单相接地电容电流测试装置
- 格式:docx
- 大小:21.77 KB
- 文档页数:1
变电站10kV系统电容电流测试分析发表时间:2018-04-13T16:46:01.430Z 来源:《电力设备》2017年第32期作者:孙志强1 李洪涛1 拜克明1 王智慧1 刘东1 尤[导读] 摘要:随着电力系统的迅速发展,供电线路特别是电缆的增长,导致系统对地电容增大,运行中的电容电流越来越大,对供电系统的安全、可靠运行造成不利影响。
(1国网河南省电力公司新乡供电公司河南新乡 473000;2国网河南省电力公司郑州供电公司河南郑州 450000) 摘要:随着电力系统的迅速发展,供电线路特别是电缆的增长,导致系统对地电容增大,运行中的电容电流越来越大,对供电系统的安全、可靠运行造成不利影响。
因此对系统的电容电流数据的测试,进而采取科学合理、行之有效的补偿措施有着重要意义。
关键词:电容电流;注入法;电流补偿一、引言近年来由于电网的扩充,供电线路对地的分布电容量不断增大,变电站10-35kV系统的电容电流越来越大。
就目前而言,国内大部分地区为消除分布电容过大对系统带来的不利影响,采用了加装消弧线圈的方法(也有部分地区是加装小电阻)。
但无论以何种方法实现灭弧,能否准确地测量出系统的分布电容是关键。
因此,准确地测量出系统的分布电容,便成了保证电力系统安全运行的突出问题。
一旦知道了系统的分布电容,便可求出电容电流值,并根据此数据投入相应的消弧线圈,以补偿系统过大的电容电流。
基于以上原因公司近期安排对公司属近郊及市区郊府城、滨河等16座变电站10kV系统电容电流测量。
二、测试方法目前国内测量配电系统电容电流的方法有:单相金属接地法、偏置电容法、中性点外加电容法、外加互感器法、二次信号注入法等。
上述各种方法在测量方法、测量精度上都有不同程度的缺陷。
经过分析比较,本次测试采用中性点信号注入法。
该方法原理是:选用特定由图3-3所示,与规定值30A相比,各站电容电流值都要大,其中朱庄变和佳城变分别为55.4、40.5,相比之下段村、滨河等站电流值大大超过30A,段村、滨河高达7倍,最小的高村变电容电流也达到了规定值的四倍四、测试操作注意事项1、测试前一定要保证系统消弧线圈退出运行,并且系统没有其他接地点。
单项接地电容电流的规定和限制措施一、规定要求:《煤矿安全规程》第453条规定:矿井6000V及以上高压电网,必须采取措施限制单相接地电容电流,生产矿井不超过20A,新建矿井不超过10A。
矿井高压电网中的变压器都采用中性点不接地的运行方式,此种运行方式当变电容量过大进将产生较大的单相接地电容电流。
单相接地电流过大可能引起电气火灾和电雷管超前引爆等故障。
从安全角度讲,国家规定额定安全电压最高值为42V,对煤矿井下规定额定安全电压为36V,取上限为42V,《规程》规定,接地网上任一保护接地点的接地电阻值不得超过2Ω。
而单相接地电流应限制在42V/2Ω=21A以下。
因此规程规定,对于大中型矿井,当高压电网的单相接地电容电流超过20A时,可采取变压器中性点经消弧电抗线圈接地或缩短供电网络距离等补偿措施。
二、矿井下的变压器中性点不能直接接地:因为对于中性点直接接地的连接方式,一旦发生系统中一相接地而出现除中性点外的另一个接地点,则会发生严重的短路。
此时接地故障相电流很大,容易损坏设备,危害人身安全。
对于矿井而言,大短路电流可能会产生电火花,易导致井下易爆气体爆炸。
因此井下变压器中性点不能直接接地。
而对于中性点不接地的系统,即使发生单相接地,也不会造成短路,系统仍然可以继续运行,保证可靠性。
但此时非接地相电压将升高至线电压,所以此类系统对于绝缘的要求较高。
由于高压绝缘较困难,所以通常高压输电网采用中性点直接接地,而中压系统主要是采用中性点不接地。
三、单相接地电容电流的危害1、人体触电:在绝缘电阻和分布电容一定时,电网电压越高,人体触电时的危险性就越大。
当电网电压一定时,供电线路越长而对地分布电容越大,人体触电时危险性就越大。
