三种矢量控制的比较
- 格式:docx
- 大小:12.79 KB
- 文档页数:1
无刷直流电机控制策略1. 定时器计数器控制定时器计数器控制是一种比较简单但常用的控制策略,其原理是通过定时器来生成不同频率的脉冲信号,从而控制电机的转速。
在BLDC电机中,通常采用六步换相的方式来控制电机的转动。
具体步骤如下:1) 初始化定时器计数器,设置好脉冲信号的频率;2) 通过对定时器计数器的计数值进行判断,确定电机当前的转动状态(即哪些相通电);3) 根据电机的转动状态,依次改变相的通断状态,实现电机的正向或反向转动。
定时器计数器控制的优点是实现简单、稳定可靠,适用于对转速要求不高的场合。
但是其缺点是对电机的控制精度较低,无法实现精确的转速和位置控制。
2. 电压脉宽调制(PWM)控制电压脉宽调制(PWM)控制是一种通过改变电机的供电电压来实现速度和位置控制的方法。
在BLDC电机中,PWM控制通常是通过改变驱动器的占空比来控制电机的转速。
具体步骤如下:1) 生成一个高频的PWM信号;2) 通过改变PWM信号的占空比,控制电机的供电电压;3) 根据电机的供电电压,控制电机的转速和位置。
PWM控制的优点是控制精度高,可以实现较精确的转速和位置控制,适用于对电机控制精度要求较高的场合。
然而,其缺点是实现复杂、成本较高。
3. 磁矢量控制磁矢量控制是一种通过检测电机磁场信息来实现对电机转速和位置控制的方法。
在BLDC 电机中,磁矢量控制通常是通过检测电机磁极位置、电流和磁场,来实现高效的转速和位置控制。
具体步骤如下:1) 通过传感器检测电机的磁场信息;2) 分析磁场信息,确定电机的转动状态;3) 根据电机的转动状态,控制电机的相序和电流,实现精确的转速和位置控制。
磁矢量控制的优点是控制精度高、效率高、噪音低,适用于对电机控制性能要求较高的场合。
然而,其缺点是实现复杂、成本高,需要增加传感器等设备。
总结以上介绍了三种常用的无刷直流电机控制策略,每种策略都有其特点和适用范围。
在实际应用中,根据具体的需求和条件选择合适的控制策略是非常重要的。
变频器频率调节方法变频器是一种用于调节电机运行速度和输出功率的装置,广泛应用于工业领域。
在实际应用中,频率调节是变频器的核心功能之一。
本文将介绍几种常见的变频器频率调节方法。
一、电压/频率(V/F)调节法电压/频率(V/F)调节法是最简单和常见的一种方法。
它通过控制变频器输出电压和频率的比值来实现电机的调速。
在这种调节方法下,当频率增加时,输出电压也相应增加,以保持电机的电磁转矩基本不变。
这种方法适用于大多数恒转矩负载的情况下,例如风机、水泵等。
在运行过程中,需要根据负载的变化不断调整电压和频率的比值,以保持电机的稳定运行。
二、矢量控制调节法矢量控制调节法是一种相对复杂的调节方法,它可以实现更高的速度响应和控制精度。
在矢量控制中,通过对电机的电流进行控制,实现对电机的转矩、转速和位置的精确控制。
与V/F调节法相比,矢量控制可以更好地适应负载的变化,并且可以实现起动转矩和低速运行时的高转矩输出。
这种调节方法适用于对控制精度和动态性能要求较高的负载,如机床、卷烟机等。
三、磁场定向调节法磁场定向调节法是在矢量控制的基础上发展起来的一种高级调节方法。
它通过对电机的转子磁化电流和轴向磁化电流进行控制,实现对电机磁场的定向,从而实现对电机的转矩和转速的精确控制。
磁场定向调节法具有更高的动态性能和控制精度,能够在较宽的速度范围内提供稳定的输出转矩。
这种调节方法适用于对控制精度要求极高的负载,如电梯、印刷机等。
四、PID闭环控制调节法PID闭环控制调节法是一种通过测量电机速度和设定速度之间的差异,并根据差异大小自动调整输出频率的方法。
PID控制器根据系统反馈信号和设定值之间的偏差,即误差进行计算,通过比例、积分和微分三种方式进行控制,从而实现对电机转速的精确控制。
这种调节方法适用于对转速控制要求较高的负载,如精密机械加工设备等。
综上所述,变频器频率调节方法有电压/频率调节法、矢量控制调节法、磁场定向调节法和PID闭环控制调节法等。
摘要本文首先介绍了永磁同步电机的国内外发展状况,然后介绍了永磁同步电机的结构及原理,接着建立了永磁同步电机的数学模型,并在此基础上用MATLAB 进行了仿真,最后进行了仿真及仿真结果的分析。
永磁同步电机是具有非线性、强耦合性、时变性的系统,在运行过程中会受到负载扰动等多因素影响。
以往研究永磁同步电机的做法是在硬件上搭建一个平台进行模拟,但是这样在做实验中难免会造成一些损失,而且硬件上的反馈会比较长研究周期长。
目前在国内外关于永磁同步电机调速系统的研究现状上来讲,基于MATLAB环境下仿真模型的构建下进行研究,这可极大的缩短研究周期和研究成本。
在利用MATLAB仿真模型研究永磁同步电机时,我们可以把那些扰动因数做成模拟信号给予模型,这样可以准确的定性分析实验得出结论。
关键字:永磁同步电机,空间矢量调制,MATLAB仿真,数学模型。
