功率场效应晶体管MOSFET基本知识
- 格式:doc
- 大小:100.00 KB
- 文档页数:7
主题:mosfet半导体场效应晶体管mos管一、介绍mosfet半导体场效应晶体管的基本概念mosfet(Metal-Oxide-Semiconductor Field-Effect Transistor),即金属-氧化物-半导体场效应晶体管,是一种广泛应用于集成电路的半导体器件。
它由一段导电性较好的半导体材料形成的栅极和绝缘层构成,其结构与普通的晶体管有明显的不同,能够更好地控制电流。
二、mosfet半导体场效应晶体管的工作原理mosfet的工作原理主要包括局部场效应和接近场效应两种。
在局部场效应下,由于外加电压改变了栅极电场,从而控制了导通道的电荷密度;而在接近场效应下,则是通过改变栅极与半导体之间的电荷耦合来控制导通道。
这些原理使得mosfet在电子器件中大放异彩,成为了当今电子工业中不可或缺的一部分。
三、mosfet半导体场效应晶体管的特点和优势1. 高输入电阻:由于mosfet的栅极与通道之间的绝缘层,其输入电阻远高于普通晶体管,可降低输入功率。
2. 低输入电流:mosfet的控制方式与普通晶体管不同,可以通过改变栅极电场来控制电流,因此输入电流较低。
3. 低噪声:由于mosfet的工作原理,其本身产生的噪声很小,能够更好地保持信号的清晰度。
4. 大功率放大:mosfet在电子器件中功率放大的性能较好,能够适用于不同功率的应用场景。
四、mosfet半导体场效应晶体管的应用范围1. 集成电路:mosfet因为其体积小、功耗低、性能高等特点,被广泛应用于各类集成电路中,如微处理器、存储器等。
2. 功率放大器:mosfet在功率放大器中的应用也非常广泛,其高功率放大、低噪声等特点使得其成为了功率放大器的首选器件。
3. 波形整形电路:由于mosfet对信号的响应速度很快,能够在一定程度上实现波形的整形和放大,因此也被应用在波形整形电路中。
4. 逻辑电路:mosfet的工作原理使得其在逻辑电路中有较好的应用效果,能够实现快速开关和逻辑运算等功能。
功率场效应晶体管MOSFET1.概述MOSFET的原意是:MOS(Metal Oxide Semiconductor金属氧化物半导体),FET(Field Effect Transistor场效应晶体管),即以金属层(M)的栅极隔着氧化层(O)利用电场的效应来控制半导体(S)的场效应晶体管。
功率场效应晶体管也分为结型和绝缘栅型,但通常主要指绝缘栅型中的MOS型(Metal Oxide Semiconductor FET),简称功率MOSFET(Power MOSFET)。
结型功率场效应晶体管一般称作静电感应晶体管(Static Induction Transistor——SIT)。
其特点是用栅极电压来控制漏极电流,驱动电路简单,需要的驱动功率小,开关速度快,工作频率高,热稳定性优于GTR,但其电流容量小,耐压低,一般只适用于功率不超过10kW的电力电子装置。
2.功率MOSFET的结构和工作原理功率MOSFET的种类:按导电沟道可分为P沟道和N沟道。
按栅极电压幅值可分为;耗尽型;当栅极电压为零时漏源极之间就存在导电沟道,增强型;对于N(P)沟道器件,栅极电压大于(小于)零时才存在导电沟道,功率MOSFET主要是N沟道增强型。
2.1.功率MOSFET的结构功率MOSFET的内部结构和电气符号如图1所示;其导通时只有一种极性的载流子(多子)参与导电,是单极型晶体管。
导电机理与小功率MOS管相同,但结构上有较大区别,小功率MOS管是横向导电器件,功率MOSFET大都采用垂直导电结构,又称为VMOSFET (Vertical MOSFET),大大提高了MOSFET器件的耐压和耐电流能力。
按垂直导电结构的差异,又分为利用V型槽实现垂直导电的VVMOSFET和具有垂直导电双扩散MOS结构的VDMOSFET(Vertical Double-diffused MOSFET),本文主要以VDMOS器件为例进行讨论。
