醇具有很强的检测能力,比较适合开发出性能优越的气体传感器.而元件对C O 、CH 4的敏感性能却不理想.表2 试验元件在加热功率为600mW 时,元件的灵敏度β与气体体积分数的关系气 体气体体积分数(10-6)1002005001000汽油13.8716.6728.3448.13丙酮17.9319.7825.1434.02乙醇9.0410.2513.9720.14CH 41.101.121.201.312.2 响应与恢复特性元件的响应与恢复特性与元件的材料组成、工作温度、气体成分等因素有关,表3给出了元件在加热功率为600m W ,气体体积分数为10-3时元件的响应与恢复时间.响应的速度快慢依次为丙酮、汽油、乙醇,恢复速度的快慢依次为丙酮、乙醇、汽油,可以发现丙酮具有很好的吸附与脱附能力,比较适合于开发快速反应气敏元件.汽油和乙醇的脱附时间比较长.在实验过程中我们发现当加热功率小于450m W 时,元件的响应时间变化显著,加热功率大于450m W 后,响应时间的改善就不大了,而恢复性能则要求更高的加热功率,当加热功率达到800m W 时,元件的恢复时间就没有很大的变化了.因此在开发元件时,选取合适的加热电压和加热电阻,使加热功率在600m W 时,元件的性能比较好.表3 加热功率为600mW ,气体体积分数为10-3时,元件对不同气体的响应与恢复时间气 体响应时间(s )恢复时间(s )变化70%变化90%变化70%变化90%汽油11.522.338.2107.1丙酮8.314.218.555.0乙醇16.532.028.170.02.3 初期驰豫特性在实验中发现,WO 3基元件的电阻对温度的变化有一个滞后,元件的电阻从加热开始要经过一段时间后才会稳定下来,出现了初期驰豫特性通过测量元件在一定温度下稳定的静态电阻和以一定的升温速率达到同一温度的动态电阻的比较,动态电阻23 湖南工程学院学报 2007年..在300℃的温度下升温先下降,当温度高于300℃后升温,动态电阻开始上升,呈现出一定的半导体特性.在不同的加热功率下,元件达到的稳定值不同,需要的时间不同,加热功率越大电阻的极小值越小,达到极小值所需的时间也越短.3 结论(1)WO 3基中加入质量比为4%的瓷粉制作的旁热式气敏元件对丙酮、汽油、乙醇具有很强的敏感性能,对CO 、CH 4几乎不敏感;(2)WO 3基气敏元件的工作温度直接影响元件的灵敏度,对丙酮、汽油、乙醇在加热功率为600mW 时,具有很好的敏感性能和稳定性能;(3)元件对丙酮具有很好的响应与恢复性能,适合开发快速反应的气体敏感系统.参 考 文 献[1] 邓永和,唐世洪,谭子尤,等.掺杂离子对O 3气敏元件的影响[J ].传感器技术,2002,21(4):13-14.[2] 刘金浩,王 豫,董 亮,等.WO 3基功能材料的研究进展[J ].中国钨业,2005,20(5):17-21.[3] 全宝富,孙良彦.WO 3材料对H 2S 气体的敏感特性[J ].传感器世界,1996,2(2):27-30.[4] 黄世震,林 伟.纳米WO 3-ZnS 系H 2S 气体元件的研制[J ].传感器技术,2001,20(1):21-22.[5] 黄世震,林 伟.纳米WO 3材料对NO 2气敏特性的研究[J ].福州大学学报:自然科学版,2001,29(1):25-27.[6] T ongM S,Da G R,W u YD,et al .WO 3thin fil m preparedby PEC VD T echnique and Its Ga s Ensing P ro pe rties to NO 2[J ].Journa l of Ma t e rials Science,2001,36(10):2535-2538.[7] 赖云锋,黄世震,林 伟,等.用纳米WO 3制作NO x 气敏元件[J ].郑州轻工业学院学报(自然科学版),2000,15(4):49-51.[8] 李 玲,潘庆谊,程知萱,等.C NT -WO 3元件的氨敏特性研究[J ].无机材料学报,2006,21(1):151-156.Research on Com bustible Ga s Sen s or of WO 32Ba sedD E N G Yong -he 1,WAN G Dong -qing 1,HU A i -qin 1,Y U Feng -mei(1.Depa rt ment of Ma thematics and Physics,Hunan I nstit ute of Enginee ring,Xi angtan 411104,China;2.Appgied Physi c s 0601,Dept .of Ma ths .and Phy .,Hunan I nstit ute of Enginee ri ng,Xi angtan 411104,Ch i na )Abstrac t:M ixing 4w t%of porce lain powder int o WO 32based and hea ting f or one hour at stable te mperature 600℃,the heating ty pe thick fil m c om bustible gas sensitive sens or is m anuf actured.The r e lati onshi p bet ween thetepef acti on power and the sensitivity of sensors is studied,and the responding and rec ove r y ti me pr operty is a lso discussed ba sed on the steady v oltage m easure m ethod .The r e sults show that the most opti mum WO 32based com 2bustible gases (ethanol,acet one and ga s oline )sensitive sens ors a r e developed w ith 600mW tepefaction power .Key wor ds:gas sensitive sensor ;WO 32based;sensitivity;heating type33第3期 邓永和等:WO 3基燃气敏感元件的研制。
