5第5讲空间杆件结构的有限元法
- 格式:ppt
- 大小:2.75 MB
- 文档页数:27
杆系结构的有限元法分析有限元法是一种结构分析方法,常用于分析各种不同类型的结构系统,其中包括杆系结构。
杆系结构是由杆件连接而成的桁架结构,常见于桥梁、塔架和支撑结构等。
利用有限元法进行杆系结构的分析,可以得到结构的位移、应力、应变和刚度等信息,帮助工程师评估结构的稳定性和安全性。
下面将介绍杆系结构的有限元法分析的步骤。
首先,进行前期准备工作。
这包括收集与结构相关的几何信息(如杆件长度、截面形状等)、边界条件(如固定支座、外载荷等)和材料性质(如材料的弹性模量、密度等)。
这些信息将是有限元模型建立所需要的输入参数。
接下来,建立有限元模型。
将杆系结构离散化为一个个的杆单元,采用有限元方法对每个杆单元进行离散近似。
常用的杆单元包括横截面线性杆单元、三节点弯曲杆单元和非线性杆单元等。
然后,确定单元刚度矩阵。
对于横截面线性杆单元,其刚度矩阵可以根据材料性质和几何信息计算得到。
对于弯曲杆单元和非线性杆单元,则需要考虑附加的几何和材料非线性效应。
接着,组装全局刚度矩阵。
将所有杆单元的刚度矩阵按照其关联的节点自由度进行组装。
在组装过程中,需要考虑杆单元之间的关联关系,确保刚度矩阵的正确性和完整性。
然后,应用边界条件。
根据实际情况,将已知的边界条件(如固定支座、已知位移等)施加到全局刚度矩阵中。
这将改变全局刚度矩阵的特征值和特征向量,从而影响结构的响应。
接下来,求解结构的位移和应力。
通过求解结构的整体刚度方程以及施加的边界条件,可以得到结构的位移解向量和应力解向量。
位移解向量描述了结构的变形情况,而应力解向量体现了结构的应力分布情况。
最后,进行后处理。
在得到位移和应力解后,可以计算结构的应变分布、变形形态以及额外的设计指标。
通过这些结果,可以对结构的性能进行评估,以便优化设计。
综上所述,杆系结构的有限元法分析包括前期准备、建立有限元模型、确定单元刚度矩阵、组装全局刚度矩阵、应用边界条件、求解结构的位移和应力以及后处理等步骤。
第五章 杆系结构的有限元法 5.1 引言杆系结构是工程中应用较为广泛的结构体系,包括平面或空间形式的梁、桁架、刚架、拱等。
其组成形式虽然复杂多样,但用计算机进行分析时却较为简单。
杆系结构中的每个杆件都是一个明显的单元。
杆件的两个端点自然形成有限元法的节点,杆件与杆件之间则用节点相连接。
显然,只要建立起杆件两端位移与杆端力之间的关系,则整体平衡方程的建立与前几章完全相同。
杆端位移与杆端力之间的关系,可用多种方法建立,包括前面几章一直采用的虚功原理,但是采用材料力学、结构力学的某些结论,不仅物理概念清晰、直观,而且推导过程简单明了。
因此,本章将采用这种方法进行单元分析。
至于整体平衡方程的建立,则和前面几章所讲的方法一样,即借助于单位定位向量,利用单元集成法进行。
5.2 平面桁架的有限元分析平面桁架在计算上有以下几个特点: 1. 杆件的每个节点仅有两个线位移; 2. 杆件之间的连接为理想铰,即在节点处各杆件可相对自由转动,且杆件轴线交于一点。
3. 外载荷均为作用于节点的集中力。
由于以上特点,所以在理论上各杆件只产生轴向拉、压力,截面应力分布均匀,材料可得到充分利用,因此桁架结构往往用于大跨结构。
5.2.1 局部坐标系下的单元刚度矩阵从平面桁架中任取一根杆件作为单元,称作桁架单元,单元长为L ,横截面面积为A ,图5.1。
两端节点分别用i 和j 表示,规定从i 到j 的连线方向为局部坐标x 轴,垂直于x 的方向为y 轴。
图5.1由于桁架中各杆只产生轴向力和轴向变形,所以节点i 和j 只发生沿x 方向的位移,用i u 和j u 表示,相应的杆端轴力分别用xi F 和xj F 表示。
由虎克定律可推得)()()(j i i j xj j i xi u u L EA u u L EA F u u LEAF --=-=-=将这两个式子写成矩阵形式,就是e j i exj xi u u L EA LEA L EA L EA F F ⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--=⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧ (5.1)显然,在局部坐标系下,i 、j 两节点沿y 轴方向的位移0==j i v v ,在y 轴方向的节点力0==yj yi F F 。