八年级数学上期末复习教案
- 格式:doc
- 大小:491.50 KB
- 文档页数:20
新人教八年级上册第14章章末复习【知识与技能】1.掌握整式的乘法运算方法并运用于计算.2.掌握因式分解的方法并运用于分解因式.【过程与方法】1.引导学生有序地总结归纳本章概念与基本方法.2.应用例题讲解帮助学生形成解题能力.【情感态度】1.体验转化思想.2.培养从特殊到一般,从一般到特殊的思维能力.【教学重点】整式的乘法运算与因式分解.【教学难点】根据实际问题选择合适方法解题.一、知识框图,整体把握【教学说明】引导学生一起表述概念法则,并适当归类,完成框架图.教学中以学生的发言为主,教师予以评判与补充,重在提醒学生找到知识点间的联系与区别.二、释疑解惑,加深理解1.整式的乘除及混合运算整式的乘除及混合运算是本章核心内容,是计算重点.解决此类问题的一般步骤是①审题确定运算顺序,即按先算乘方,再算乘除,最后算加减,有括号的先算括号里面的(或去掉括号);②运用各种计算法则准确地计算每一步,这是计算化简核心步骤,计算应仔细认真,防止出错,否则前功尽弃;③检查结果的正确性.例1先化简,再求值:x(x-4)(x+4)-(x+3)(x2-6x+9)+5x3y2÷x2y2,其中x=-3.【分析】此题主要考查整式的运算以及运算的顺序.解:原式=x(x2-16)-x3+6x2-9x-3x2+18x-27+5x=x3-16x-x3+6x2-9x-3x2+18x-27+5x=3x2-2x-27.当x=-3时,原式=3x2-2x-27=3×(-3)2-2×(-3)-27=27+6-27=6.例2解方程:[2x3(2x-3)-x2]÷(2x2)=x(2x-1).【分析】将整式的各种运算融入方程中,因此解方程问题实质上转化为整式的计算问题.2.乘法公式教材中的乘法公式有两个:一是平方差公式,二是完全平方公式.只要掌握了公式的基本结构特点就可以快捷高效地解题.两个公式即可以正用,也可以逆用,有时逆用公式会使计算更加简捷,使用公式时要注意五点:(1)a、b的广泛代表性;(2)公式中各项的关系及整个公式的结构特点;(3)要有连续使用公式的技巧;(4)要掌握公式交替使用的方法;(5)了解两个公式的推广.例3已知a+b=6,ab=-7.求下列各式的值:(1)a 2+b 2;(2)a 2-ab+b 2;(3)a-b.解:(1)∵(a+b )2=(a 2+b 2)+2ab ,故a 2+b 2=62-2×(-7)=50.(2)a 2-ab+b 2=a 2+b 2+2ab-3ab=(a+b )2-3ab=62-3×(-7)=57.(3)∵(a-b )2=(a+b )2-4ab=62-4×(-7)=64,∴a-b=±8.3.因式分解因式分解是整式乘法的逆变形,有两种基本方法:提公因式法和运用公式法.因式分解的一般步骤是一提、二套、三查:若多项式有公因式先提取公因式,然后考虑运用公式,若多项式有两项,考虑平方差公式,若多项式有三项,则考虑用完全平方公式,最后检查一下所得结果否还能继续分解.例4把下列各式分解因式:(1)m 4-16n 4;(2)4x 2n+20x n y n +25y 2n.【分析】如果多项式各项含有公因式,应先提取公因式,再进一步分解因式,分解因式必须分解到每一个多项式都不能再分解为止.解:(1)m 4-16n 4=(m 2)2-(4n 2)2=(m 2+4n 2)(m 2-4n 2)=(m 2+4n 2)[m 2-(2n )2]=(m 2+4n 2)(m+2n )(m-2n ).(2)4x 2n +20x n y n +25y 2n =(2x n )2+2·2x n ·5y n +(5y n )2=(2x n +5y n )2. 例5把下列各式分解因式:【分析】应先提取公因式,然后再运用公式进行分解.三、典例精析,复习新知例6解不等式组:332 1 252541x x x x x x x x +---⎧⎨----⎩()()()>①()()<()②【分析】解不等式组时,要将不等号两边的括号去掉,进行化简,在①中,(x+3)(x-3)符合平方差公式左边的形式,可用平方差公式,直接写出结果得x2-9;在②中,(2x-5)(-2x-5)=(-5+2x)(-5-2x)也符合平方差公式左边的形式,可用平方差公式,这样可使解不等式组的过程简化.【教学说明】平方差公式是代数变形的基本工具之一,在各类题目中均有可能用到,所以要随时注意,灵活使用,这样可以提高解题速度.例7分解因式:1+x+x(1+x)+x(1+x)2+x(1+x)3.你发现了什么规律?利用你发现的规律直接写出多项式1+x+x(1+x)+x (1+x)2+…+x(1+x)2005分解因式的结果.【分析】先将多项式分解因式,分析结果的特点,根据特点找出规律.【教学说明】通过观察多项式的结构特点,较易发现经过整理之后可提公因式(1+x),而提完公因式后,多项式的结构呈现规律性的重复,可逐次提取.可见,解这类题目要善于对多项式的结构进行观察,应避免盲目乱解.1.布置作业:从教材“复习题14”中选取部分题.2.完成创优作业中“本章热点专题训练”.复习教学时要突出:1.引领学生充分认识概念、法则、公式,重点分析概念本质,公式特征及各知识点间关系.2.指导学生挖掘知识点间的联系,整体上认识知识(如整式乘法与因式分解)3.重点指导学生反思解题技法,总结规律,达到举一反三的目的.。
期末复习(第一章 有理数)A .常考题型突破题型一:有理数的有关概念 例1:|-3|的相反数是( A ) A .-3 B .3 C.13 D .-13【方法归纳】此题主要考查了绝对值、相反数的定义,求解时可先求出|-3|的值,然后再根据“只有符号不同的两个数互为相反数”,即可得出答案.变式训练1:如图,如果数轴上A ,B 两点之间的距离是7,那么点B 表示的数是( B )A .-3B .-2C .2D .-1 题型二:有理数的运算例2:计算下列各题,能简算的要简算. (1)1+(-2)+|-2|-5;解:1+(-2)+|-2|-5=1-2+2-5=(1+2)+(-2-5)=3-7=-4. (2)(+23)+(-45)-(+15)-(-13)-(+1);解:(+23)+(-45)-(+15)-(-13)-(+1)=23-45-15+13-1=(23+13)+(-45-15)-1=1-1-1=-1.(3)-14-17×[2-(-4)2];解:-14-17×[2-(-4)2]=-1-17×(2-16)=-1-17×(-14)=-1+2=1.(4)(-370)×(-14)+0.25×24.5-512×(-25%).