2、接地电压升高:供电系统中任一相绝缘损坏接地时,该相对地电压等于零,其他非故障两相对地电压升高达电网线电压(即为正常工作的√3倍,即线电压),易使绝缘薄弱处击穿造成两相接地、相间短路。
非故障两相对地电容电流也随之增大为正常时的√3倍,接地点的接地电流是非故障两相对地电容电流的矢量和,即为正常时对地电容电流的3倍。
油田35kV电网电容电流测试方案电力调度所王以顺近几年来,油田电网做了较大的调整和改造。
110kV实行了派开运行,广华变电所进行了升压改造,增架35kV线路,油田电力系统派生三个运行区块。
为了保证电网的安全可靠运行,电网消谐问题引起了重视,电网35kV运用消弧线圈补偿需要认真解决。
为掌握35kV电网运行参数,本文拟定了几种测试35kV电网电容电流的方案。
方案一、单相金属性接地法一、不投入消弧线圈测试电网电容电流1、接线图单相金属性接地不加消弧线圈补偿测电容电流接线图2、测试结果计算lcp=P Ud Icp----接地电流的有功分量(A lcq=(lc 2-lcp 21/2 Icq----接地电流的无功分量(A d%=lcp -Icq 100% Ic ----系统总电容电流(AP -- 接地回路的有功损耗(W Ud ---- 二次中性点不称电压(V d% -- 系统阻力率若频率不是额定值,则需要将测得的lc 折算到额定电压和额定频率下的值。
lce=lc Ue —Jpx fe —ce----额定电压、额定频率下的接地电流fe——50HzUe ---- 额定电压(VUpx --- 三相电压平均值(V3、试前的准备工作1 消除35kV 线路的缺陷,防止测试时出现意外。
2 选择备用开关做测试回路的断路器,(初步考虑采用红34开关并对开关进行检查。
3对测试开关进行保护整定:t=0秒,ldz=(3~4lc。
4准备测试仪器、仪表、工具、绝缘板等必备用具。
4、考虑测试广华变电所35kV 电网接地电流,视运行方式情况,只需要调整运行方式,同上叙述方法进行测试,用代数差计算出广华变35kV 电网接地电流,即可得到测试结果。
二、投入消弧线圈测试电容电流中性点接入消弧线圈时,进行金属性接地,测试系统的电容电流。
1、接线图L单相金属性接地加消弧线圈补偿测电容电流接线图CW1、W3-----普通有功表Q2、Q4-----低功率因数功率表2、测试结果计算I / cp =P 1 - Ud x K -1-残余电流的有功分量(A I / cq=Q 2 - Ubc x K ---残 / cq 余电流的无功分量(A I L p=P 3 Utl X K 2 I L p---补偿电流的有功分量(A I L q=Q 4出be X K 2 I L q----补偿电流的无功分量(A lcp=l X-Icp p Icp----电容电流的有功分量(A lcq=l L q -I'cq Icq----电容电流的无功分量(A lc=(lcp 2+Icq 21/2 Ic---系统电容电流的有效值(Ad=I / cp t Icq X 1O0、P3I为W1、W3所测的残余补偿的有功功率(WQ2、Q4为W2、W4所测残余补偿的无功分量(乏d%----被测系统阻力率K1、K2——CT、PT变比倍率方案二、中心点外加电容法中心点外加电容测试系统电容电流,是在系统无补偿情况下运行的。
10~35千伏不接地系统电容电流测试方法研究张科峻;张文平;姚毅【摘要】随着配电网架结构的变化和电力电缆大量投入使用,10~35千伏不接地系统对地容性电流将随之增大,系统电容电流是否满足《交流电气装置的过电压保护和绝缘配合》(DL/T620-1997)的要求,则是对10~35千伏电网监测的工作重点。
测得所辖变电站不接地系统电容电流的大小,对电容电流超标的变电所,逐步加装消弧线圈或接地变消弧线;掌握所辖变电站不接地系统电容电流的补偿情况;准确选择和合理配置消弧线圈或接地变消弧线圈自动跟踪补偿装置的容量提供依据。
因此,对不接地系统容性电流在计算的基础上,测量运行中单相接地电容电流是十分必要的,同时,也能验证小电流接地选线装置的正确性。