MOSFET基础知识介绍MOSFET(金属氧化物半导体场效应晶体管)是一种常用的半导体器件,用于在电子电路中控制电流的流动。
它由金属氧化物半导体结构组成,具有高输入阻抗、低功耗和高电压承受能力等优点,因此在各种应用中广泛使用。
MOSFET的结构包括有源区、漏源区、栅极和绝缘层等部分。
有源区通常由P型半导体材料组成,而漏源区则是N型或P型半导体材料。
两个区域之间的绝缘层是一个非导电的氧化物层,通常是二氧化硅。
栅极是一个金属或多晶硅的电极,用于控制电流的流动。
MOSFET的工作原理基于栅极电压的控制。
当栅极电压为零或低于临界电压时,MOSFET处于截止状态,无法通过电流。
当栅极电压高于临界电压时,介质中的电场会引起有源区附近的载流子(电子或空穴)移动,形成导电路径。
这时,MOSFET处于饱和状态,可以通过电流。
MOSFET有两种常用的工作模式,分别是增强型和耗尽型。
在增强型MOSFET中,栅极电压高于临界电压时,会导致有源区中的载流子浓度增加,从而提高电流的导电能力。
而在耗尽型MOSFET中,栅极电压低于临界电压时,会减少有源区中的载流子浓度,从而减小电流的导电能力。
另一个重要的参数是漏极漏电流。
当MOSFET处于截止状态时,理想情况下应该没有电流通过,但实际上会存在微小的漏电流。
漏极漏电流越小,MOSFET的性能越好。
MOSFET还有一些特殊类型,例如增压型MOSFET和均衡型MOSFET。
增压型MOSFET通过增加外加电压来提高导电能力。
均衡型MOSFET则可以在两个有源区之间实现均衡的电流分布,以提高功率放大器的线性度。
MOSFET在各种应用中都有重要的作用。
在数字电路中,MOSFET可以作为开关使用,用于控制逻辑门和存储器等器件的操作。
在模拟电路中,MOSFET可以作为放大器使用,用于控制电压和电流的变化。
此外,MOSFET还常用于功率放大器、电源和开关模式电源等领域。
总而言之,MOSFET是一种重要的半导体器件,具有高输入阻抗、低功耗和高电压承受能力等优点。
场效应管的基础学问英文名称:MOSFET (简写:MOS )中文名称:功率场效应晶体管(简称:场效应管)场效应晶体管简称场效应管,它是由半导体材料构成的。
与一般双极型相比,场效应管具有许多特点。
场效应管是一种单极型半导体(内部只有一种载流子一多子)分四类:N沟通增加型;P沟通增加型;N沟通耗尽型;P沟通耗尽型。
增加型MOS管的特性曲线场效应管有四个电极,栅极G、漏极D、源极S和衬底B ,通常字内部将衬底B与源极S相连。
这样,场效应管在外型上是一个三端电路元件场效管是一种压控电流源器件,即流入的漏极电流ID栅源电压UGS掌握。
1、转移特性曲线:应留意:①转移特性曲线反映掌握电压VGS与电流ID之间的关系。
②当VGS很小时,ID基本为零,管子截止;当VGS大于某一个电压VTN时ID随VGS的变化而变化,VTN称为开启电压,约为2V0③无论是在VGS2、输出特性曲线:输出特性是在给顶VGS的条件下,ID与VDS之间的关系。
可分三个区域。
①夹断区:VGS②可变电阻区:VGS>VTN且VDS值较小。
VGS值越大,则曲线越陡,D、S极之间的等效电阻RDS值就越小。
③恒流区:VGS>VTN且VDS值较大。
这时ID只取于VGS ,而与VDS无关。
3、MOS管开关条件和特点:管型状态,N-MOS , P-MOS特点截止VTN , RDS特别大,相当与开关断开导通VGS2VTN , VGS<VTN , RON很小,相当于开关闭合4、MOS场效应管的主要参数①直流参数a、开启电压VTN ,当VGS>UTN时,增加型NMOS管通道。
b、输入电阻RGS , 一般RGS值为109〜1012。
高值②极限参数最大漏极电流IDSM击穿电压V(RB)GS , V(RB)DS最大允许耗散功率PDSM5、场效应的电极判别用RxlK挡,将黑表笔接管子的一个电极,用红表笔分别接此外两个电极,如两次测得的结果阻值都很小,则黑表笔所接的电极就是栅极(G),此外两极为源(S)、漏(D)极,而且是N型沟场效应管。
