驼峰调速设备能高计算
- 格式:ppt
- 大小:4.45 MB
- 文档页数:30
铁路驼峰自动化的车辆速度控制系统摘要:驼峰是铁路编组站内重要的车辆改编设备,也是技术最密集布置的区域,提高驼峰溜放效率对于实现编组站作业能力的提升具有显著作用,提高驼峰作业安全性对于保障编组站运输畅通具有重要意义。
利用计算机模拟手段,分别在到发线有效长850m和1050m的两种情况下,对不同停车器间隔进行停车防溜仿真实验。
通过对实验结果的分析,得出驼峰调车场尾部停车器间隔变化不仅会影响停车防溜效果,并且对停车防溜效果影响的规律会受到尾部坡度和单组勾车辆数的制约,进而为停车防溜设备布置方案的优化提供依据。
关键词:铁路;驼峰调车场;停车防溜;停车器;布置方案;系统仿真前言:随着我国铁路驼峰溜放作业综合自动化技术的发展,驼峰调车场尾部停车防溜作业自动化程度得到大幅度提高,我国铁路编组站整体装备技术处于世界领先水平。
但是,由于调车场溜放车组受停车设备、线路坡度等各类因素影响,尾部停车防溜效果仍有待提升,同时尾部停车器布置方案在设计规范上还有所欠缺。
为此,通过仿真技术,改变尾部停车防溜设备布置方案,让勾车在仿真平台上溜放,以更好地为尾部停车防溜设备布置方案提供技术支持。
1铁路驼峰调车场尾部停车防溜现状分析1.1驼峰调车场尾部停车防溜设备布置现状《铁路驼峰及调车场设计规范》规定,调车场尾部主要编组直达、直通和区段等列车的线束,应在尾部平坡或反坡段设停车器或停车顶。
调车场尾部的停车器布置必须具备停车和防溜2种功能。
停车是指无论勾车大小、溜放速度、钩位状态,均需在该段区域内安全停车,如果溜出将意味着车辆进入尾部警冲标防护区,造成事故隐患。
防溜是指无论气象条件如何、勾车连续冲撞次数多少,必须将勾车最前端的位置控制在安全范围之内。
通常尾部停车器的布置有“1+1”(即前后各1组停车器的方式)和“2+1”(即前面2组停车器,后面1组停车器)2种方案。
编尾停车器布置方案如图1所示。
图1编尾停车器布置方案为保障安全,避免大车组溜出停车区,需要在最后一台停车器和道岔警冲标之间安装防溜器或人工铁鞋,进一步保障编尾停车防溜的安全性。
1驼峰定义:指将调车场始端道岔区前的线路抬到一定高度,主要利用其高度使车辆自动溜到调车线上,用来解体列车的一种调车设备。
(驼峰形似骆驼的峰背,故称驼峰。
它面向调车场有一段较陡的坡度,调车时溜放的动力以其本身的重力为主。
)2驼峰的分类:按解体能力分为:小能力驼峰,解体能力200~2000辆,调车线5~16条,应设1条禁溜线;中能力驼峰,解体能力2000~4000,调车线17~29条,宜设1~2条禁溜线;大能力驼峰,解体能力4000辆以上,调车线一般不少于30条,2条禁溜线。
3驼峰的主要设备:1,调速工具,主要有铁鞋,车辆减速器,减速顶,加减速顶和可控顶。
2,进路控制和信号设备,3,照明,通信,广播设备及技术办公房屋等。
4调速分类:间隔调速:为了保证在溜放部分道岔和减速器的安全转换,前后溜放勾车在道岔和减速器上的最小间隔时间;目的调速:保证勾车在调车场内以某一速度溜行一定距离以后能以规定的速度与停留车安全连挂。