ABSTRACTIn the first, this paper introduces the domestic and international development status of Permanent Magnet Synchronous Motor(PMSM), gives a explanation about its basictheory, structure. Then it builds a mathematical model, and uses MATLAB to simulate that model.The PMSM is a nonlinear, strong-coupling and time-varying system, so in the operation process, it will be influenced by many factors such asload disturbance. Therere, it is necessary to take action when researching the control method of PMSM. The former research method is setting up a platform on hardware to perform experimensbut it is undesirable, because it often cause some loss, and the feedback cycle is longer than research cycle. As fordomestic and international current situation on the research of PMSM, it is obvious that researching under the simulation model created by MATLAB could greatly reduce the cost and cycle of researchment. When using MATLAB to build simulation model on the research of PMSM, we can transform these disturbance factors into analog signal, making a qualitative analysis to draw conclusions from them.Keywords:PMSM, SVPWM, MATLAB simulation, mathmatical model目录摘要 (I)ABSTRACT .............................................. I I 目录............................................... I II 第一章绪论 (1)1.1 研究背景及意义 (1)1.1.1 研究背景 (1)1.1.2 研究的目的及意义 (1)1.2 国内外研究现状 (2)1.2.1 国内研究历史及现状 (2)1.2.2 国外研究现状及趋势 (2)1.3 本文的主要内容 (3)第二章永磁同步电机调速系统的结构和数学模型 (5)2.1 引言 (5)2.2 永磁同步电机调速系统的结构 (5)2.3 永磁同步电机调速系统的数学模型 (6)2.3.1 PMSM在ABC坐标系下的磁链和电压方程 (6)坐标系下的磁链和电压方程 (8)2.3.2 PMSM在02.3.3 PMSM在dq0坐标系下的磁链和电压方程 (9)2.4 永磁同步电机的控制策略 (11)2.5 本章小节 (12)第三章永磁同步电机矢量控制及空间矢量脉宽调制 (14)3.1 引言 (14)3.2 永磁同步电动机的矢量控制 (14)3.3 空间矢量脉宽调制概念 (15)3.4 SVPWM模块的建立 (17)3.5 本章小结 (23)第四章基于Matlab的永磁同步调速系统仿真模型的建立 (24)4.1 引言 (24)4.2 MATLAB软件的介绍 (24)4.3永磁同步电机调速系统整体模型的建立 (25)4.4仿真参数调试及结果分析 (28)4.5本章小结 (29)第五章总结与展望 (30)5.1全文总结 (30)参考文献 (31)致谢 (33)第一章绪论1.1 研究背景及意义1.1.1 研究背景随着电力电子技术、微电子技术和现代电机控制理论的发展,交流调速系统逐步具备了宽调速范围、高稳速精度、快速动态响应及四象限运行等良好的技术性能,交流调速系统应用越来越广泛。
第1章电气传动系统的组成一、电动机的基本知识1。
1异步交流电动机是怎样转起来的?异步交流电动机分定子和转子两个部分;定子的铁心里放置的是三相绕组,把三相交流电通到三相绕组,就产生旋转磁场;转子绕组因切割旋转磁场的磁力线而产生感应电动势和电流,转子电流又和旋转磁场相互作用而产生电磁力和电磁转矩,使转子旋转。