功率场效应晶体管(MOSFET)基本知识功率场效应管(Power MOSFET)也叫电力场效应晶体管,是一种单极型的电压控制器件,不但有自关断能力,而且有驱动功率小,开关速度高、无二次击穿、安全工作区宽等特点。
由于其易于驱动和开关频率可高达500kHz,特别适于高频化电力电子装置,如应用于DC/DC变换、开关电源、便携式电子设备、航空航天以及汽车等电子电器设备中。
但因为其电流、热容量小,耐压低,一般只适用于小功率电力电子装置。
一、电力场效应管的结构和工作原理电力场效应晶体管种类和结构有许多种,按导电沟道可分为P沟道和N沟道,同时又有耗尽型和增强型之分。
在电力电子装置中,主要应用N沟道增强型。
电力场效应晶体管导电机理与小功率绝缘栅MOS管相同,但结构有很大区别。
小功率绝缘栅MOS管是一次扩散形成的器件,导电沟道平行于芯片表面,横向导电。
电力场效应晶体管大多采用垂直导电结构,提高了器件的耐电压和耐电流的能力。
按垂直导电结构的不同,又可分为2种:V形槽VVMOSFET和双扩散VDMOSFET。
电力场效应晶体管采用多单元集成结构,一个器件由成千上万个小的MOSFET组成。
N沟道增强型双扩散电力场效应晶体管一个单元的部面图,如图1(a)所示。
电气符号,如图1(b)所示。
电力场效应晶体管有3个端子:漏极D、源极S和栅极G。
当漏极接电源正,源极接电源负时,栅极和源极之间电压为0,沟道不导电,管子处于截止。
如果在栅极和源极之间加一正向电压UGS,并且使UGS大于或等于管子的开启电压UT,则管子开通,在漏、源极间流过电流ID。
UGS超过UT越大,导电能力越强,漏极电流越大。
二、电力场效应管的静态特性和主要参数Power MOSFET静态特性主要指输出特性和转移特性,与静态特性对应的主要参数有漏极击穿电压、漏极额定电压、漏极额定电流和栅极开启电压等。
1、静态特性(1)输出特性输出特性即是漏极的伏安特性。
特性曲线,如图2(b)所示。
功率场效应晶体管原理功率MOSFET与普通MOSFET的最大区别在于其设计和制造可以承受更高的电压和电流负载。
其基本的结构包括源极(S),漏极(D)和栅极(G)。
源极和漏极之间的电流是MOSFET的输出电流,而栅极和源极之间的电压控制源漏电流的大小。
MOSFET工作在三种主要工作区域:截止区、线性放大区和饱和区。
在截止区,栅极电压低于阈值电压,MOSFET处于关闭状态,源漏电流非常小。
在饱和区,栅极电压超过阈值电压,栅极电压和源极电压之差决定了源漏电流的大小。
在线性放大区,栅极电压介于阈值电压和源极电压之间,此时源漏电流与栅极电压之间存在线性关系。
功率MOSFET的主要特点是其高输入阻抗和快速的开关速度,这使得它可以在高频率下工作。
其高输入阻抗可以减少功率消耗,同时提高电路的灵敏度和稳定性。
功率MOSFET还具有低开关损耗、低噪声、低电压驱动和较高的有源功率效率等特点,使得它成为高效能源的理想选择。
功率MOSFET的栅极结构通常采用金属栅极,其底栅氧化物薄膜上有一层薄的金属栅极,在氧化物上面涂有一层薄的金属保护层,用来保护栅极免受环境中的损害。
金属栅极能够提供更好的电流传导,有助于提高开关速度和功率特性。
在实际应用中,功率MOSFET常常工作在开关模式下。
当栅极电压高于阈值电压时,MOSFET处于导通状态,通常称为开关开启。
这时,源极和漏极之间的电流大幅增加,MOSFET将承担电路的负载。
当栅极电压低于阈值电压时,MOSFET处于关闭状态,通常称为开关关闭。
这时,源极和漏极之间的电流非常小,MOSFET不再承担负载。
功率MOSFET主要有N沟道型和P沟道型两种类型。
在N沟道型中,源漏电流由负电压控制,栅极与源极之间施加正电压,MOSFET导通。
在P 沟道型中,源漏电流由正电压控制,栅极与源极之间施加负电压,MOSFET 导通。
根据具体需求,选择合适的MOSFET类型来满足电路要求。