解:(-370)×(-14)+0.25×24.5-512×(-25%)=370×0.25+0.25×24.5+5.5×0.25=(370+24.5+5.5)×0.25=400×0.25=100.【方法归纳】此题主要考查了有理数的混合运算,要熟练掌握,解答此题的关键是要明确有理数混合运算的顺序:先算乘方,再算乘除,最后算加减;同级运算,应按从左到右的顺序进行计算;如果有括号,要先做括号内的运算.同时,乘法的分配律不仅可以正用,而且可以逆用,在解题时要灵活运用.变式训练2:股民李星星在上周星期五以每股11.2元买了一批股票,下表为本周星期一到星期五该股票的涨跌情况(“+”表示上涨,“-”表示下跌).求:(1)本周星期三收盘时,每股的钱数;(2)李星星本周内哪一天把股票抛出比较合算,为什么?解:(1)根据题意,得11.2+0.4+0.45+(-0.2)=11.85(元),答:本周星期三收盘时,该只股票每股为11.85元.(2)本周每天该股票的价格依次为11.2+0.4=11.6(元),11.2+0.4+0.45=12.05(元),11.2+0.4+0.45-0.2=11.85(元),11.2+0.4+0.45-0.2+0.25=12.1(元),11.2+0.4+0.45-0.2+0.25-0.4=11.7(元),因为11.6<11.7<11.85<12.05<12.1,所以本周该股票最高价为12.1元,出现在周四,李星星本周四把股票抛出比较合算.题型三:非负数性质的应用例3:已知|a+1|+(b-2)2=0,求(a+b)2 018+a2 018的值.解:因为|a+1|+(b-2)2=0,|a+1|≥0,(b-2)2≥0,所以a+1=0,b-2=0,所以a=-1,b=2.因此(a+b)2 018+a2 018=(-1+2)2 018+(-1)2 018=2.【方法归纳】非负数的性质:a2≥0,|a|≥0,即一个数的平方和一个数的绝对值均为非负数,当几个非负数的和为0时,这几个非负数都为0.变式训练3:已知(x+3)2与|y-2|互为相反数,z是绝对值最小的有理数,求(x+y)y+xyz的值.解:因为(x+3)2与|y-2|互为相反数,所以(x+3)2+|y-2|=0,又因为(x+3)2≥0,|y-2|≥0,所以x+3=0,y-2=0,所以x=-3,y=2,因为z是绝对值最小的有理数,所以z=0,所以(x+y)y+xyz=(-3+2)2+0=1.题型四:科学记数法与近似数例4:月球的直径约为3 476 000米,将3 476 000用科学记数法表示应为( C ) A .0.347 6×102 B .34.76×104 C .3.476×106 D .3.476×108【方法归纳】此题主要考查了科学记数法的表示方法.科学记数法的表示形式为a ×10n ,其中1≤|a|<10,n 为整数,且n 的值为该数的整数位数减1.例5:用四舍五入法,对下列各数按括号中的要求取近似数: (1)0.632 8(精确到0.01)为0.63; (2)46 021(精确到百位)为4.60×104.变式训练4:(1)用四舍五入法,把130 542精确到千位是1.31×105;(用科学记数法表示)(2)近似数1.5×106精确到十万位. 题型五:探索有理数的规律 例6:请观察下列等式的规律:11×3=12(1-13),13×5=12(13-15),15×7=12(15-17),17×9=12(17-19)……则11×3+13×5+15×7+…+199×101=50101. 【方法归纳】探索数的变化规律要从简单、特殊情形着手,然后猜想一般情形.本题的规律为1n (n +2)=12(1n -1n +2)(n 为非0自然数).变式训练5:观察下列等式: 第1个等式:a 1=31×2×22=11×2-12×22; 第2个等式:a 2=42×3×23=12×22-13×23;第3个等式:a 3=53×4×24=13×23-14×24; 第4个等式:a 4=64×5×25=14×24-15×25.按上述规律,回答以下问题:(1)用含n 的式子表示第n 个等式:a n =n +2n (n +1)·2=1n ·2n -1(n +1)·2;(2)求式子a 1+a 2+a 3+…+a 20的值. 解:(2)a 1+a 2+a 3+…+a 20=11×2-12×22+12×22-13×23+13×23-14×24+…+120×220-121×221=12-121×221. 题型六:新定义运算例7:(2017·石家庄市长安区校级月考)在一个秘密俱乐部中,有一种特殊的算账方式:a*b =3a -4b ,聪明的小明通过计算2*(-4)发现了这一秘密,他是这样计算的:2*(-4)=3×2-4×(-4)=22.假如规定a*b =2a -3b -1,那么2*(-3)=12.【方法归纳】对于新定义运算,一般是给出新定义,再提出新问题,要根据新定义弄清楚新运算是一个什么样的运算,再根据这个算式计算结果.变式训练6a ,b ,ab =a +b-1,a ※b =a ×b -1,则(-8)※(35)=-57.B .考前提分训练 一、选择题1.数学考试成绩85分以上为优秀,以85分为标准,薛老师将某一小组五名同学的成绩简记为:+9,-4,+11,-7,0.这五名同学的实际成绩最高的应是( C )A .93分B .85分C .96分D .78分2.(2018·河北模拟)3-(-2)×4的相反数是( D ) A .5 B .-5 C .11 D .-11 3.下列说法中正确的是( B ) A .一个有理数不是正数就是负数 B .一个有理数不是整数就是分数C .有理数是指整数、分数、正有理数、负有理数和0这五类数D .有理数是指自然数和负整数4.某校师生在为灾区举行的爱心捐款活动中总计捐款18.49万元.把18.49万用四舍五入法取近似值,可以用科学记数法表示为( C )A .1.9×105B .19×104C .1.8×105D .18×1045.有理数-32,(-3)2,|-33|,-13按从小到大的顺序排列是( D )A .-13<-32<(-3)2<|-33|B .|-33|<-32<-13<(-3)2C .-13<-32<|-33|<(-3)2D .-32<-13<(-3)2<|-33|6.下列运算正确的是( D ) A .-22÷(-2)2=1 B .(-213)3=-8127C .-5÷13×35=-25D .314×(-3.25)-634×3.25=-32.57.若x 的相反数是3,|y|=5,则x +y 的值为( C ) A .-8 B .2C .-8或2D .8或-28.a ,b ,c 在数轴上的位置如图所示,则下列结论正确的是( C )A .abc >0B .