1.2异步交流电机的铭牌参数1 电机型号YTSP112M—4 YTSP:电机型号;112M:机座号;4:4极电机2 电机额定功率 4kW3 电机额定电压 380V4 电机额定电流 9A5 电机额定频率 50Hz6 电机接线方法 Y形7 定额 S1 电机工作制:S1连续工作制8 电机额定转矩电机额定转速25。
4 N.m 1437r/min9 恒转矩范围3—50Hz 电机的运行方式型号:表示电动机的系列品种、性能、防护结构形式、转子类型等产品代号;电机额定功率:表示额定运行时电动机轴上输出的额定机械功率,单位KW或HP,1HP=0。
736KW;电机额定电压:直接到定子绕组上的线电压(V),电机有Y形和△形两种接法,其接法应与电机铭牌规定的接法相符,以保证与额定电压相适应;电机额定电流:电动机在额定电压和额定频率下,并输出额定功率时定子绕组的三相线电流;电机额定频率:指电动机所接交流电源的频率,我国规定为50HZ±1 电机额定转速:电动机在额定电压、额定频率、额定负载下,电动机每分钟的转速(r/min);电机额定转矩:在额定电压下、额定负载下,电动机转轴上产生的电磁转矩T(N。
m).工作定额:指电动机运行的持续时间;绝缘等级:电动机绝缘材料的等级,决定电机的允许温升。
额定负载(额定状态):可以这样理解,就是电机输出轴所连接的机械负载和电机标牌标定的输出功率相同(负载功率=电机额定功率),这样的负载,称为额定负载.或也可以这样理解:给电机加上额定电压,能够使电机的电流为额定电流的负载就是额定负载. 1.3电机学里面的几个重要公式:定子旋转磁场的转速,常称为同步转速;转子转速与同步转速之差成为转差(转子转速始终低于同步转速);转差与同步转速之比,称为转差率。
交流电机中扭矩控制方法
交流电机是现代工业中最常见的电机类型之一,其特点是转速和旋转方向容易控制,并具有良好的稳定性和效率。
在工业生产中,控制电机的扭矩是必不可少的,可以实现各种复杂的运动控制。
本文将介绍交流电机中的扭矩控制方法。
1. 扭矩控制的概念
扭矩控制是通过改变电机的电势或电流来控制输出扭矩的大小。
通过有效的扭矩控制方法,可以在工业机械、车辆、电梯和风力发电等领域中实现高效、精确和安全的运动控制。
在交流电机中,有三种常用的控制方法:电压控制、电流控制和矢量控制。
以下是这三种方法的详细介绍。
2.1 电压控制
电压控制是指通过改变电机输入电压,来控制电机的输出扭矩。
当电压增加时,电机的输出扭矩也会增加。
这种方法受到负载变化的影响较大,因为负载变化会影响电机的输出速度,从而影响电机的输出扭矩。
矢量控制是指通过控制电机的转子磁场来实现精确的扭矩控制。
矢量控制需要测量电机输出的电流和电压,然后对电机进行电流控制和电压控制。
在这种控制方法中,电机的转子磁场可以按照设定的路径旋转,从而实现高效的扭矩控制。
由于需要更为复杂的算法和计算,矢量控制通常被用于高级工业应用,如石油开采、轨道交通和高速电机。
3. 总结
扭矩控制是交流电机中的重要控制方法之一,可以实现精确的运动控制。
不同的扭矩控制方法有其优点和缺点,选择合适的方法需要考虑实际应用情况。
在实际应用中,可以根据负载情况、控制精度和成本等因素进行选择。
随着计算机控制技术的不断进步,未来扭矩控制方法将会更为精确和智能。
电机与电力电子掌握电动机的控制与驱动技术电机是现代工业与生活中不可或缺的重要设备,而电力电子作为电机的控制与驱动核心技术,对电机的性能表现和应用提出了更高的要求。
本文将介绍电机的控制与驱动技术,并探讨它们在各个领域的应用。
1. 电机的基本原理电机是将电能转化为机械能的设备。
电机的基本原理是利用电流通过导线产生的磁场与永磁体或电磁体之间相互作用来产生力矩。
根据电机的不同工作原理,可以将其分为直流电机和交流电机。
2. 电机控制技术电机的控制技术是指通过改变电流或电压来控制电机的运行状态。
常见的电机控制技术包括调速、转向、定位等。
其中,电机的调速控制技术是电机控制中最常用的技术之一。
2.1 直流电机控制技术直流电机采用的控制技术主要包括电阻切换控制、PWM控制和矢量控制三种。
2.1.1 电阻切换控制电阻切换控制是通过改变电阻来改变电机的转速。
这种控制技术简单、成本低,但效果较差,不适用于对电机性能要求较高的应用场合。
2.1.2 PWM控制PWM控制是通过改变脉宽来改变电机的转速。
脉宽越大,电机的转速越快。
这种控制技术简单、效果较好,被广泛应用于各种直流电机控制系统中。
2.1.3 矢量控制矢量控制是将直流电机模型转换为交流电机模型进行控制,通过控制电流和电压的相位和幅值来实现电机的精确控制。
矢量控制技术具有高效性能和较高的响应速度,适用于对电机精确度要求较高的应用场合。
2.2 交流电机控制技术交流电机的控制技术主要包括感应电机矢量控制、同步电机矢量控制和直接转矩控制三种。
2.2.1 感应电机矢量控制感应电机矢量控制是通过控制电流和电压的相位和幅值来实现对感应电机的精确控制。
这种控制技术具有较高的效率和较好的响应性能,被广泛应用于传动系统、工业控制等领域。
2.2.2 同步电机矢量控制同步电机矢量控制是通过控制电流和电压的相位和幅值来实现对同步电机的精确控制。
同步电机矢量控制技术具有较高的效率和较好的动态性能,适用于对电机稳定性要求较高的应用场合。