总而言之,功率场效应晶体管(MOSFET)是一种非常重要的电子器件,广泛应用于各类电子设备。
MOS管初级⼊门详解MOSFETMOS管初级⼊门详解功率场效应晶体管MOSFET1.概述MOSFET的原意是:MOS(MetalOxideSemiconductor⾦属氧化物半导体),FET (FieldEffectTransistor场效应晶体管),即以⾦属层(M)的栅极隔着氧化层(O)利⽤电场的效应来控制半导体(S)的场效应晶体管。
功率场效应晶体管也分为结型和绝缘栅型,但通常主要指绝缘栅型中的MOS型(MetalOxideSemiconductorFET),简称功率MOSFET (PowerMOSFET)。
结型功率场效应晶体管⼀般称作静电感应晶体管(StaticInductionTransistor——SIT)。
其特点是⽤栅极电压来控制漏极电流,驱动电路简单,需要的驱动功率⼩,开关速度快,⼯作频率⾼,热稳定性优于GTR,但其电流容量⼩,耐压低,⼀般只适⽤于功率不超过10kW的电⼒电⼦装置。
2.功率场效应晶体管MOSFET的结构和⼯作原理功率MOSFET的种类:按导电沟道可分为P沟道和N沟道。
按栅极电压幅值可分为;耗尽型;当栅极电压为零时漏源极之间就存在导电沟道,增强型;对于N(P)沟道器件,栅极电压⼤于(⼩于)零时才存在导电沟道,功率MOSFET主要是N沟道增强型。
2.1功率MOSFET的结构功率MOSFET的内部结构和电⽓符号如图1所⽰;其导通时只有⼀种极性的载流⼦(多⼦)参与导电,是单极型晶体管。
导电机理与⼩功率MOS管相同,但结构上有较⼤区别,⼩功率MOS管是横向导电器件,功率MOSFET⼤都采⽤垂直导电结构,⼜称为VMOSFET (VerticalMOSFET),⼤⼤提⾼了MOSFET器件的耐压和耐电流能⼒。
按垂直导电结构的差异,⼜分为利⽤V型槽实现垂直导电的VVMOSFET和具有垂直导电双扩散MOS结构的VDMOSFET(VerticalDouble-diffusedMOSFET),本⽂主要以VDMOS器件为例进⾏讨论。
MOSFET功率场效应管1. 介绍MOSFET(Metal-Oxide-Semiconductor Field-Effect Transistor)是一种常见的半导体器件,广泛应用于电子电路中。
其中,功率场效应管(Power MOSFET)是一种用于功率放大和开关控制的MOSFET。
功率场效应管具有许多优点,如高频特性好、开关速度快、体积小、功耗低等。
它在各种电子设备中被广泛使用,例如电源逆变器、电机驱动器、音频放大器等。
本文将详细介绍MOSFET功率场效应管的原理、结构、特性以及应用领域。
2. 原理功率场效应管是一种三端器件,由栅极(G)、漏极(D)和源极(S)组成。
其工作原理基于栅极电压对漏源电流的控制。
当栅极与源极之间施加正向电压时,形成一个电场,使得漏源之间形成一个导电通道,从而允许电流流过。
这种工作状态称为开通(On)状态,功率场效应管具有较低的导通电阻。
当栅极与源极之间施加负向电压时,电场使得导电通道关闭,从而阻止电流流过。
这种工作状态称为截止(Off)状态,功率场效应管具有较高的绝缘电阻。
通过调节栅极电压,可以精确控制功率场效应管的导通和截止状态,从而实现电路的开关控制和信号放大。
3. 结构MOSFET功率场效应管的结构主要包括栅极、漏极、源极和衬底。
其中,栅极与源极之间的绝缘层通常由二氧化硅(SiO2)构成。
栅极位于绝缘层上方,通过栅极电压调节导电通道的形成。
漏极和源极位于绝缘层下方,通过导电通道连接。
MOSFET功率场效应管的结构可以分为N沟道型(N-Channel)和P沟道型(P-Channel)两种。
N沟道型中,导电通道为N型,而P沟道型中,导电通道为P型。
4. 特性4.1 导通电阻功率场效应管的导通电阻是衡量其导通能力的重要指标。
导通电阻越小,功率场效应管的导通能力越强。
导通电阻主要由导电通道的电阻和接触电阻组成。
导电通道的电阻与通道长度和宽度有关,而接触电阻与导电通道与漏源金属接触的质量有关。