(a +b)c >0C .a(b -c)>0D .(a -c)b >0 二、填空题9.-23的倒数的绝对值是32.10.数轴上,-3与3之间(不包括-3与3)的整数共有5个. 11.计算:-23=-8,(-23)3=-827.12.用四舍五入法将0.618 033 98…精确到0.001的近似数是0.618.13.观察11×2+12×3+13×4=(11-12)+(12-13)+(13-14)=1-14=34,依照上述方法计算:11×2+12×3+13×4+…+18×9+19×10=910. 14.一个点从数轴的原点开始,向右移动5个单位长度,再向左移动8个单位长度, 到达的终点表示的数是-3.15.大于-3且小于4的所有整数的积为0.16.科学家发现:植物的花瓣、萼片、果实的数目以及其他方面的特征,都非常吻合于一个奇特的数列——著名的裴波那契数列:1,1,2,3,5,8,13,21,34,55……仔细观察以上数列,它的第11个数应该是89.三、解答题 17.计算:(1)[-33×2+(-3)2×4-5×(-2)3]÷(-14)2;解:[-33×2+(-3)2×4-5×(-2)3]÷(-14)2=[-27×2+9×4-5×(-8)]÷116=(-54+36+40)×16=22×16=352.(2)(-137)×35÷137×(0-2)3;解:(-137)×35÷137×(0-2)3=-107×35×710×(-8)=245.(3)991819×(-15);解:991819×(-15)=-(100-119)×15=-(1 500-1519)=-1 499419.(4)(-36)×(-49+56-712).解:(-36)×(-49+56-712)=(-36)×(-49)+(-36)×56+(-36)×(-712)=16-30+21=7.18.已知:a 和b 互为相反数,c 和d 互为倒数,且(y +1)2=0.求(a +b)2 018-(-cd)2017+y 3的值.解:因为a 和b 互为相反数,c 和d 互为倒数,且(y +1)2=0,所以a +b =0,cd =1,y =-1.所以原式=0-(-1)+(-1)=0.19.检查一商店10个水果罐头的重量,超出记为“+”,不足记为“-”,情况如下:-3克,+2克,-1克,-5克,-2克,+3克,-2克,+3克,+1克,-1克.(1)总的情况是超出还是不足? (2)每罐平均超出或不足多少? (3)最多与最少相差多少?解:(1)(-3)+(+2)+(-1)+(-5)+(-2)+(+3)+(-2)+(+3)+(+1)+(-1)=-3+2-1-5-2+3-2+3+1-1=-5.所以总的情况是不足.(2)每罐平均不足为5÷10=0.5(克).(3)最多的一个为+3克,最少的一个为-5克,根据题意,得(+3)-(-5)=3+5=8(克),所以最多与最少相差8克.20.根据如图所示的数值转换机,当输入的x 与y 满足|x +1|+(y -12)2=0时,请列式求出输出的结果.解:因为|x +1|+(y -12)2=0,且|x +1|≥0,(y -12)2≥0,所以x +1=0,y -12=0,所以x=-1,y=12,代入,得[(-1-5)2+12×(-2)]÷2=352.答:输出的结果为352.21.已知点A,B在数轴上分别表示数a,b.(1)对照数轴填写下表:(2)若A,B两点间的距离记为d,d和a,b有何数量关系?(3)写出所有符合条件的整数点P,使它到10和-10的距离之和为20,并求所有这些整数的和;(4)数轴上表示x和-2的两点之间的距离表示为|x+2|;(5)若点C表示的数为x,当点C在什么位置时,|x+1|+|x-2|取得的值最小?解:(2)d=|a-b|.(3)满足条件的整数点为:±10,±9,±8,±7,±6,±5,±4,±3,±2,±1,0;它们的和为零.(5)当点C在-1和2之间时(包括点-1和2),取得的值最小.。
八年级上册数学期末复习教案八年级上册数学期末复习教案1一、内容和内容解析1.内容二次根式的性质。
2.内容解析本节教材是在学生学习二次根式概念的基础上,结合二次根式的概念和算术平方根的概念,通过观察、归纳和思考得到二次根式的两个基本性质.对于二次根式的性质,教材没有直接从算术平方根的意义得到,而是考虑学生的年龄特征,先通过“探究”栏目中给出四个具体问题,让学生学生根据算术平方根的意义,就具体数字进行分析得出结果,再分析这些结果的共同特征,由特殊到一般地归纳出结论.基于以上分析,确定本节课的教学重点为:理解二次根式的性质.二、目标和目标解析1.教学目标(1)经历探索二次根式的性质的过程,并理解其意义;(2)会运用二次根式的性质进行二次根式的化简;(3)了解代数式的概念.2.目标解析(1)学生能根据具体数字分析和算术平方根的意义,由特殊到一般地归纳出二次根式的性质,会用符号表述这一性质;(2)学生能灵活运用二次根式的性质进行二次根式的化简;(3)学生能从已学过的各种式子中,体会其共同特点,得出代数式的概念.三、教学问题诊断分析二次根式的性质是二次根式化简和运算的重要基础.学生根据二次根式的概念和算术平方根的意义,由特殊到一般地得出二次根式的性质后,重在能灵活运用二次根式的性质进行二次根式的化简和解决一些综合性较强的问题.由于学生初次学习二次根式的性质,对二次根式性质的灵活运用存在一定的困难,突破这一难点需要教师精心设计好每一道习题,让学生在练习中进一步掌握二次根式的性质,培养其灵活运用的能力.本节课的教学难点为:二次根式性质的灵活运用.四、教学过程设计1.探究性质1问题1 你能解释下列式子的含义吗?,,, .师生活动:教师引导学生说出每一个式子的含义.【设计意图】让学生初步感知,这些式子都表示一个非负数的算术平方根的平方.问题2 根据算术平方根的意义填空,并说出得到结论的依据.; ; ; .师生活动学生独立完成填空后,让学生展示其思维过程,说出得到结论的依据.【设计意图】学生通过计算或根据算术平方根的意义得出结论,为归纳二次根式的性质1作铺垫.问题 3 从以上的结论中你能发现什么规律?你能用一个式子表示这个规律吗?师生活动:引导学生归纳得出二次根式的性质: ( ≥0).【设计意图】让学生经历从特殊到一般的过程,概括出二次根式的性质1,培养学生抽象概括的能力.例2 计算(1) ;(2) .师生活动:学生独立完成,集体订正.【设计意图】巩固二次根式的性质1,学会灵活运用.2.探究性质2问题4 你能解释下列式子的含义吗?,,, .师生活动:教师引导学生说出每一个式子的含义.