永磁同步电机的全维状态观测器设计在环境污染和能源危机日益严重的今天,节能减排是大势所趋,而永磁同步电机高启动转矩、高效率、高功率因数和低惯性的优点正好可以满足节能减排的需求,因而有关永磁同步电机的研究越来越多,同时稀土永磁材料和微电子技术的快速发展,也使得永磁同步电机的飞速发展成为现实,它的使用范围也逐渐扩展至交通运输,航空,军事和民用等重要领域。
不同的电机控制策略对应着不同的控制效果,所以采用何种控制策略来使永磁同步电机具有高效、高节能、高稳定性的性能就成为了学者们的研究热点。
目前常见的电机控制方式为矢量控制(FOC)和直接转矩控制(DTC)。
对于永磁同步电机 DTC 来说,理想状况下转矩在全速范围内应该是稳定不变的。
然而受时滞现象和不同速度区域内工作状态的影响,实际中电机转矩并不是稳定的。
因此如何减小转矩脉动、提高全速范围内转矩的稳定性能是永磁电机DTC 研究的重点。
本文拟用降维状态观测器构建基于状态观测器的永磁同步电机直接转矩控制系统,并验证其准确性。
1. 永磁同步电机的分类和结构特点永磁同步电机与其他电机一样都是由定子和转子组成,其中定子是三相对称的绕组并且通常接成 Y 型,转子为永磁体结构。
当定子绕组中通以三相正弦交流电时会产生均匀旋转的磁场,这个磁场和转子永磁体磁场相互作用就会产生一个转矩来推动转子不断地旋转。
目前转子上的永磁体有三种安放方式,每一种安放方式都对应各自的电机制造工艺、适用场所、运行性能、控制方法,因此根据永磁体的安放方式可将电机分为以下三类:图 1 三种电机的内部结构其中a为插入式,b为表面式,c为内置式图1(a)描述的是插入式永磁同步电机。
插入式永磁同步电机,即永磁体插入或部分插入转子中,故而它的结构要比表面式永磁电机稳定。
从电磁性能上来说,其属于凸极式永磁电机,转子磁路不对称,有磁阻转矩且其交、直轴电感不同。
由于其磁通密度大,所产生的转矩也较大,比较适合有高转速需求的场合。
基于安全转矩取消(STO)和矢量控制(FOC)的电梯主动安全技术研究作者:***来源:《机电信息》2021年第11期摘要:目前电梯主要通过各种电气安全装置及安全部件的配合使用来保障运行安全,各类安全保护装置基本采用电气技术或机械技术的被动安全保护措施。
特别是永磁同步电动机作为曳引主机时,许多功能严重依赖制动器本身的安全可靠程度,当制动器失效时,采用制动器作为制停部件的安全保护装置也随之失效。
在即将实施的新标准《电梯制造与安装安全规范第1部分:乘客电梯和载货电梯》(GB/T 7588.1—2020)中增加了安全转矩取消(STO)功能作为断开电动机运转供电的方法之一。
现对该技术进行了介绍,此新功能结合目前先进的矢量控制(FOC)技术,为电梯采用主动安全保护措施提供了坚实基础,在未来具有广阔的应用前景。
关键词:安全转矩取消;矢量控制;主动安全;电梯0 引言安全轉矩取消(Safe Torque Off,STO)功能是指电动机停止运行时能控制变频器关闭转矩输出,避免意外启动造成安全事故。
在电梯应用中,STO功能与制动器最大的区别在于,STO功能可以在不关闭电源的情况下切断电动机的动力来源,而制动器是在特定情况下(断电、未有使能状态)抱住制动轮或轴。
在新标准《电梯制造与安装安全规范第1部分:乘客电梯和载货电梯》(GB/T 7588.1—2020)中增加了关于断开电动机运转供电的规定:“5.9.2.5.4 d)具有符合GB/T 12668.502—2013中的4.2.2.2规定的安全转矩取消(STO)功能的调速电气传动系统,该安全转矩取消(STO)功能的安全完整性等级应达到SIL3,且硬件故障裕度应至少为1。
”[1]目前永磁同步电动机采用的控制方法主要有三种:变频变压(VVVF)、直接转矩(DTC)和矢量控制(FOC)[2]。
FOC技术主要是将电压、电流通过分解变换表示在旋转坐标系里,通过改变旋转坐标系里面直轴和交轴的分量来控制力矩和磁通。
矢量控制和滑差控制
矢量控制和滑差控制是两种不同的电机控制技术,各有其特点和适用范围。
矢量控制是一种先进的电机控制技术,通过将电机电流分解成磁场分量和转矩分量,分别对这两个分量进行控制,实现了对电机转矩的高精度控制。
这种控制方式能够显著提高电机的动态响应性能和转矩输出能力,因此在高性能的电机驱动系统中得到广泛应用。
滑差控制是一种传统的电机控制技术,通过改变电机的输入电压或频率,实现电机转速的控制。
滑差控制简单易行,但精度和控制性能相对较低,适用于对电机性能要求不高的场合。
在选择使用矢量控制还是滑差控制时,需要根据具体的应用场景和需求进行评估。
如果需要高精度、高动态响应的电机控制,矢量控制是更好的选择;如果对电机性能要求不高,或者需要更简单的控制方式,滑差控制可以作为备选方案。
伺服电机的三种控制方法伺服电机是一种可以对位置、速度和力矩进行准确控制的电机。
它具有以下几种控制方法,分别是位置控制、速度控制和力矩控制。
一、位置控制位置控制是指通过对伺服电机施加电压信号,使其能够准确地达到所需的位置。