%With the changesin the structure of the distribution network frame and a large amount of power cables being put into use in Xifeng urban area of Qingyangcity,capacitive ground current of the 10 !35 kV ungrounded will increases.The most important thing in the monitoring of the 10 !35 kV grid is whether the system's capacitive current can meet the requirement in over-voltage protection and insulation coordination of AC electrical installations (DL/T620 -1997 ).It is necessary to measure the capacitive current of the ungrounded system of the substation,gradually add arc-suppression coils or grounded arc-suppression coils to those substations with excessive capacitive current,keep informed on the compensation of capacitive current of the ungrounded system of the substations under control,correctly select and reasonably provide arc-suppression coils or grounded suppression coils as a basis for automatic tracking of thecapacity of the compensating device.Therefore,it is necessary to measure the single-phase grounded capacitive current in operation in addition to the calculation of ungrounded system capacitive current,and to verify the correctness of the line selecting device for small current grounding.【期刊名称】《电气自动化》【年(卷),期】2014(000)002【总页数】3页(P63-65)【关键词】不接地系统;电容电流;测试;方法;研究【作者】张科峻;张文平;姚毅【作者单位】庆阳供电公司,甘肃庆阳 745000;庆阳供电公司,甘肃庆阳745000;庆阳供电公司,甘肃庆阳 745000【正文语种】中文【中图分类】TM7440 引言随着配电网架结构的变化和电力电缆大量投入使用,10~35千伏不接地系统对地容性电流将随之增大,系统电容电流是否满足《交流电气装置的过电压保护和绝缘配合》(DL/T620-1997)的要求,解决这一问题则是今后对10~35千伏电网监测的工作重点。
6~10kV电网单相接地试验电容电流测试方案中国矿业大学信息与电气工程学院中国矿业大学电气安全与智能电器研究所2011年9月1. 测量原理电网单相对地绝缘参数的常用测量方法有:附加电源测量法,交流伏安法,中性点位移电压法,谐振测量法。
其中第一种方法所测的是测量频率下的绝缘参数,只可间接地反映工频下的绝缘参数;而后三种方法是采用电网工作电源进行测量,反映了电网的实际绝缘参数。
中性点位移电压法也称间接测量法,是目前测量小电流接地系统单相接地电容电流的常用方法。
其一般作法是在电网一相与地之间接入一个附加电容,实测流过此电容的电流与中性点位移电压,通过计算来求得电网单相接地电容电流。