【设计意图】让学生初步感知,这些式子都表示一个数的平方的算术平方根.问题5 根据算术平方根的意义填空,并说出得到结论的依据.= , = , = , = .师生活动学生独立完成填空后,让学生展示其思维过程,说出得到结论的依据.【设计意图】学生通过计算或根据算术平方根的意义得出结论,为归纳二次根式的性质2作铺垫.问题 6 从以上的结论中你能发现什么规律?你能用一个式子表示这个规律吗?师生活动:引导学生归纳得出二次根式的性质: ( ≥0)【设计意图】让学生经历从特殊到一般的过程,概括出二次根式的性质2,培养学生抽象概括的能力.例3 计算(1) ;(2) .师生活动:学生独立完成,集体订正.【设计意图】巩固二次根式的性质2,学会灵活运用.3.归纳代数式的概念问题7 回顾我们学过的式子,如,,,,,,, ( ≥0),这些式子有哪些共同特征?师生活动:学生概括式子的共同特征,得出代数式的概念.【设计意图】学生通过观察式子的共同特征,形成代数式的概念,培养学生的概括能力.4.综合运用(1)算一算:; ; ; .【设计意图】设计有一定综合性的题目,考查学生的灵活运用的能力,第(2)、(3)、(4)小题要特别注意结果的符号.(2)想一想:中,的取值范围是什么?当≥0时,等于多少?当时,又等于多少?【设计意图】通过此问题的设计,加深学生对的理解,开阔学生的视野,训练学生的思维.(3)谈一谈你对与的认识.【设计意图】加深学生对二次根式性质的理解.5.总结反思(1)你知道了二次根式的哪些性质?(2)运用二次根式性质进行化简需要注意什么?(3)请谈谈发现二次根式性质的思考过程?(4)想一想,到现在为止,你学习了哪几类字母表示数得到的式子?说说你对代数式的认识.6.布置作业:教科书习题16.1第2,4题.五、目标检测设计1. ; ; .【设计意图】考查对二次根式性质的理解.2.下列运算正确的是( )A. B. C. D.【设计意图】考查学生运用二次根式的性质进行化简的能力.3.若,则的取值范围是 .【设计意图】考查学生对一个数非负数的算术平方根的理解.4.计算: .【设计意图】考查二次根式性质的灵活运用.八年级上册数学期末复习教案2教学目标1.等腰三角形的概念.2.等腰三角形的性质.3.等腰三角形的概念及性质的应用.教学重点: 1.等腰三角形的概念及性质. 2.等腰三角形性质的应用.教学难点:等腰三角形三线合一的性质的理解及其应用.教学过程Ⅰ.提出问题,创设情境在前面的学习中,我们认识了轴对称图形,探究了轴对称的性质,•并且能够作出一个简单平面图形关于某一直线的轴对称图形,•还能够通过轴对称变换来设计一些美丽的图案.这节课我们就是从轴对称的角度来认识一些我们熟悉的几何图形.来研究:①三角形是轴对称图形吗?②什么样的三角形是轴对称图形?有的三角形是轴对称图形,有的三角形不是.问题:那什么样的三角形是轴对称图形?满足轴对称的条件的三角形就是轴对称图形,•也就是将三角形沿某一条直线对折后两部分能够完全重合的就是轴对称图形.我们这节课就来认识一种成轴对称图形的三角形──等腰三角形.Ⅱ.导入新课:要求学生通过自己的思考来做一个等腰三角形.作一条直线L,在L上取点A,在L外取点B,作出点B关于直线L的对称点C,连结AB、BC、CA,则可得到一个等腰三角形.等腰三角形的定义:有两条边相等的三角形叫做等腰三角形.相等的两边叫做腰,另一边叫做底边,两腰所夹的角叫做顶角,底边与腰的夹角叫底角.同学们在自己作出的等腰三角形中,注明它的腰、底边、顶角和底角.思考:1.等腰三角形是轴对称图形吗?请找出它的对称轴.2.等腰三角形的两底角有什么关系?3.顶角的平分线所在的直线是等腰三角形的对称轴吗?4.底边上的中线所在的直线是等腰三角形的对称轴吗?•底边上的高所在的直线呢?结论:等腰三角形是轴对称图形.它的对称轴是顶角的平分线所在的直线.因为等腰三角形的两腰相等,所以把这两条腰重合对折三角形便知:等腰三角形是轴对称图形,它的对称轴是顶角的平分线所在的直线.要求学生把自己做的等腰三角形进行折叠,找出它的对称轴,并看它的两个底角有什么关系.沿等腰三角形的顶角的平分线对折,发现它两旁的部分互相重合,由此可知这个等腰三角形的两个底角相等,•而且还可以知道顶角的平分线既是底边上的中线,也是底边上的高.由此可以得到等腰三角形的性质:1.等腰三角形的两个底角相等(简写成“等边对等角”).2.等腰三角形的顶角平分线,底边上的中线、•底边上的高互相重合(通常称作“三线合一”).由上面折叠的过程获得启发,我们可以通过作出等腰三角形的对称轴,得到两个全等的三角形,从而利用三角形的全等来证明这些性质.同学们现在就动手来写出这些证明过程).如右图,在△ABC中,AB=AC,作底边BC的中线AD,因为所以△BAD≌△CAD(SSS).所以∠B=∠C.]如右图,在△ABC中,AB=AC,作顶角∠BAC的角平分线AD,因为所以△BAD≌△CAD.所以BD=CD,∠BDA=∠CDA= ∠BDC=90°.[例1]如图,在△ABC中,AB=AC,点D在AC上,且BD=BC=AD,求:△ABC各角的度数.分析:根据等边对等角的性质,我们可以得到∠A=∠ABD,∠ABC=∠C=∠BDC,•再由∠BDC=∠A+∠ABD,就可得到∠ABC=∠C=∠BDC=2∠A.再由三角形内角和为180°,•就可求出△ABC的三个内角.把∠A设为x的话,那么∠ABC、∠C都可以用x来表示,这样过程就更简捷.解:因为AB=AC,BD=BC=AD,所以∠ABC=∠C=∠BDC.∠A=∠ABD(等边对等角).设∠A=x,则∠BDC=∠A+∠ABD=2x,从而∠ABC=∠C=∠BDC=2x.于是在△ABC中,有∠A+∠ABC+∠C=x+2x+2x=180°,解得x=36°. 在△ABC中,∠A=35°,∠ABC=∠C=72°.[师]下面我们通过练习来巩固这节课所学的知识.Ⅲ.随堂练习:1.课本P51练习 1、2、3. 2.阅读课本P49~P51,然后小结.Ⅳ.课时小结这节课我们主要探讨了等腰三角形的性质,并对性质作了简单的应用.等腰三角形是轴对称图形,它的两个底角相等(等边对等角),等腰三角形的对称轴是它顶角的平分线,并且它的顶角平分线既是底边上的中线,又是底边上的高.我们通过这节课的学习,首先就是要理解并掌握这些性质,并且能够灵活应用它们.Ⅴ.作业:课本P56习题12.3第1、2、3、4题.板书设计12.3.1.1 等腰三角形一、设计方案作出一个等腰三角形二、等腰三角形性质: 1.等边对等角 2.三线合一八年级上册数学期末复习教案3教学目标1、理解并掌握等腰三角形的判定定理及推论2、能利用其性质与判定证明线段或角的相等关系.