常见的位置控制方法有以下三种:1.开环位置控制:开环位置控制是最简单的位置控制方法之一、它通过事先设定好的指令信号,控制伺服电机的运动到达预定的位置。
但由于无法准确感知位置误差,因此容易受到负载变动、摩擦力等因素的影响,导致控制精度较低。
2.简单闭环位置控制:简单闭环位置控制是在开环控制的基础上,增加了位置反馈信息来实现更精确的位置控制。
闭环控制使用编码器或位置传感器等设备来实时感知伺服电机的位置,并与设定的指令信号进行比较,控制电机的转动,减小位置误差。
但简单闭环位置控制无法考虑到负载变化对位置控制的影响。
3.PID闭环位置控制:PID闭环位置控制是在简单闭环控制的基础上,增加了比例、积分和微分控制来进一步提高位置控制精度。
PID控制器根据伺服电机的位置误差、变化速率和累计偏差,调整电机驱动器的输出信号,以实现位置的精确控制。
PID控制器通常调整PID参数,以逐步减小位置误差,使得伺服电机能够快速且准确地达到所需位置。
二、速度控制速度控制是指通过对伺服电机施加电压信号,使其能够达到预设的速度。
常见的速度控制方法有以下几种:1.矢量控制:矢量控制是一种通过使用矢量变量来控制电机的速度和方向的方法。
它可以实现电机的快速启动、减速和正反转,并具有良好的动态响应性能。
矢量控制通常需要精确的位置反馈或速度反馈信号,并使用PI控制器来调整速度误差和电机转矩。
2.开环速度控制:开环速度控制是在没有速度反馈信号的情况下,通过一个开环速度控制器来控制电机的转速。
开环速度控制通常使用一个指令信号,在不考虑负载变化的情况下提供固定转速。
由于没有速度反馈信号,开环速度控制容易受到负载变化和负载扰动的影响,控制精度较低。
收卷张力控制摘要:一:力矩电机,力矩控制器。
力矩电机是一种具有软件机械特性,和宽调速范围的特种电机。
并且以恒转矩输出。
二:变频电机,利用矢量型变频器做变频电机的转矩控制,使变频电机处于恒转矩输出。
具有速度反馈的控制方式其转矩控制的精度更高。
三:利用压力传感器,或者位置传感器来检测传动负载的张力,作为反馈信号通过PID过程控制的计算,使放卷与收卷保持相对应的速度来达到传动负载恒张力的控制。
放卷与收卷均采用变频器转速控制或者变频器PID控制。
以上三种都是收卷张力控制,在实际生产中各有优缺点,现将这三种电气控制的方法进行阐述和比较。
关键词:力矩电机,变频矢量转矩控制,过程PID控制,张力传感器。
正文:在纺织,电线电缆,金属制品加工,造纸,橡胶等行业中通常需要将产品卷绕在卷筒(铁盘,木盘)上。
卷绕的直径从始至末由小变大,为保持传动负载(被卷绕产品)张力均衡(机线速度不变)就要求卷筒的转速越越小,卷绕力越卷越大,。
产品绕卷时卷筒的直径逐渐增大(负载转矩增大)。
在整个过程中保持被卷产品的张力不变十分重要,若张力过大会将产品(如线材,纸制品)拉细或者断裂亦或者产品厚度,直径等不均匀工艺要求达不到要求。
而张力过小则可造成卷绕松弛不能保证产品的收卷。
为了使产品在卷绕过程中张力保持不变,必须在产品卷绕到卷盘上的盘径增大时驱动卷盘的电机的输出力矩也要增大,同时保持卷绕的线速度不变,那么电机的转速也要逐步减小。
需要达到上述要求的控制,在实际应用中通常采用力矩电机控制,变频电机转矩控制,以及张力传感器的PID调速控制。
现将这三种控制方法在实际应用中的优缺点进行比较,并且分析这三种控制方式在使用过程中的注意点。
第一力矩电机:力矩电机是一种具有软机械特性和宽调速范围的特种电机。
这种电机的轴不是以恒功率输出动力而是以恒力矩输出动力,当负载增加时,电动机的转速能自动的随之降低,而输出力矩增加,保持与负载平衡。
力矩电机的堵转矩高,堵转电流小,能承受一定时间的堵转运行。
无刷电机控制器工作原理无刷电机控制器是一种用于控制无刷直流电机的电子器件,它通过控制电机内部的转子定位和电流通断,实现对电机的转速和转向的精准控制。
无刷电机控制器在现代工业和消费电子产品中广泛应用,其工作原理涉及到电机的结构特点、控制电路的设计以及信号处理算法等方面。
本文将详细介绍无刷电机控制器的工作原理,包括无刷电机的基本结构、控制器的工作过程及控制算法等内容。
一、无刷电机的基本结构无刷电机又称永磁同步电机,与传统的直流电机相比,它不需要用碳刷和换向器来实现转子的定位和电流的通断,因此具有结构简洁、寿命长、功率密度高等优点。
无刷电机通常由定子和转子两部分组成,定子上布置有若干对互相交错的绕组,称为相,而转子则装有永磁体或者感应绕组。
在转子和定子之间的磁场作用下,当给定子绕组通以电流时,会产生旋转磁场,从而驱动转子旋转。
二、无刷电机控制器的工作过程无刷电机控制器的工作过程可以分为电流控制和位置控制两部分。
1. 电流控制在电流控制阶段,控制器主要监测和控制电机的相电流,通过控制电流的大小和方向来调节电机的转矩和速度。
通常采用PWM(脉宽调制)技术来调节电流大小,通过不同占空比的脉冲信号控制器电机相电流的大小。
2. 位置控制在位置控制阶段,控制器需要定位电机的转子位置,以便精确控制电机的旋转角度和速度。
通常采用霍尔传感器或者编码器来检测转子位置,控制器根据检测到的位置信号来调整相电流的通断时机,以控制电机的转子转动到目标位置。