功率MOSFET基础知识详解目录●击穿电压●导通电阻●跨导●阈值电压●二极管正向电压●功率耗散●动态特性●栅极电荷●d v/d t 能力尽管分立式功率MOSFET的几何结构,电压和电流电平与超大规模集成电路(VLSI)设备采用的设计方式有极大的不同,它仍然采用了与VLSI电路类似的半导体加工工艺。
金属氧化物半导体场效应晶体管(MOSFET)从70年代的初级场效应晶体管发展而来。
图1描述了MOSFET的器件原理图,传输特性和器件符号。
双极结型晶体管(BJT)自身的局限性驱动了功率MOSFET的发明,直到最近几十年,BJT才成为功率电子应用的可选器件。
图1.MOSFET器件(a)原理图,(b)传输特性,和(c)器件符号虽然无法精确地界定功率器件的工作范围,但是我们大致将功率器件称之为任何可在大于等于1A电流切换的器件。
双极功率晶体管是一个电流控制的器件。
使用BJT时,需要大量的基极驱动电流(相当于1/5的集电极电流)保持器件处于导通状态。
不仅如此,还需要更高的反向基极驱动电流以便快速关断。
虽然BJT具有非常先进的生产工艺和较低的成本,但是这两点局限性仍然使它的基极驱动电路设计比功率MOSFET更加复杂更加昂贵。
BJT的另外一个局限性在于它的电子和空穴都产生传导。
具有更长载流子寿命空穴的出现使得BJT的开关速度比相同尺寸和相同额定电压的功率MOSFET慢几倍。
此外,热失控也是BJT的短板。
由于它的正向压降随着温度的上升而下降,因此在多个器件并联时,会导致电流流向一个器件。
而功率MOSFET是无少数载流子注入的多数载流子元件。
在高频应用中,对开关功率耗散要求严格时,它比双极结型晶体管(BJT)更具优势。
此外,它还能同时承受高电流和高电压的应用,不会因为二次击穿遭受破坏性的损坏。
由于功率MOSFET的正向压降随着温度的上升而上升,可以确保电流均匀的分配到所有的器件,因此功率MOSFET可并联。
然而,当击穿电压高时(>200V),功率MOSFET的通态压降比相同尺寸和相同额定电压的双极器件更高。
功率场效应晶体管(MOSFET)基本知识功率场效应管(Power MOSFET)也叫电力场效应晶体管,是一种单极型的电压控制器件,不但有自关断能力,而且有驱动功率小,开关速度高、无二次击穿、安全工作区宽等特点。
由于其易于驱动和开关频率可高达500kHz,特别适于高频化电力电子装置,如应用于DC/DC变换、开关电源、便携式电子设备、航空航天以及汽车等电子电器设备中。
但因为其电流、热容量小,耐压低,一般只适用于小功率电力电子装置。
一、电力场效应管的结构和工作原理电力场效应晶体管种类和结构有许多种,按导电沟道可分为P沟道和N沟道,同时又有耗尽型和增强型之分。
在电力电子装置中,主要应用N沟道增强型。
电力场效应晶体管导电机理与小功率绝缘栅MOS管相同,但结构有很大区别。
小功率绝缘栅MOS管是一次扩散形成的器件,导电沟道平行于芯片表面,横向导电。
电力场效应晶体管大多采用垂直导电结构,提高了器件的耐电压和耐电流的能力。
按垂直导电结构的不同,又可分为2种:V形槽VVMOSFET和双扩散VDMOSFET。
电力场效应晶体管采用多单元集成结构,一个器件由成千上万个小的MOSFET组成。
N沟道增强型双扩散电力场效应晶体管一个单元的部面图,如图1(a)所示。
电气符号,如图1(b)所示。
电力场效应晶体管有3个端子:漏极D、源极S和栅极G。
当漏极接电源正,源极接电源负时,栅极和源极之间电压为0,沟道不导电,管子处于截止。
如果在栅极和源极之间加一正向电压UGS,并且使UGS大于或等于管子的开启电压UT,则管子开通,在漏、源极间流过电流ID。
UGS超过UT越大,导电能力越强,漏极电流越大。
二、电力场效应管的静态特性和主要参数Power MOSFET静态特性主要指输出特性和转移特性,与静态特性对应的主要参数有漏极击穿电压、漏极额定电压、漏极额定电流和栅极开启电压等。
1、静态特性(1)输出特性输出特性即是漏极的伏安特性。