教学重点:等腰三角形的判定定理及推论的运用教学难点:正确区分等腰三角形的判定与性质,能够利用等腰三角形的判定定理证明线段的相等关系.教学过程:一、复习等腰三角形的性质二、新授:I提出问题,创设情境出示投影片.某地质专家为估测一条东西流向河流的宽度,选择河流北岸上一棵树(B点)为B标,然后在这棵树的正南方(南岸A点抽一小旗作标志)沿南偏东60°方向走一段距离到C处时,测得∠ACB为30°,这时,地质专家测得AC 的长度就可知河流宽度.学生们很想知道,这样估测河流宽度的根据是什么?带着这个问题,引导学生学习“等腰三角形的判定”.II引入新课1.由性质定理的题设和结论的变化,引出研究的内容——在△ABC中,苦∠B=∠C,则AB= AC吗?作一个两个角相等的三角形,然后观察两等角所对的边有什么关系?2.引导学生根据图形,写出已知、求证.2、小结,通过论证,这个命题是真命题,即“等腰三角形的判定定理”(板书定理名称).强调此定理是在一个三角形中把角的相等关系转化成边的相等关系的重要依据,类似于性质定理可简称“等角对等边”.4.引导学生说出引例中地质专家的测量方法的根据.III例题与练习1.如图2其中△ABC是等腰三角形的是 [ ]2.①如图3,已知△ABC中,AB=AC.∠A=36°,则∠C______(根据什么?).②如图4,已知△ABC中,∠A=36°,∠C=72°,△ABC是______三角形(根据什么?).③若已知∠A=36°,∠C=72°,BD平分∠ABC交AC于D,判断图5中等腰三角形有______.④若已知 AD=4cm,则BC______cm.3.以问题形式引出推论l______.4.以问题形式引出推论2______.例:如果三角形一个外角的平分线平行于三角形的一边,求证这个三角形是等腰三角形.分析:引导学生根据题意作出图形,写出已知、求证,并分析证明.练习:5.(l)如图6,在△ABC中,AB=AC,∠ABC、∠ACB的平分线相交于点F,过F作DE//BC,交AB于点D,交AC于E.问图中哪些三角形是等腰三角形?(2)上题中,若去掉条件AB=AC,其他条件不变,图6中还有等腰三角形吗?练习:P53练习1、2、3。
八年级数学期末复习计划八年级数学期末复习计划(通用6篇)如何进行有效的复习,大家都有写过复习计划吧,对自己的学情进行分析,找到自己的长处和缺陷部分,然后据此进行有目的的复习。
那么大家知道复习计划是怎么写的吗?下面是小编为大家整理的八年级数学期末复习计划(通用6篇),欢迎大家分享。
八年级数学期末复习计划1(一)思想方面的补差。
做好学生的思想工作,经常和学生谈心,关心他们,关爱他们,让学生觉得老师是重视他们的,激发他们学习的积极性。
了解学生们的学习态度、学习习惯、学习方法等。
从而根据学生的思想心态进行相应的辅导。
(二)有效补差措施。
利用课余时间和晚拖班及放学后,对各种情况的同学进行辅导、提高,“因材施教、对症下药”,根据学生的素质采取相应的方法辅导。
具体方法如下:1.课上差生板演,中等生订正,优等生解决难题。
2.安排座位时坚持“好差同桌”结为学习对子。
即“兵教兵”。
3.课堂练习分成三个层次:第一层“必做题”—基础题让差生做,第二层:“选做题”—中等题,满足不同层次学生的需要。
4.培优补差过程必须优化备课,功在课前,效在课上,成果巩固在课后培优。
培优补差尽可能“耗费最少的必要时间和必要精力”。
备好学生、备好教材、备好练习,才能上好课,才能保证补差的效果。
要精编习题、习题教学要有四度。
习题设计(或选编习题)要有梯度,紧扣重点、难点、疑点和热点,面向大多数学生,符合学生的认知规律,有利于巩固“双基”,有利于启发学生思维;习题讲评要增加信息程度,围绕重点,增加强度,引到学生高度注意,有利于学生学会解答;解答习题要有多角度,一题多解,一题多变,多题一解,扩展思路,培养学生思维的灵活性,培养学生思维的广阔性和变通性;解题训练要讲精度,精选构思巧妙,新颖灵活的典型题,有代表性和针对性的题,练不在数量而在质量,训练要有多样化。
(三)在补差中注意几点:1、不歧视学习有困难的学生,不纵容优秀的学生,一视同仁。
2、根据差生的实际情况制定学习方案,学困生则根据他们的程度给与相应的题目进行练习和讲解,已达到循序渐进的目的。
八年级数学·上新课标[人]1.进一步掌握三角形的有关线段(边、高、中线、角平分线)的概念,能正确应用三角形三边关系解题.2.巩固三角形内角、外角的概念,领会三角形内角和、外角和之间的内在联系.3.深刻理解多边形的内角和与外角和,建立三角形和多边形之间的联系.1.通过准确理解概念,领会相关知识的推导过程.2.通过必要的练习,达到巩固知识、整合知识、运用知识的目的.培养学生严密的思维习惯,初步领略分类讨论的数学思想.【重点】1.三角形三边关系以及三角形中的重要线段.2.三角形和多边形中的有关计算.【难点】三角形和多边形的相关知识的综合应用.专题一三角形三边的关系【专题分析】三角形的三边关系是不等式与几何知识的重要结合点,经常利用这种关系结合不等式进行考查.利用此定理可以判断三条线段能否组成三角形,确定三角形第三边的取值范围,也可以作为不等式计算的重要依据.已知三角形两边的长分别是4和10,则此三角形第三边的长可能是()A.5B.6C.11D.16〔解析〕已知三角形两边的长分别是4和10,∴第三边x的取值范围是6<x<14,在这个范围内,只有11符合.故选C.[解题策略]解此类题,设三角形第三条边的长为x,根据三角形的三边关系列出不等式,求出x的取值范围,找出符合条件的x值即可.【针对训练1】已知三角形三边长分别为2,x,13,若x为正整数,则这样的三角形的个数为()A.2B.3C.5D.13〔解析〕由三角形的三边关系可知11<x<15,∵x为正整数,∴x为12,13,14,则三角形的个数为3个.故选B.[方法归纳]解决这类问题时,要明确构成三角形的条件,即其他两边之差<第三边<其他两边之和,再根据条件确定具体的值.已知在ΔABC中,三边长a,b,c都是整数,且满足a>b>c,a=8,那么满足条件的三角形共有多少个?〔解析〕此题是典型的讨论类题目,为了不重复、不漏解,可以采用列表法.解:由三角形的三边关系知b+c>a,而由b>c,a=8可知b>4,且b<8,又b是整数,所以b=5,6,7,如此分类可得c,列表讨论如下:a8 8 8b 5 6 7c 4 5,4,3 6,5,4,3,2因此,满足条件的三角形共有1+3+5=9(个).[解题策略]此类题要防止重复或漏解,办法是列表,先把大边固定,然后根据三边关系限制较小的两边.【针对训练2】如图所示,点P是ΔABC内一点,试说明AB+AC>PB+PC.