但由于电容的充电效应,在人为接地的瞬间,相当于在电网中产生了一个金属性接地故障,这显然不利于安全。
因此,有必要采取一种更加安全可靠且快捷的新方法,即本测量方案所提出的单相经电阻接地的间接测量方法。
该方法有简单、易实施、测试过程安全、测量精度高、测试时间短、应用范围广等优点。
R图1 中性点不接地电网绝缘参数测量模型图1为一中性点不接地电网的绝缘参数测量模型,C 、r 分别为各相对地电容和绝缘电阻。
考虑到试验的安全性,采用电网单相经电阻接地的方法,电网的任何一相(如A 相)经附加电阻R 和电流表A 接地。
接地电阻R 选用500--1000Ω,接地电流可控制在几安培,并通过理论计算,求出电网单相直接接地时的电流。
我们知道,电网单相接地电流是电网对地总的零序电流之和,不管是直接接地,还是经过电阻接地,电网对地总的零序电流(接地电流)是同零序电压成正比关系。
因此,测量出电网单相经电阻接地时的零序电压,就能得到单相电网直接接地的电流。
其计算公式是:R E I U I ⨯=02100 (1) 式中:E I 为电网单相直接接地电流;R I 为电网单相经电阻接地的电流;02U 为电网单相经电阻接地时的二次零序电压;100为电网单相直接接地时的二次零序电压(100V )。
10kV电网单相接地电容电流测量的研究随着系统电容电流的不断增大,越来越多的电網采用谐振接地的方式,谐振接地能有效补偿接地电容电流,如何准确地跟踪测量接地电容电流成为了关键。
本文首先分析了传统极值法的局限性,提出了采用改进极值法测量单相接地电容电流,并经过实际测量证明了该方法的有效性和准确性。
标签:接地电容电流;改进极值法;跟踪测量;谐振接地0 引言我国10 kV电网一般采用中性点不接地方式,但随着电力系统的不断发展,发生单相接地故障时电网对地电容电流不断增大,接地故障容易发生电缆绝缘击穿事故,引发相间短路等严重的事故[1]。
目前有效方法是加装消弧线圈补偿装置,利用消弧线圈来补偿电网对地的电容电流,由于有电感和电容的存在,因此形成了并联谐振和串联谐振,构成了谐振接地的基本原理[2]。
在实际应用中,由于电网运行方式的变化会引起电网对地电容电流值的改变,必须使消弧补偿装置对电网接地电容电流实现自动跟踪补偿,这就需要准确快速地测量出单相接地电容电流,基于这个目的,本文采用改进极值法跟踪测量接地电容电流,为消弧线圈补偿电容电流提供依据。
1 电容电流在线测量方法研究本文采用改进极值法跟踪测量接地电容电流。
极值法[3]:中性点的位移电压零序电压的幅值表示为:(1)由式(1)可知,当电网的阻尼率以及电网自然位移电压一定时,随的下降而增大,当=0,将达到极大值,此时,接地电流最小,处于最佳补偿状态[4]。
对(1)式求一阶导数可得:(2)该式说明随的变化呈单调递减的规律,当电感电流的数值远离电网对地电容电流的数值(即较大),和在接近全补偿状态附近(即较小),的变化对影响较小,这是极值法的不足。
根据极值法的不足,本文采用了改进的极值法。
以电缆作为供电线路的6~10kV电网,取不平衡度且则可求出当时,。
图1为时的曲线图。
由图可以看出当时曲线陡度明显减小,曲线的顶端较平缓,即在全补偿附近零序电压随脱谐度的变化较小,所以如果直接采用极值法误差较大,难以调节到最佳补偿点。
从实际测量中剖析HDPD-68A型电容电流测试仪的测试原理发表时间:2018-06-21T10:26:07.890Z 来源:《电力设备》2018年第6期作者:王春哲雷高云[导读] 摘要:首先分析HDPD-68A型电容电流测试仪的测试信号流通路径,由此总结出测试原理及电容电流的计算公式。
(中石化西北油田分公司油田供电管理中心新疆轮台 841600)摘要:首先分析HDPD-68A型电容电流测试仪的测试信号流通路径,由此总结出测试原理及电容电流的计算公式。
其次介绍单相接地故障时的电容电流流通路径及其大小的计算公式。
并证明由电容测试仪测量出的电容电流值与实际发生单相接地故障时流过接地点的电容电流值是相等的。
最后针对塔河电网的特点,提出使用HDPD-68A型电容电流测试仪的注意事项。