三、无刷电机控制器的控制算法无刷电机控制器通常采用三种基本的控制算法:换相控制、坐标变换控制和矢量控制。
1. 换相控制:这是最基础的控制算法,通过检测转子位置信号,控制器根据转子位置适时切换相电流的通断顺序,从而实现对电机的转动。
这种方法结构简单,成本低廉,但控制精度较低。
2. 坐标变换控制:这种控制算法通过对电压和电流进行坐标变换,将αβ坐标下的电压和电流转换为dq坐标下的电压电流,实现对电机的精确控制。
简单易懂的导弹知识讲解导弹的定义:“导弹是指依靠自生动力装置推进,由制导系统自动引导其战斗部打击目标的一种武器”。
书本上是这么说的.嘛.确切意义也是如书上所说的..让导弹动起来吧~~导弹的构成是由头部舱,制导装置,主发动机,战斗部,引信,推进部,动力火箭构成。
制导装置既是导弹的控制中心,很容易理解就是控制导弹攻击目标的东西,最简单的设计莫过于例如二战德国V1导弹的里程计,这是最早的制导装置,而战斗部的表现方式有多种,有弹头,弹翼,环状部,视导弹形式作用的不同,部署也就不同。
这里要提醒一下,主发动机的作用是控制导弹的运行轨迹,而主要推力是来自动力火箭装置。
而导弹的控制方式有多种多样的,大体上分为尾控制面,前控制面,旋转三角翼,矢量推进,直接侧向加力这几种,当然还有单脉冲,脉冲之类复杂的。
下面将详细讲解前5种方式,复杂语言听不懂,我也说不来~。
第一节,导弹的自控制方式:尾控制面:很多导弹都有把压力中心配置在接近导弹重心的主升力面和尾控制面,重心配置对于导弹设计来说是尤为重要和基本的设计要素,不正确的重心和压力中心配置,任何的不稳定都会使得导弹绕压力中心位置旋转,最轻微的旋转可以通过指导系统的航电来自我弥补,而压力中心与重心重合的导弹被称之为零界稳定导弹,压力中心在重心之后的导弹是静稳定导弹,在不稳定的情况下,任何使弹体离开速度矢量方向的扰动,都会引起绕重心的力矩,而稳定的情况下,任何的扰动都会被渐进减小,压心与重心之间的距离称为静稳定度,导弹的静稳定度并不是越稳越好,因为有更大的静稳定度的同时也以为着这导弹越难以使之改变机动矢量方向,过于稳定的导弹是空对空格斗导弹的大忌,这样会让它无法打中任何一架飞机。
而尾控制面设计将控制面设置在弹翼之后,亚音速情况下很简单,直接控制就行,而在在超音速情况下,控制面将无法控制它前面的气流,所以为了取得更大的力矩,它只能设计的更加的靠后,同时这样也就能更容易的部署其他装置。
矢量控制VC 磁场定向控制FOC 直接转矩控制DTC对于上述三种概念一直分不清楚,这次找了些资料区分了下。
矢量控制Vector control具体是将异步电动机的定子电流矢量分解为产生磁场的电流分量(励磁电流) 和产生转矩的电流分量(转矩电流) 分别加以控制,并同时控制两分量间的幅值和相位,即控制定子电流矢量,所以称这种控制方式称为矢量控制方式。
具体实现方式见/view/4a305c4bc850ad02de804197.html磁场定向控制Field-Oriented Control磁场定向控制是变频驱动或变速驱动领域使用的一种方法,可通过控制电流来控制三相AC电动机的扭矩。
因此,磁场定向控制往往与矢量控制组合使用。
磁场定向控制有三种类型,一是气隙磁场定向系统、二是定子磁场定向系统;三是转子磁场定向系统。
目前常采用转子磁场定向矢量控制时,缺点是磁链闭环控制系统中转子磁通的检测精度受转子时间常数的影响较大,降低了系统性能。
但它达到了完全的解耦控制,无需增加解耦器,并且不存在静态稳定性限制的条件,控制方式简单,具有较好动态性能和控制精度,故应用最为广泛。
因此在很多场合讲矢量控制与FOC混为一谈。
直接转矩控制Direct Torque Control直接转矩控制也称之为“直接自控制”,这种“直接自控制”的思想是以转矩为中心来进行磁链、转矩的综合控制。
和矢量控制不同,直接转矩控制不采用解耦的方式,从而在算法上不存在旋转坐标变换,简单地通过检测电机定子电压和电流,借助瞬时空间矢量理论计算电机的磁链和转矩,并根据与给定值比较所得差值,实现磁链和转矩的直接控制。
直接转矩控制技术,是利用空间矢量、定子磁场定向的分析方法,直接在定子坐标系下分析异步电动机的数学模型,计算与控制异步电动机的磁链和转矩,采用离散的两点式调节器(Band—Band控制),把转矩检测值与转矩给定值作比较,使转矩波动限制在一定的容差范围内,容差的大小由频率调节器来控制,并产生PWM脉宽调制信号,直接对逆变器的开关状态进行控制,以获得高动态性能的转矩输出。
西门子变频器产品知识总结1.进线电抗器的作用:抑制谐波电流,防止过载出线电抗器(电机电抗器)作用:减小电机电缆的容性漏电流;减小输出侧的电压上升率进线滤波器的作用:提高变频装置的抗射频干扰能力/等级2.CF卡的作用:保存变频器参数、固件信息、证书3.变频器的三种控制模式及其相应的控制电机种类:a.伺服模式:位置控制,控制同步伺服电机&异步伺服电机,有电流环、速度环、位置环;b.矢量模式:速度控制,分为闭环矢量控制(VC)&无编码器矢量模式(SLVC),控制同步电机&异步电机,有电流环、速度环;c.V/f模式:速度控制,精度在三种模式中最低,不带编码器,控制同步电机&异步电机,只有电流环,总体属于开环控制,其他两种模式为闭环控制。