〔解析〕本题可适当添加辅助线解答.解:如图所示,延长CP交AB于点D.在ΔADC中,AD+AC>PC+PD,在ΔBPD中,BD+PD>BP,∴BD+PD+AD+AC>PC+PD+BP,即AB+AC+PD>PD+PC+PB,∴AB+AC>PB+PC.[解题策略]本题充分运用了三角形的三边关系.利用转化思想解决问题,相当于寻找另一种解决问题的办法.专题二三角形的高、角平分线和中线【专题分析】三角形的中线、角平分线和高是三角形的三条重要线段,它们具有十分重要的性质,三角形的高构造了垂直的条件,三角形的中线隐含线段相等,三角形的中线可以把三角形分成面积相等的两部分,三角形的角平分线提供了角相等的条件,掌握这些性质,对解与三角形有关的问题十分重要.如图所示,在ΔABC中,BD=DC,∠1=∠2,则ΔABC的一条中线是,一条角平分线是.〔解析〕在ΔABC中,BD=DC,∠1=∠2,则ΔABC的一条中线是线段AD,一条角平分线是线段BE.〔答案〕线段AD 线段BE【针对训练3】如图所示,在ΔABC中,D是BC边上的任意一点,AH⊥BC于H,图中以AH为高的三角形有 ()A.3个B.4个C.5个D.6个〔解析〕AH是图中所有三角形的高.故选D.[方法归纳]对于本题,以AH为高的三角形的个数实际就是图中三角形的总个数,即3+2+1=6.在ΔABC中,AB=AC,BD为ΔABC的中线,且BD将ΔABC的周长分为12 cm与15 cm两部分,求三角形各边长.〔解析〕根据中线的定义得到AD=CD,设AD=CD=x cm,则AB=2x cm,分类讨论:①x+2x=12,BC+x=15;②x+2x=15,BC+x=12.分别求出x和BC,即可得到三角形三边的长.解:如图所示,∵BD为ΔABC的中线,∴AD=CD.设AD=CD=x cm,则AB=2x cm.当x+2x=12,BC+x=15时,解得x=4,BC=11 cm,此时ΔABC的三边长为:AB=AC=8 cm,BC=11 cm;当x+2x=15,BC+x=12时,解得x=5,BC=7 cm,此时ΔABC的三边长为:AB=AC=10 cm,BC=7 cm.【针对训练4】如图所示,在ΔABC中(AB>BC),AC=2BC,BC边上的中线AD把ΔABC的周长分成60和40两部分,求AC和AB的长.〔解析〕先根据AD是BC边上的中线得出BD=CD,设BD=CD=x,AB=y,则AC=4x,再分AC+CD=60或AB+BD=60两种情况进行讨论即可.解:∵AD是BC边上的中线,∴BD=CD.设BD=CD=x,AB=y,则AC=4x.分为两种情况:①AC+CD=60,AB+BD=40,则4x+x=60,x+y=40,解得x=12,y=28,∴AC=4x=48,AB=28;②AC+CD=40,AB+BD=60,则4x+x=40,x+y=60,解得x=8,y=52,∴AC=4x=32,AB=52,BC=2x=16,此时不符合三角形三边关系定理.综合上述,AC=48,AB=28.专题三多边形内角和与外角和定理【专题分析】用三角形的内角和定理可以推出多边形的内角和定理及外角和定理,在推导的过程中体现了转化思想,在解有关多边形的问题,如求多边形的内角、外角、边数及对角线等问题时,这两个定理都很重要.如图所示,AB∥CD,∠CED=90°,∠AEC=35°,则∠D的大小为 ()A.65°B.55°C.45°D.35°〔解析〕∵AB∥CD,∴∠C=∠AEC=35°,∵∠D=180°-∠C-∠CED,∠CED=90°,∴∠D=180°-35°-90°=55°.故选B.[方法总结]求一个角的大小,可以先转化为求一个和它相等的角的大小,然后运用平行线的性质、三角形内角和定理等知识去解决.求角的度数常用的方法有两种:(1)直接根据条件去求,(2)运用转化思想把所求的角转化为另一个角去求.【针对训练5】已知ΔABC中,∠B是∠A的2倍,∠C比∠A大20°,则∠A等于()A.40°B.60°C.80°D.90°〔解析〕用代数方法根据几何图形间的数量关系建立方程是求解几何问题的重要方法.由题意得∠B=2∠A,∠C=∠A+20°,所以∠A+∠B+∠C=∠A+2∠A+∠A+20°=180°,解得∠A=40°.故选A.七边形的内角和的度数为()A.540°B.720°C.900°D.1080°〔解析〕根据多边形内角和定理可以直接计算出答案为(7-2)×180°=900°.故选C.[解题策略]此题主要考查了多边形内角和定理,关键是熟练掌握计算公式(n-2)×180°(n≥3,且n为整数).【针对训练6】若n边形的内角和为1440°,则从一个顶点出发引的对角线的条数最多是条.〔解析〕n边形从一个顶点出发引的对角线的条数为(n-3),由(n-2)×180°=1440°得n=10.故填7.一个多边形的每一个内角都相等,并且每个外角都等于和它相邻的内角的23,求这个多边形的边数及内角和.〔解析〕此题要结合多边形的内角与外角的关系来寻求等量关系,构建方程求解.解:设该多边形的一个内角为x°,则一个外角为23x°,依题意得x+23x=180,53x=180,x=108,360°÷(23×108°)=5, (5-2)×180°=540°.答:这个多边形的边数为5,内角和是540°.【针对训练7】一个多边形除一个内角∠A外,其余所有内角之和为2190°,你能求出这个多边形的边数及∠A的度数吗?〔解析〕根据多边形的内角和公式(n-2)·180°可知用2190除以180,商就是(n-2),余数就是与∠A相邻的外角的度数,进而可以算出这个多边形的边数.解:2190÷180=12……30,则边数n=15,这个内角∠A的度数是180°-30°=150°,故这个多边形的边数是15,∠A的度数是150°.[解题策略]解答多边形的有关问题,关键要掌握多边形的内角和公式、相邻内外角之间的互补关系、多边形的对角线的条数与边数的关系.专题四三角形的外角【专题分析】三角形每个顶点处有两个外角,它们是对顶角,所以一个三角形共有六个外角.通常每个顶点处取一个外角,因此,我们常说三角形有三个外角.因为三角形的每个外角和与它相邻的内角是邻补角,所以由三角形的内角和是180°可推出三角形的三个外角和是360°.三角形内角和定理和三角形外角的性质是求角度及论证与角有关的结论时经常使用的理论依据,另外,在证角的不等关系时也常用到外角的性质.如图所示,在RtΔABC中,∠BAC=90°,∠B=30°,∠C=60°,AT平分∠BAC,AH⊥BC,垂足为H,则∠TAH=.〔解析〕根据三角形的外角等于与它不相邻的两个内角之和进行求解.因为AH⊥BC,所以∠TAH=90°-∠ATH.