关键词:电容电流;等值电容;单相接地1、引言:随着塔河电网的发展,配电系统中电缆、绝缘线数量增多,配电网络越发密集,配电系统的电容电流增加,容易产生的危害有:1.故障点接地电流形成的电弧,使故障点绝缘遭受破坏,形成相间短路,从而引发更大的相间短路电弧;2.接地电流的增大,跨步电压对人员造成伤害增加;3.不稳定的弧光接地,会引发网路的过电压,其幅值可达6~8倍相电压。
给系统中的其他正常运行设备带来威胁或损害。
因此,测量配网的电容电流,并确定是否采取限制电容电流的措施,有意义。
我单位使用的是HDPD-68A型电容电流测试仪进行测量。
本文从一次对九区变电站10KV配电网的电容电流实地测试出发,分析论证其测量原理和使用注意事项,以期今后更准确的进行测量,减小误差。
2、HDPD-68A型电容电流测试仪的测试原理2.1、测试信号的流通路径用HDPD-68A型电容电流测试仪从10KV母线PT二次侧开口三角处施加一个异频电流信号(目的是消除工频电压的干扰),反映到一次侧是一个按PT变比减小了的零序电流信号。
该零序电流信号流入母线后,由于主变10KV侧绕组联接方式为△联接,零序电流无法流通,因此只能经母线流入各条10KV配电线路。
FS500P接地电容电流测试仪本仪器适用配网电压等级:6kV、10kV和35kV中压配电网中性点不接地系统。
目前,我国配电系统的电源中性点一般是不直接接地的,所以当线路单相接地时流过故障点的电流实际是线路对地电容产生的电容电流。
据统计,配电网的故障很大程度是由于线路单相接地时电容过大而无法自行息弧引起的。
因此,我国的电力规程规定当:3-10KV不直接连接发电机的系统和35、66KV系统,当单相接地电容电流不超过下列数值时,应采用不接地方式;当超过下列数值又需要在接地故障条件下运行时,应采用消弧线圈接地方式。
(1)3-10KV钢筋混凝土货金属杆塔的架空线路构成的系统和所有35、66KV系统,10A;(2)3-10KV非钢筋混凝土和金属杆塔的架空线路构成的系统,当电压为:1)3KV和6KV时,30A;2)10KV时,20A;3)3-10KV电缆线路构成的系统,30A。
应装设消弧线圈以补偿电容电流,这就要求对配网的电容电流进行测量以做决定。
另外,配电网的对地电容和PT的参数配合会产生PT铁磁谐振过电压,为了验证该配电系统是否会发生PT谐振及发生什么性质的谐振,也必须准确测量配电网的对地电容值。
传统的测量配网电容电流的方法有单相金属接地的直接法、外加电容间接测量法等,这些方法都要接触到一次设备,因而存在试验危险、操作繁杂,工作效率低等缺点。
测试仪直接从PT的二次侧测量配电网的电容电流,无需做繁杂的安全措施和等待冗长的调度命令,只需将测量线接于PT的开口三角端就可以测量出电容电流的数据。
由于从PT开口三角处注入的是微弱的异频测试信号,所以既不会对继电保护和PT本身产生任何影响,又避开了50Hz的工频干扰信号,同时测试仪的输出端可以耐受100V的交流电压,若测量时系统有单相接地故障发生,亦不会损坏PT和测试仪,因而无需做特别的安全措施使这项工作变得安全、简单、快捷,且测试结果准确、稳定、可靠。
该测试仪采用大屏幕液晶显示,中文菜单,操作非常简便,且体积小、重量轻,便于携带进行户外作业,接线简单,测试速度快,数据准确性高,大大减轻了试验人员的劳动强度,提高了工作效率。
为什么要测量配电网电容电流?配电网电容电流测试仪是电力工作者在进行配电网电容电流测试时使用的仪器。
在电力系统中为什么要对配电网电容电流进行测量,最直接且重要的原因就是电力安全问题。
电力系统中,66kv及以下的配电网其中性点是非直接接地系统,线路系统出现单相接地时,流过故障点的电流由于是线路对地电容产生的电容电流,所以不会马上对设备造成损坏,也不会使断路器断开,但是一定要想办法找出故障点并消除。
避免因此造成电气设备损坏以及其他安全事故。
包括:1.单相接地电流通过调相机和变压器等造成铁心烧坏。
2.人在单相接地故障点附近时,由于电流从触地点以同心圆的方式向外20米扩散,每个圆周均有不同电位,人体两脚接触地面两点易发生跨步电压危险。