5,调速系统的分类:1,点式调速系统,采用减速器,特点:溜行速度高,解体效率高,提供的制动力大,但是精度不够,因为测量设,备和减速器的误差加在一起,所以安全连挂率不高;2,点连式调速系统:由减速器和减速顶相结合或减速器和推送小车结和的点连式调速系统,特点:;3,连续式调速系统:全部采用减速顶;特点:精度高,安全连挂率高达98%但是效率低,溜行速度低;6,我国铁路由于车辆安全连挂速度低,(5km/h以下),车辆溜放阻力离散度大,允许连挂速度低,要求溜行距离远,以及驼峰作业量大等运营特点,采用点连式调速系统。
7,制动位:放置减速器的位置8,减速器目前我国采用的车辆减速器都是钳夹型,按其制动力的来源分为重力式和压力式,重力式减速器的制动力产生于车辆本身的重力,制动力的大小与车辆的重量无关成正比,压力式减速器的制动力产生于外界动力源,其制动力的大小与车辆重量无关,不能随车辆的重量自行调节。
9,减速顶的组成:1,壳体2,滑动油缸a,速度阀:提供速度的临界值,b,压力阀:产生制动力,保证油缸压下去,c,回程阀:滑动油缸缓慢回升。
浅析我国驼峰溜放车辆调速系统作者:曾霞廖自威刘逸姜春梅龙腾子来源:《科技创新导报》 2012年第21期曾霞1 廖自威2 刘逸1 姜春梅1 龙腾子1(1.西南交通大学四川成都 611756; 2.南京航空航天大学江苏南京 210000)摘要:铁路编组站对溜放车辆的速度控制是驼峰作业能力和编组站效率的重要标志,也是调车作业的关键。
我国编组站的调速技术经过三十多年的发展,调速设备和系统不断改善,为实现编组站的现代化发挥了重要的作用。
关键词:调速原理调速系统减速器中图分类号:U284 文献标识码:A 文章编号:1674-098X(2012)07(c)-0103-011 调速过程及原理当需要解体的列车到达编组站之后,调车机车与车列连挂,将车列推上峰顶平台,车列在提钩后进行解体溜放。
每钩车经过驼峰加速坡、中间坡等最后与停留车安全连挂或者在调车线尾部停车。
(如图1)对溜放车组调速过程是一个能量转换的过程。
车组在摘钩时获得重力势能和初动能。
在溜放的过程中,每钩车经道岔区的阻力、调速设备阻力、空气阻力、车辆自身机械阻力等的作用后,能量被消耗,最后与停留车连挂或在调车线尾部停车。
2 我国现阶段的调速系统2.1 点式调速系统点式调速系统由减速器、雷达测速、测阻、测重、测长、计算机等设备构成。
减速器动作机动灵活,车组通过减速器的速度比较高。
但该系统对油轮、薄轮等货车减速器的制动力衰减较大,影响制动效果和作业安全。
2.2 连续式调速系统2.2.1 股道全减速顶连续调速系统该系统在驼峰溜放部分不设减速顶,车组通过调车线头部顶群,将速度降至安全连挂速度。
它的优点是设备简单,对薄轮、大轮、油轮车均可得到较好的减速效果。
系统内各顶能独立工作,个别损坏时不影响全局。
但减速顶残余功过大,危及作业安全,有时会造成堵门,影响驼峰效率。
2.2.2 驼峰全减速顶连续调速系统该系统从驼峰溜放部分即装减速顶,使驼峰纵断面和减速顶结合,对车组进行连续调速,保证车组与停留车安全连挂。
驼峰设计规范一、定义;驼峰:驼峰是将调车场始端道岔区前线路抬到一定高度,只要利用其高度和车辆自重,使车辆自动溜到调车线上,用以解体车列的一种调车设备。
峰顶:峰顶平台与加速坡的交点。
推送部分:推峰解体列车,其第一辆车位于峰顶平台的始端时,列车全长所在的线路范围。
溜放部分:从峰顶至调车场第一制动位入口的线路范围。
峰顶平台:连接推送部分与溜放部分的一段平坡,不包括两端竖曲线的切线时称为净平台。
计算点:确定驼峰高度时,保证难行车在溜车不利条件下溜到调车场难行线某处停车或具有一定的速度的地点。