特性曲线,如图2(b)所示。
由图所见,输出特性分为截止、饱和与非饱和3个区域。
这里饱和、非饱和的概念与GTR不同。
饱和是指漏极电流ID不随漏源电压UDS的增加而增加,也就是基本保持不变;非饱和是指地UCS一定时,ID随UDS增加呈线性关系变化。
(2)转移特性转移特性表示漏极电流ID与栅源之间电压UGS的转移特性关系曲线,如图2(a)所示。
转移特性可表示出器件的放大能力,并且是与GTR中的电流增益β相似。
由于Power MOSFET是压控器件,因此用跨导这一参数来表示。
跨导定义为图中UT为开启电压,只有当UGS=UT时才会出现导电沟道,产生漏极电流ID。
2、主要参数(1)漏极击穿电压BUDBUD是不使器件击穿的极限参数,它大于漏极电压额定值。
BUD随结温的升高而升高,这点正好与GTR和GTO相反。
(2)漏极额定电压UDUD是器件的标称额定值。
(3)漏极电流ID和IDMID是漏极直流电流的额定参数;IDM是漏极脉冲电流幅值。
(4)栅极开启电压UTUT又称阀值电压,是开通Power MOSFET的栅-源电压,它为转移特性的特性曲线与横轴的交点。
施加的栅源电压不能太大,否则将击穿器件。
(5)跨导gmgm是表征Power MOSFET 栅极控制能力的参数。
三、电力场效应管的动态特性和主要参数1、动态特性动态特性主要描述输入量与输出量之间的时间关系,它影响器件的开关过程。
由于该器件为单极型,靠多数载流子导电,因此开关速度快、时间短,一般在纳秒数量级。
Power MOSFET的动态特性。
如图3所示。
Power MOSFET 的动态特性用图3(a)电路测试。
图中,up为矩形脉冲电压信号源;RS为信号源内阻;RG为栅极电阻;RL为漏极负载电阻;RF用以检测漏极电流。
Power MOSFET 的开关过程波形,如图3(b)所示。
Power MOSFET 的开通过程:由于Power MOSFET 有输入电容,因此当脉冲电压up的上升沿到来时,输入电容有一个充电过程,栅极电压uGS按指数曲线上升。
当uGS上升到开启电压UT时,开始形成导电沟道并出现漏极电流iD。
从up前沿时刻到uGS=UT,且开始出现iD的时刻,这段时间称为开通延时时间td(on)。
此后,iD随uGS的上升而上升,uGS从开启电压UT上升到Power MOSFET 临近饱和区的栅极电压uGSP这段时间,称为上升时间tr。
这样Power MOSFET 的开通时间ton=td(on)+trPower MOSFET的关断过程:当up信号电压下降到0时,栅极输入电容上储存的电荷通过电阻RS和RG放电,使栅极电压按指数曲线下降,当下降到uGSP继续下降,iD才开始减小,这段时间称为关断延时时间td(off)。
此后,输入电容继续放电,uGS继续下降,iD也继续下降,到uGS< SPAN>T时导电沟道消失,iD=0,这段时间称为下降时间tf。
这样Power MOSFET 的关断时间toff=td(off)+tf从上述分析可知,要提高器件的开关速度,则必须减小开关时间。
在输入电容一定的情况下,可以通过降低驱动电路的内阻RS来加快开关速度。
电力场效应管晶体管是压控器件,在静态时几乎不输入电流。
但在开关过程中,需要对输入电容进行充放电,故仍需要一定的驱动功率。
工作速度越快,需要的驱动功率越大。
2、动态参数(1)极间电容Power MOSFET的3个极之间分别存在极间电容CGS,CGD,CDS。
通常生产厂家提供的是漏源极断路时的输入电容CiSS、共源极输出电容CoSS、反向转移电容CrSS。
它们之间的关系为CiSS=CGS+CGDCoSS=CGD+CDSCrSS=CGD前面提到的输入电容可近似地用CiSS来代替。
(2)漏源电压上升率器件的动态特性还受漏源电压上升率的限制,过高的du/dt可能导致电路性能变差,甚至引起器件损坏。
四、电力场效应管的安全工作区1、正向偏置安全工作区正向偏置安全工作区,如图4所示。
它是由最大漏源电压极限线I、最大漏极电流极限线Ⅱ、漏源通态电阻线Ⅲ和最大功耗限制线Ⅳ,4条边界极限所包围的区域。