4.G150变频器A型/C型柜的区别:A型柜是可根据需要安装所有组件;而C型柜是不带输入侧组件,空间极为紧凑。
5.S120选件:控制面板选件:AOP30、BOP20扩展板选件:TB30、CBC10(CAN总线)、CBE20(Profinet)扩展模块选件:TM31编码器选件:SMC10(旋转变压器)、SMC20(绝对编码器)、SMC30(增量编码器)6.电机制动:a.直流制动:给定子通直流电达到制动的目的,制动转矩不稳定,掉电后无法工作;b.电阻制动:通过加制动电阻将电能转化成热能进行消耗达到制动的目的,制动转矩稳定,掉电后可以继续工作;c.再生反馈制动:将再生电能反馈到电网中达到制动的目的,制动转矩稳定,掉电后无法工作。
7.电压提升:三种方式:p1210---持续电压提升p1211---加速时进行电压提升p1212---首次启动时进行电压提升什么时候需要电压提升:V/f控制模式下,当变频器输出频率为0时,其输出电压也为0,而电压为0时可能无法产生转矩,此时需要电压提升。
举例说明哪些情况下用电压提升:0转速时需要带负载;0转速时进行电机磁化;产生启动/制动/加速转矩时;对绕组和电源电缆中的欧姆损耗进行补偿。
小p02值,增大i02值
(2)最高输出频率的调整。
请用最高输出频率控制电动机运行,在此状态下,在无振动的范围内增大设定p01值,然后,在无振动范围内减小设定i01值(3)增益的微调。
在增益更细微调整时,可以边观察速度波形边微调。
在加速完成时发生上冲超调,请减小p01值,增大i01值,停止时发生下冲超调,请减小p02值,增大i02值。
2.4.2带pg闭环v/f控制系统要注意以下几点
(1)一般编码器为5~36v工作电源,因此必须要选用合适的pg接口电源,确保编码器正常工作
(2)编码器的工作方式有许多中,包括集电极开路、推挽式和线驱动,集电极开路还分npn或pnp,因此必须在选配合适pg接口的基础上,还必须选用正确的接线方式和跳线方式(npn或pnp方式)
(3)编码器与变频器的距离一般以不超过100m为宜,必须采用屏蔽和抗干扰处理
(4)闭环v/f控制多用于简易速度控制,且安装位置可以不在电动机轴端,因此在参数设置上必须加以区别,设定转速计算值必须折算到电动机侧
(5)转速的设定和反馈一般都以转/分(r/min)为单位,一般而言设定值在面板上可以数字输入,若是用模拟信号作为给定量时,模拟给定最大值对应于电动机的同步转速。
系统分类: 变频器 | 用户分类: 无分类 | 来源: 整理
阅读(1420) 回复(0) 最新评论
标题
姓名
主页。
多电机同步运动控制技术综述1. 本文概述随着现代工业自动化的快速发展,多电机同步运动控制技术在诸多领域,如机器人、数控机床、生产线自动化等方面得到了广泛应用。
本文旨在对多电机同步运动控制技术进行全面的综述,以期为读者提供清晰、系统的技术理解和应用指导。
本文将简要介绍多电机同步运动控制技术的基本概念和原理,包括其定义、发展历程以及主要的应用场景。
接着,本文将重点分析多电机同步运动控制技术的关键技术和挑战,如同步策略、误差补偿、动态性能优化等。
本文还将对多电机同步运动控制技术的不同实现方法进行比较和评价,包括传统的PID控制、现代的控制算法如模糊控制、神经网络控制等。
在综述的过程中,本文将结合近年来国内外在多电机同步运动控制技术方面的重要研究成果和案例,深入剖析其技术特点、应用效果以及可能的发展方向。
本文将总结多电机同步运动控制技术的发展趋势和前景,以期对未来的研究和应用提供参考和启示。
通过本文的综述,读者可以对多电机同步运动控制技术有一个全面、深入的了解,为实际应用和研究提供参考和指导。
2. 多电机同步运动控制的基本原理首先是速度同步控制。
在多电机系统中,为了实现同步运动,需要确保各个电机的转速一致。
这通常通过采用速度反馈控制策略来实现,即通过传感器实时检测电机的实际转速,并与期望的转速进行比较,然后根据误差调整电机的控制输入,使其逐渐接近期望的转速。
其次是位置同步控制。
除了速度同步外,位置同步也是多电机同步运动控制中的重要方面。
为了确保各个电机在运动中保持相对位置不变,需要采用位置反馈控制策略。
这通常通过编码器或传感器实时检测电机的实际位置,并与期望的位置进行比较,然后根据误差调整电机的控制输入,使其逐渐达到期望的位置。
最后是力同步控制。
在某些多电机系统中,除了速度和位置同步外,还需要实现力的同步。
例如,在机器人抓取物体时,需要确保各个电机产生的合力与期望的抓取力一致。
这通常通过力传感器实时检测物体受到的力,并根据误差调整电机的控制输入,使其产生的合力逐渐接近期望的抓取力。
三相电流闭环控制的矢量控制三相电流闭环控制的矢量控制,听起来就像是一道难啃的硬骨头,但别急,让我来把它变得简单、轻松!想象一下,你在一个热闹的晚会上,周围的人谈笑风生,气氛轻松。
现在,我们就把这个电流控制的复杂概念变成一个轻松的故事。