由三角形外角性质可知∠ATH=∠B+∠BAT.因为∠BAT=12∠BAC=12(180°-∠B-∠C)=90°-12(∠B+∠C),所以∠ATH=∠B+90°-12(∠B+∠C),所以∠TAH=90°-∠B-90°+12(∠B+∠C)=12(∠C-∠B)=15°.故填15°.[规律总结]三角形中,同一个顶点处的角平分线和高线的夹角等于其余两内角差(较大的角-较小的角)的一半,如本题中∠TAH=12(∠C-∠B).【针对训练8】如图所示,在折纸活动中,小明制作了一张ΔABC纸片,点D,E分别在边AB,AC上,将ΔABC沿着DE折叠压平,A与A'重合,若∠DAE=75°,则∠1+∠2等于()A.150°B.210°C.105°D.75°〔解析〕方法1:由折叠知∠DA'E=∠DAE=75°,∵∠DAE+∠AED +∠ADE =∠DA'E+∠A'ED+∠A'DE=180°,∴∠DAE+∠AED +∠ADE +∠DA'E+∠A'ED+∠A'DE=360°,∵∠1+∠AED +∠A'ED=∠2+∠ADE +∠A'DE=180°,∴∠1+∠AED +∠A'ED +∠2+∠ADE +∠A'DE=360°,∴∠1+∠2=∠DAE+∠DA'E=2∠DAE=150°.方法2:如图所示,连接AA',根据三角形外角的性质可知∠1=∠EA A'+∠E A'A ,∠2=∠DA A'+∠D A'A ,∴∠1+∠2=∠EA A'+∠E A'A +∠DA A'+∠D A'A =∠DAE+∠D A'E,由折叠知∠D A'E=∠DAE=75°,∴∠1+∠2=150°.故选A.[方法归纳]同一个问题在解决的过程中可以有不同的方法,在解答之前要认真分析题目中的已知条件,选择合理的方法进行解答.1.回顾全等三角形的概念,能熟练运用全等三角形的对应边相等、对应角相等.2.能熟练利用三角形全等的性质和判定进行相关的证明.3.进一步掌握角的平分线的性质和判定.1.在解决问题的过程中,培养学生解决问题的能力.2.让学生在证明过程中掌握推理的思路和方法.1.体验数学知识与其他知识的联系,培养积极的学习态度.2.在解决问题的过程中,体验几何证明的严谨性与表述的规范性.【重点】三角形全等的判定和性质.【难点】相关知识的综合应用.专题一三角形全等的判定与性质的综合应用【专题分析】三角形全等的判定要根据具体题目的具体情况确定采用SAS,ASA,AAS,SSS,HL中的哪个方法,在解题过程中往往要结合其性质综合运用.如图所示,AC,BD相交于点O,且OA=OC,OB=OD.求证AD∥BC.〔解析〕根据SAS证ΔAOD≌ΔCOB,推出∠A=∠C,根据平行线的判定定理即可得出结论.证明:在ΔAOD和ΔCOB中,∵{AO=OC,∠AOD=∠COB, OD=OB,∴ΔAOD≌ΔCOB(SAS),∴∠A=∠C,∴AD∥BC.【针对训练1】如图所示,点E,F分别是AD上的两点,AB∥CD,AB=CD,AF=DE.则线段CE,BF有什么数量关系和位置关系?并加以证明.〔解析〕CE和BF的关系是CE=BF(数量关系),CE∥BF(位置关系),理由是根据平行线性质求出∠A=∠D,根据SAS证ΔABF≌ΔDCE,推出CE=BF,∠AFB=∠DEC即可.解:CE和BF的数量关系是CE=BF,位置关系是CE∥BF.证明如下:∵AB∥CD,∴∠A=∠D.在ΔABF和ΔDCE中,∵{AB=CD,∠A=∠D, AF=DE,∴ΔABF ≌ΔDCE ,∴CE =BF ,∠AFB =∠DEC ,∴CE ∥BF ,即CE 和BF 的数量关系是CE =BF ,位置关系是CE ∥BF.[规律方法] 全等三角形的判定和性质是证明线段相等、线段的位置关系、角相等的重要手段.证明线段的位置和数量关系可通过先证三角形全等,然后利用全等三角形的性质来实现.专题二 全等三角形的性质及判定的实际应用【专题分析】全等三角形的知识在实际问题中的应用是常见的一种类型题,解题的关键是将实际问题抽象成几何问题来解决,一般难度不大.如图所示,要测量河岸相对的两点A ,B 之间的距离,先从B 处出发,沿与AB 成90°角的方向,向前走40米到C 处,在C 处立一根标杆,然后方向不变继续朝前走40米到D 处,在D 处转90°沿DE 方向再走28米,到达E 处,此时A ,C 与E 在同一直线上,求点A 、点B 之间的距离.〔解析〕 根据已知条件可证ΔABC ≌ΔEDC ,利用其对应边相等的性质即可求得AB 的长.解:∵先从B 处出发,沿与AB 成90°角的方向向前走,∴∠ABC =90°,易知BC =40米,CD =40米,∠EDC =90°,在ΔABC 和ΔEDC 中,{∠ABC =∠EDC =90°,BC =DC ,∠ACB =∠ECD ,∴ΔABC ≌ΔEDC ,∴AB =ED ,∵沿DE 方向再走28米,到达E 处,∴DE=28米,∴AB=28米.∴点A,点B之间的距离为28米.【针对训练2】如图所示,广场上有两根旗杆,都垂直于地面放置.已知太阳光线AB与DE是平行的,经过测量,这两根旗杆在太阳光下的影子一样长,那么这两根旗杆的高度相等吗?说说你的理由.〔解析〕根据太阳光线AB与DE平行,可得∠B=∠E,再根据两根旗杆都垂直于地面可得∠C=∠F=90°,然后利用“角边角”证明ΔABC和ΔDEF全等,根据全等三角形对应边相等即可得解.解:两根旗杆的高度相等.理由如下:∵太阳光线AB与DE是平行的,∴∠B=∠E.∵两根旗杆都垂直于地面放置,∴∠C=∠F=90°.∵两根旗杆在太阳光下的影子一样长,∴BC=EF.在ΔABC和ΔDEF中,{∠B=∠E, BC=EF,∠C=∠F,∴ΔABC≌ΔDEF(ASA),∴AC=DF,即两根旗杆的高度相等.[方法归纳]本类题考查了全等三角形的应用,根据题意找出三角形全等的条件,然后证明两三角形全等,最后根据全等三角形的性质得出线段相等.专题三角平分线的性质及判定的应用【专题分析】此部分内容单独考查时难度不大,但要注意角平分线的性质和判定方法的区别和联系.“角的平分线上的点到角两边的距离相等”这是角的平分线的性质,而“角的内部到角的两边的距离相等的点在角的平分线上”这是角的平分线的判定,性质和判定互为逆命题.如图所示,在ΔABC中,∠BAC=90°,BE平分∠ABC,ED⊥BC于D,DE=DC.求证BC=AB+AE.〔解析〕需先证ΔBDE≌ΔBAE,则BD=BA,AE=DE=DC,从而可得BC=BD+DC=AB+AE.证明:∵∠BAC=90°,BE平分∠ABC,ED⊥BC于D,∴AE=DE.∵BE是公共边,∴RtΔBDE≌RtΔBAE(HL),∴BD=BA,AE=DE=DC,∴BC=BD+DC=AB+AE.