图中示出了4种情况:直流DC,脉宽10ms,1ms,10μs。
它与GTR安全工作区比有2个明显的区别:①因无二次击穿问题,所以不存在二次击穿功率PSB限制线;②因为它通态电阻较大,导通功耗也较大,所以不仅受最大漏极电流的限制,而且还受通态电阻的限制。
2、开关安全工作区开关安全工作区为器件工作的极限范围,如图5所示。
它是由最大峰值电流IDM、最小漏极击穿电压BUDS和最大结温TJM决定的,超出该区域,器件将损坏。
3、转换安全工作区因电力场效应管工作频率高,经常处于转换过程中,而器件中又存在寄生等效二极管,它影响到管子的转换问题。
为限制寄生二极管的反向恢复电荷的数值,有时还需定义转换安全工作区。
器件在实际应用中,安全工作区应留有一定的富裕度。
五、电力场效应管的驱动和保护1、电力场效应管的驱动电路电力场效应管是单极型压控器件,开关速度快。
但存在极间电容,器件功率越大,极间电容也越大。
为提高其开关速度,要求驱动电路必须有足够高的输出电压、较高的电压上升率、较小的输出电阻。
另外,还需要一定的栅极驱动电流。
开通时,栅极电流可由下式计算:IGon=CiSSuGS/tr=(GGS+CGD)uGS/ t r (7)关断时,栅极电流由下式计算:IGoff=CGDuDS/tf (8)式(7)是选取开通驱动元件的主要依据,式(8)是选取关断驱动元件的主要依据。
为了满足对电力场效应管驱动信号的要求,一般采用双电源供电,其输出与器件之间可采用直接耦合或隔离器耦合。
电力场效应管的一种分立元件驱电路,如图6所示。
电路由输入光电隔离和信号放大两部分组成。
当输入信号ui 为0时,光电耦合器截止,运算放大器A 输出低电平,三极管V3导通,驱动电路约输出负20V驱动电压,使电力场效应管关断。
当输入信号ui为正时,光耦导通,运放A输出高电平,三极管V2导通,驱动电路约输出正20V电压,使电力场效应管开通。
MOSFET的集成驱动电路种类很多,下面简单介绍其中几种:IR2130是美国生产的28引脚集成驱动电路,可以驱动电压不高于600V电路中的MOSFET,内含过电流、过电压和欠电压等保护,输出可以直接驱动6个MOSFET或IGBT。
单电源供电,最大20V。
广泛应用于三相MOSFET和IGBT 的逆变器控制中。
IR2237/2137是美国生产的集成驱动电路,可以驱动600V及1200V线路的MOSFET。
其保护性能和抑制电磁干扰能力更强,并具有软启动功能,采用三相栅极驱动器集成电路,能在线间短路及接地故障时,利用软停机功能抑制短路造成过高峰值电压。
利用非饱和检测技术,可以感应出高端MOSFET和IGBT 的短路状态。
此外,内部的软停机功能,经过三相同步处理,即使发生因短路引起的快速电流断开现象,也不会出现过高的瞬变浪涌过电压,同时配有多种集成电路保护功能。
当发生故障时,可以输出故障信号。
TLP250是日本生产的双列直插8引脚集成驱动电路,内含一个光发射二极管和一个集成光探测器,具有输入、输出隔离,开关时间短,输入电流小、输出电流大等特点。
适用于驱动MOSFET或IGBT。
2、电力场效应管的保护措施电力场效应管的绝缘层易被击穿是它的致命弱点,栅源电压一般不得超过±20V。
因此,在应用时必须采用相应的保护措施。
通常有以下几种:(1)防静电击穿电力场效应管最大的优点是有极高的输入阻抗,因此在静电较强的场合易被静电击穿。
为此,应注意:储存时,应放在具有屏蔽性能的容器中,取用时工作人员要通过腕带良好接地;在器件接入电路时,工作台和烙铁必须良好接地,且烙铁断电焊接;测试器件时,仪器和工作台都必须良好接地。
(2)防偶然性震荡损坏当输入电路某些参数不合适时,可能引志震荡而造成器件损坏。
为此,可在栅极输入电路中串入电阻。
(3)防栅极过电压可在栅源之间并联电阻或约20V的稳压二极管。
(4)防漏极过电流由于过载或短路都会引起过大的电流冲击,超过IDM极限值,此时必须采用快速保护电路使用器件迅速断开主回路。