3.单相接地使非故障对地电压比原来电压高几倍,如果发生弧光接地,甚至出现2.5-3倍的电压,弧光还会促使导线周围气体发生游离,高电压碰上气体游离容易造成相间短路,对电器设备和系统造成破坏性故障。
4.接地点还会使故障设备绝缘材质带电,造成人体触电事故。
根据国家电力规程,在10kv系统电容电流分别大于30A,35kv 系统电容电流分别大于10A的情况下,都需安装消弧线圈,以补偿电容电流。
因此需要对配电网电容电流进行测试,以此决定是否需要安装消弧线圈。
还有个原因是由于配电网对地电容与PT参数配合,会产生PT铁磁谐振过压,为了验证谐振的性质,准确测量出配电网对地电容值就变得十分必要。
传统配电网电容电流测试方法是开口三角异频信号注入法,此方法要求系统必须平衡,但实际95%的系统都不平衡,因此很快被淘汰,取而代之的是配电网电容电流测试仪。
该仪器无需和一次侧打交道,因而不存在试验的危险性,不仅如此,它的操作接线都简单,测试速度快,测量数据准确,大大提高了电力工作者的工作效率,是电力工作者的得力助手!。
10-35KV中性点非直接接地系统分相接地电容测试摘要:本文介绍了用外接电容方法测量中性点不直接接地系统每相对地电容的方法,计算公式的推导,以及在10KV系统中实际应用情况及注意事项。
一、项目简介随着城市建设及城市电网改造,城市变电所大量采用了电力电缆送电线路,造成部分变电所10KV系统电容电流很大(如我局长江路变电所),弧光接地过电压时有出现,严重影响了系统和人身安全和对用户的可靠供电。
在35KV或10KV电压等级电力系统中,由于系统中性点非直接接地,当发生单相接地故障时,非故障相电压要升高,接地点流过的电流为非故障相线路对地的电容电流,当该电流比较大时,达到或超过一定值时(对电缆线路为30安),接地点产生弧光过电压,可达正常运行电压的3.5倍甚至更高,从而导致整个系统的绝缘薄弱环节击穿、设备损坏、开关跳闸,并中断对用户的停电,对人身及设备安全运行带来极大危害。
弧光接地过电压的防治,一般是根据单相接地电容电流的大小,在系统中性点安装消弧线圈,用消弧线圈的电流来补偿单相接地电容电流,从而消除弧光接地过电压,消弧线圈的输出电流大小根据单相接地电容电流的大小来确定,所以必须要知道系统单相接地时的电容电流大小,否则消弧线圈的输出档位电流随便整定,不但限制不了弧光接地过电压,甚至有可能导致谐振过电压。
同时,实际10KV系统线路的每相对地电容是一个沿着单位长度导线均匀分布的,属分布参数元件,不是一个集中参数元件,既看不见,也摸不着,按导线的型号等根据电力系统相关的计算公式,计算出的结果与实际相差很大(因为没有计及配电装置、相关配电设备、配电线路的长度难以精确统计等影响),甚至相差好几倍。
而根据传统的“人工单相接地法”虽然可以准确测量,但是危险性很大,容易产生弧光接地过电压,对设备及人身安全影响很大。
各种标准、规程也没有介绍其它的测试方法。
根据查阅大量的现场设备资料,以及电力系统计算,发现并用公式推导出 “偏置电容法”测量法,并经省主管技术部门查询,得到认可。
单相接地电容电流测试装置
就是在变压器中性点绝缘的电网中,当发生单相接地时,由于电网各相对地电容的存在,流入故障点的电容性电流。
中性点不接地的高压电网中,单相接地电容电流的危害主要体现在以下四个方面:
1.弧光接地过电压的危害
当电容电流一旦过大,接地点电弧不能自行熄灭。
当出现间歇性电弧接地时,产生弧光接地过电压,这种过电压可达相电压的3~5倍或更高,它遍布于整个电网中,并且持续时间长,可达几个小时,它不仅击穿电网中的绝缘薄弱环节,而且对整个电网绝缘都有很大的危害。
2.造成接地点热破坏及接地网电压升高
单相接地电容电流过大,使接地点热效应增大,对电缆等设备造成热破坏,该电流流入大地后由于接地电阻的原因,使整个接地网电压升高,危害人身安全。
3.交流杂散电流危害
电容电流流入大地后,在大地中形成杂散电流,该电流可能产生火花,引燃瓦斯爆炸等,可能造成雷管先期放炮,并且腐蚀水管、气管等。
4.接地电弧引起瓦斯煤尘爆炸。