三相电流嘛,就像咱们生活中的三种不同的饮料,分别是可乐、果汁和水。
每一种都有它的独特口味,三者结合才能让派对更热闹。
电流也是如此,三相电流一起来,才有了强大的动力。
而矢量控制,就像你在晚会上调节音乐的音量,得让每个乐器的声音都刚刚好,不大不小,恰到好处。
控制得好,整个氛围就热火朝天;控制不好,可能会让人觉得没劲,甚至烦躁。
现在,让我们聊聊闭环控制。
这就像是在比赛中,你有个好教练时刻在旁边指导,随时调整策略。
闭环控制能实时监测电流的状态,一旦发现偏差,立马做出调整。
这种机制确保了电流的稳定,就像你在晚会上不断调整饮料的比例,让每个人都能喝到最合适的口感。
没有闭环控制,那可是要出乱子的,电流波动得厉害,简直就像舞台上乐器调不好的噪音,听得人头疼。
矢量控制的神奇之处在于,它能把电流的方向和大小一起控制。
就好比你在调音台上,既要注意音量的大小,又要掌握音色的变化。
电机运行起来就像是一场舞蹈,方向和速度的配合才能让舞步优雅。
假如方向不对,那就像踩到别人的脚,尴尬得很;速度太快又容易摔倒,真是让人哭笑不得。
想象一下,在某个时刻,电流的状态突然发生变化,这可不是什么小事,绝对是场大风暴。
这个时候,闭环控制系统就像是你身边的好朋友,敏锐地捕捉到你的情绪,及时给你一杯冰水,瞬间让你清醒。
通过传感器和算法,系统能立刻感知变化,并做出精准反应,保持电流的稳定。
简直是个万事通的高手。
说到这里,大家是不是也有点儿小激动呢?电机工作时,矢量控制的精准让我们得以享受高效的运作体验。
想象一下,电机在高速旋转,宛如在舞台上翩翩起舞,电流流淌自如。
闭环控制确保了这场舞蹈的每一步都准确无误,节奏感十足。
磁场定向矢量控制技术按照获得磁链的不同方式大致可分为两种:直接和间接方式。
直接方式的实现依赖于直接测量或对转子,定子,气隙磁链矢量的幅值和位置的估算。
传统的直接矢量控制策略使用检测线圈,具有抽头的定子绕组或霍尔效应传感器对磁通进行检测,但由于电机结构或散热的需要就会产生一定的限制,但随着目前高速DSP的不断面世,在一个PWM周期内,实现负载的控制及磁链估算应成为可能,所以近年来基于磁链观测器的直接方式由重新得到了人们的重视。
而间接方式则使用电动机模型,例如对于转子磁通定向控制,它利用了固有的转差关系。
与直接的方法相比,间接方式对电机参数有较高的依赖性。
多数场合使用间接策略,因为这会使硬件电路相对简单并且在低频下也具有较好的总体性能,但是由于包含了会随着温度,饱和度和频率变化而变化的电机参数,所以需要研究不同的参数自适应策略。
如果从选择的磁链矢量分类的话,磁场定向矢量控制技术一般可分为三种,即气隙磁场定向控制,定子磁场定向控制,转子磁场定向控制。
1. 气隙磁场定向控制方案。
气隙磁场的定向控制是将旋转坐标系的M轴定向于气隙磁场的方向,此时气隙磁场的T轴分量为零。
如果保持气隙磁通M轴分量恒定,转矩直接和T轴电流成正比。
因此,通过控制T轴电流,可以实现转矩的瞬时控制,从而达到控制电机的目的。
2.定子磁场定向控制方案。
定子磁场定向的控制方法,是将旋转坐标的M轴放在定子磁场方向上,此时,定子磁通的T轴分量为零。
如果保持定子磁通恒定,转矩直接和T轴电流成正比,从而控制电机。
定子磁场定向控制使定子方程大大简化,从而有利于定子磁通观测器的实现。
然而此方案在进行磁通控制时,不论采用直接磁通闭环控制,还是采用间接磁通闭环控制,均须消除耦合项的影响。
因此,需要设计一个解耦器,对电流进行解耦。
3. 转子磁场定向控制方案。
转子磁场定向的控制方法是在磁场定向矢量控制方法中,将M,T 坐标系放在同步旋转磁场上,将电机转子磁通作为旋转坐标系的M坐标轴。
若忽略由反电动势引起的交叉祸合,只需检测出定子电流的M轴分量,就可以观测转子磁通幅值。
当转子磁通恒定时,电磁转矩与定子电流的T轴分量成正比,通过控制定子电流的T轴分量就可以控制电磁转矩。
因此称定子电流的M轴分量为励磁分量,定子电流的T轴分量为转矩分量。
可由电压方程M轴分量控制转子磁通,T轴分量控制转矩,从而实现磁通和转矩的解耦控制。
下面对它们进行简要的总结和比较:
气隙磁场定向系统中磁通关系和转差关系中存在耦合,需要增加解耦器这使得它比转子磁通的控制方式要复杂,但具有一些状态能直接测量的优点,比如气隙磁通。
同时电机磁通的饱和程度与气隙磁通一致,故基于气隙磁通的控制方式更适合于处理饱和效应。
定子磁场定向的矢量控制方案,在一般的调速范围内可利用定子方程作磁通观测器,非常易于实现,且不包括对温度变化敏感的转子参数,可达到相当好的动静态性能,同时控制系统结构也相对简单,然而在低速时,由定子电阻压降占端电压的大部分,致使反电动势测量误差较大,导致定子磁通观测不准,影响系统性能。
定子磁场定向的矢量控制系统适用于大范围弱磁运行的情况。
转子磁场定向的控制方案,缺点是磁链闭环控制系统中转子磁通的检测精度受转子时问常数的影响较大,降低了系统性能。
但它达到了完全的解耦控制,无需增加解耦器,并且不存在静态稳定性限制的条件,控制方式简单,具有较好动态性能和控制精度,故应用最为广泛。