推送线:到达场出口端最外道岔(或迁出线)到峰顶平台始端用以向峰顶推送列车的线路。
溜放线:从峰顶至第一分路道岔始端的一段线路。
禁溜线:在解体过程中暂时存放禁止从驼峰溜放车辆的线路。
迂回线:将禁止过峰顶及减速器的车辆绕过峰顶送往调车场的线路。
分路道岔:驼峰部分连接线束和连接调车线的道岔。
峰高:峰顶与计算点的高差。
推送坡:推送部分的平均坡度。
压钩坡:在推送线上,为压紧车辆间的车钩以便于摘钩而设置的一段较陡坡段。
加速坡:由峰顶至第一分路道岔前,为使钩车加速以形成前、后钩车间必要的间隔而设置的下坡。
中间坡:自第一分路道岔前至线束始端的下坡段。
道岔区坡:自线束始端至车场制动位始端的坡段。
调速系统控制长度:自第一车场制动位出口至调车线平坡末端。
打靶区:自第一车场制动位出口至计算点的一段距离。
连挂区:自计算点至调速系统控制长度末端的一段线路。
尾部反坡:自调速系统控制长度末端至尾部警冲标的上坡段。
驼峰调速系统:为调整溜放钩车的速度而设置的一套控制系统。
点式调速系统:在驼峰溜放部分和调车线内,钩车溜放的调速设备全部采用减速器的调速系统。
点连式调速系统:在驼峰的溜放部分和调车线的始端采用减速器,在调车场内采用连续式调速设备的调速系统。
连续式调速系统:在驼峰的溜放部分和调车线内,钩车溜放的调速设备连续布置在线路上实现对钩车的连续调速。
单推单溜:只用一台机车担当驼峰推送和解体作业的作业组织方式。
驼峰调车控制摘要:驼峰调车控制系统( hump marshalling control system) 为在驼峰调车场上控制货车溜放进路和溜放速度,实现车列自动分类解体和编组进行自动控制的系统。
它主要包括调车场头部溜放调车控制和峰尾调车进路控制两部分。
头部溜放调车控制又分为驼峰指挥系统(驼峰信号及其他调车信号联锁设备) 、机车推峰速度控制、货车溜放进路控制以及货车溜放速度控制。
峰尾的集中联锁及平面溜放控制目前尚未纳入整个驼峰调车自动化系统中。
关键词:驼峰调车控制系统发展简况驼峰指挥系统机车推峰速度自动控制系统货车溜放进路控制系统在驼峰调车场上,为控制货车溜放进路和溜放速度,实现列车的自动分类解体和编组所进行的自动控制。
其主要目的是保证驼峰调车作业安全,提高作业能力,减轻作业人员的劳动强度和加强铁路管理质量。
发展简况随着驼峰的出现和发展,驼峰调车控制技术也日益完善。
自1873 年英国在利物浦建成世界上第一个驼峰调车场之后,美国于1891 年开始把转辙机用于操纵驼峰调车场的道岔,以加快道岔转换。
美国1924 年在吉布森站开始应用车辆减速器控制货车的溜放速度;1948 年在帕蒂北站采用半自动控制机控制车组溜放速度,并用驼峰电气集中控制溜放进路;1952 年在凯赖列特建成用模拟计算机自动控制车组溜放速度的驼峰信号系统;1956 年在盖脱威建成用数字计算机控制推峰机车速度和车组溜放速度的列车编组解体自动控制系统。
与此同时各国也相继发展驼峰调车控制技术和设备,使驼峰调车作业效益不断提高,作业安全也得到了进一步保证,铁路管理质量也日益提高。
中国于1943 年在苏家屯开始建成机械化驼峰,用车辆减速器控制溜放速度。
中华人民共和国成立以后,在全国主要编组站相继建成一些机械化驼峰。
80 年代初在丰台西站开始应用速控机自动控制编组场减速器,艮山门开始使用减速顶调速控制系统。
1985 年南翔编组站开始使用电子计算机控制驼峰调车。