气敏元件的气敏特性影响因素分析摘要:在确定金属氧化物半导体气敏元件的制备工艺参数时,要想达到最优化,必须考虑制备手段、方法、流程等工艺对材料的干扰因素。
通过对不同掺杂浓度、不同退火温度的样品气敏性能测试结果进行归纳,研究敏元件在不同气体的选择性与灵敏度、响应恢复时间,以及改变气体浓度、改变工作温度、改变工艺参数时对气敏性能影响等方面的探讨,确定出气敏性能的规律性变化。
关键词:气敏特性;气体浓度;退火温度;响应-恢复时间1 引言对于金属氧化物半导体气敏元件而言,其在大多数还原性气体的条件下,因其气体敏感机理的缘故,都会有灵敏的响应。
本文基于ZnO进行探讨,其在常温下的禁带宽度为3.4eV,激子结合能为60meV,电子迁移率大于100cm2/Vs,是一种常见的宽禁带、较大激子结合能、较高电子迁移率的N型金属氧化物半导体。
采用水热法制备不同Co掺杂量、不同退火温度的纳米ZnO材料过程中,在确定Co-ZnO 纳米材料的制备工艺参数时,要想达到最优化,必须考虑制备手段、方法、流程等工艺对材料的干扰因素。
通过对不同掺杂浓度、不同退火温度的样品气敏性能测试结果进行归纳,讨论样品对不同气体的选择性与灵敏度、响应恢复时间,以及改变气体浓度、改变工作温度、改变工艺参数对气敏性能的影响,从而确定出气敏性能的规律性变化。
2 选择性和响应-恢复时间选择性是衡量气敏元件性能优劣的重要因素。
根据气敏测试系统的原理,随着Vout值的变大,气敏元件的灵敏度也就越高,因此气敏元件的灵敏度可以用Vout进行间接的反映。
因此,不但气敏元件的响应恢复时间能用响应恢复特性曲线呈现出来,其在气体中的灵敏度也能通过响应恢复特性曲线呈现出来。
测量Co-ZnO基气敏元件选择性的过程中,在5wt.%浓度掺杂600℃退火温度的样品上,通入丙酮、甲苯、甲醛、乙醇、甲醇的饱和气体,处于4.5V工作电压下运行,用来检测不同气体条件下的样品气敏特性,结果如图1所示。
气敏元件主要特性参数工作电压忆:指在工作条件下,气敏元件两电极间的电压。
工作电流亿:指在工作条件下,通过气敏元件两电极间的电流。
允许工作电压(电流)范围:指在保证基本电参数的情况下,气敏元件工作电压(电流)允许变化的范围。
负载电阻RL:指测量回路中取样用的电阻。
测量电压Vc:指测量回路输入端施加的电压。
测量电流Ic:指通过测量回路的总电流。
加热电压VH:指加热器两端施加的电压。
加热电流IH:指通过加热器的电流。
标定气体中电压VS:指气敏元件在含标定气体的条件下负载电阻上电压降稳定值。
标定气体中电流IS:指在工作条件下标定气体中负载电阻上通过的电流。
初始电压VO:指在清洁空气环境中,气敏元件加热到工作状态时负载电阻两端的电压。
初始电流IO:指在清洁空气环境中,气敏元件加热到工作状态时通过负载电阻的电流。
击穿电压:指气敏元件两电极间被击穿的电压。
加热功率PH:指加热电压与加热电流的乘积。
最正确工作条件:指根据气敏元件稳定性、灵敏度、响应时司与恢复时间等参数所选定的最正确测量电压、加热电压及负载电阻等条件。
灵敏度S:指在最正确工作条件下,气敏元件接触同一气体时,其阻值随气体浓度变化而变化的特性。
若采用电压测量法,接触某种气体前后负载电阻上的电压降之比即为灵敏度。
响应时间Tres:指在最正确工作条件下,气敏元件接触待测气体后,负载电阻的电压(电流)变化到规定值所需的时间。
恢复时间Trec:指在最住工作条件下,气敏元件脱离被测气体后,负载电阻上的电压(电流)恢复到规定值所需的时间。
温度特性:指当环境温度变化时,气敏元件电阻值随之变化的特性。
湿度特性:指当环境湿度变化时,气敏元件电阻值随之变化的特性。
mq-2烟雾传感器工作原理MQ-2烟雾传感器工作原理。
MQ-2烟雾传感器是一种常用的气体传感器,主要用于检测烟雾、甲醛、丙酮、一氧化碳等有毒有害气体。
它的工作原理基于半导体气敏元件的变化,当检测到目标气体时,传感器的电阻值会发生变化,通过测量电阻值的变化来判断目标气体的浓度。
MQ-2烟雾传感器主要由气敏元件、加热元件和电路板组成。
气敏元件是传感器的核心部件,它采用半导体氧化物材料制成,具有对特定气体敏感的特性。
在正常工作状态下,气敏元件会受到加热元件的加热,使其保持在一定的温度下,以确保传感器的稳定性和灵敏度。
当目标气体进入传感器内部时,它会与气敏元件发生化学反应,导致气敏元件的电阻值发生变化。
传感器的电路板会实时监测气敏元件的电阻值,并将其转换成对应的电信号输出。
这些电信号经过放大、滤波和AD转换等处理后,最终被传输到微处理器或单片机进行进一步的处理和判断。
通过对电信号的分析,可以准确地判断目标气体的浓度,并输出相应的信号进行报警或显示。
在实际应用中,MQ-2烟雾传感器通常与其他电路和设备配合使用,例如单片机、蜂鸣器、显示屏等。
当传感器检测到烟雾或其他有毒有害气体时,会通过输出信号触发蜂鸣器发出警报,并在显示屏上显示相关的信息,提醒人们及时采取措施,保障人身和财产安全。
总的来说,MQ-2烟雾传感器是一种简单、高效的气体检测器,其工作原理基于半导体气敏元件的电阻值变化。
通过与其他电路和设备配合使用,可以实现对烟雾、甲醛、丙酮、一氧化碳等有毒有害气体的快速、准确检测,为人们的生活和工作提供了重要的保障。