【针对训练3】如图所示,已知在RtΔABC中,∠C=90°,D是AC上一点,DE⊥AB于E,且DE=DC.(1)求证BD平分∠ABC;(2)若∠A=36°,求∠DBC的度数.〔解析〕(1)根据已知条件结合角平分线的判定方法即可证明;(2)根据直角三角形的两个锐角互余求解.证明:(1)∵DC⊥BC,DE⊥AB,DE=DC,∴点D在∠ABC的平分线上,∴BD平分∠ABC.解:(2)∵∠C=90°,∠A=36°,∴∠ABC=54°,∵BD平分∠ABC,∴∠DBC=∠ABD=27°.[注意事项]在利用角的平分线的性质和判定方法时,要注意格式的规范,一定要体现“到角两边的距离”的书写格式,即要交待清楚哪些线段互相垂直.专题四利用尺规作图,作一个三角形与已知三角形全等或作一个角的平分线【专题分析】尺规作图是数学的重要知识之一,作一个角的平分线和作一个三角形与已知三角形全等是尺规作图中的基本作图,很多复杂的图形都是通过这些简单的基本图形得出来的.如图所示,已知直线l1,l2,l3表示三条相互交叉的公路,交点分别为A,B,C,现要建一个塔台,若要求它到三条公路的距离都相等,那么:(1)可选择的地点有几处?(2)你能画出塔台的位置吗?〔解析〕(1)根据角平分线的性质易得出符合条件的点有4处.(2)由角平分线的性质可知该点可在ΔABC的内部,也可以在ΔABC的外部,分别作出即可.解:(1)可选择的地点有4处.(2)能,如图所示,根据角平分线的性质,可知该点可以在ΔABC的内部,也可以在ΔABC的外部,若在ΔABC 的内部,则为两内角平分线的交点,若在ΔABC的外部,则为两内角的邻补角的平分线的交点,如图所示的P1,P2,P3,P4即为所求的塔台的位置.【针对训练4】如图所示,已知ΔABC.(1)请用直尺和圆规作一个三角形,使所作三角形与ΔABC全等.(2)请简要说明你所作的三角形与ΔABC全等的依据.〔解析〕(1)首先作一条射线,在射线上截取DF=BC,再以D为圆心,AB长为半径画弧,以F为圆心,AC 长为半径画弧,交点设为E点,即可得出符合题意的三角形.(2)利用三角形全等的判定方法得出即可.解:(1)如图所示.首先作一条射线,在射线上截取DF=BC,再以D为圆心,AB长为半径画弧,以F为圆心,AC长为半径画弧,交点设为E点,连接DE,EF,即可得出符合题意的三角形,ΔEDF即为所求.(2)在ΔEDF和ΔABC中,{DE=AB, DF=BC, EF=AC,∴ΔEDF≌ΔABC(SSS).[规律方法]在作图时要掌握角平分线的性质和判定方法,以及全等三角形的判定方法,作图要规范,要利用直尺和圆规正确地作图,保留作图痕迹.专题五分类讨论思想【专题分析】对于三角形全等的性质和判定的问题,由于已知条件的不确定性或开放性,常用到分类讨论思想.如图所示,点F,C在线段BE上,且∠1=∠2,AC=DF,若使ΔABC≌ΔDEF,则需补充的一个条件是或或.〔解析〕要使ΔABC≌ΔDEF,已知∠1=∠2,AC=DF,因此只需添加一组对应角相等或BC=EF即可得出两三角形全等的结论.〔答案〕BC=EF ∠A=∠D ∠B=∠E(答案不唯一)【针对训练5】如图所示,已知AB=AC,用“SAS”证明ΔABD≌ΔACE,还需添加一个条件:;若用“ASA”证明,还需添加一个条件:;若用“AAS”证明,还需添加一个条件:.图中除了ΔABD≌ΔACE之外,还有Δ≌Δ.〔解析〕本题要判定ΔABD≌ΔACE,已知AB=AC,∠A是公共角,具备了一组边、一组角相等,故添加AD=AE,∠C=∠B,∠ADB=∠AEC后可分别根据SAS,ASA,AAS判定ΔABD≌ΔACE.证明ΔABD≌ΔACE后可进一步证明ΔDFC≌ΔEFB.〔答案〕AD=AE ∠C=∠B ∠ADB=∠AEC DFC EFB[规律方法]本类题考查三角形全等的判定方法.判定两个三角形全等的一般方法:SSS,SAS,ASA,AAS,HL(只适用于直角三角形).同时注意:AAA,SSA不能判定两个三角形全等,根据已知条件,结合图形及判定方法正确添加条件是解答本类题的关键.专题六转化思想【专题分析】三角形全等是证明线段相等、角相等最常用的方法,证明线段(或角)相等,往往转化为证明线段(或角)所在的两个三角形全等.当线段(或角)所在的两个三角形明显不全等时,还要添加辅助线,构造全等三角形.如图所示,D,E分别是等边三角形ABC的边BC,CA延长线上的点,且CD=AE,连接AD,BE,求证AD=BE.〔解析〕根据ΔABC为等边三角形可以得到∠BAC=∠ACB=60°,AC=AB,则∠EAB=∠ACD,根据SAS即可证得ΔABE≌ΔCAD,然后根据全等三角形的对应边相等,即可证得AD=BE.证明:∵ΔABC是等边三角形,∴∠BAC=∠ACB=60°,AC=AB,∴∠EAB=∠ACD=120°.在ΔABE 和ΔCAD 中,∵{AE =CD ,∠EAB =∠DCA ,BA =AC ,∴ΔABE ≌ΔCAD (SAS),∴AD =BE.【针对训练6】 在ΔABC 中,∠ACB =2∠B ,如图(1)所示,当∠C =90°,AD 为∠BAC 的平分线时,在AB 上截取AE =AC ,连接DE ,易证AB =AC +CD.(1)如图(2)所示,当∠C ≠90°,AD 为∠BAC 的平分线时,线段AB ,AC ,CD 又有怎样的数量关系?请写出你的猜想并证明.(2)如图(3)所示,当AD 为ΔABC 的外角∠CAF 的平分线时,线段AB ,AC ,CD 又有怎样的数量关系?请写出你的猜想,并对你的猜想给予证明.〔解析〕 (1)首先在AB 上截取AE =AC ,连接DE ,易证ΔADE ≌ΔADC (SAS),则可得∠AED =∠ACD ,ED =CD ,又由∠ACB =2∠B ,得∠AED =2∠B ,即∠B =∠BDE ,易得DE =CD =BE ,则可得AB =AC +CD.(2)首先在BA 的延长线上截取AE =AC ,连接ED ,易证ΔEAD ≌ΔCAD ,可得ED =CD ,∠AED =∠ACD ,又由∠ACB =2∠B ,易证DE =EB ,则可得AC +AB =CD.解:(1)猜想:AB =AC +CD.证明如下:如图(1)所示,在AB 上截取AE =AC ,连接DE ,∵AD 为∠BAC 的平分线,∴∠BAD=∠CAD.∵AD=AD,∴ΔADE≌ΔADC(SAS),∴∠AED=∠ACD,ED=CD.∵∠ACB=2∠B,∴∠AED=2∠B.∵∠AED=∠B+∠EDB,∴∠B=∠EDB,∴EB=ED,∴EB=CD,∴AB=AE+BE=AC+CD.(2)猜想:AB+AC=CD.证明如下:如图(2)所示,在BA的延长线上截取AE=AC,连接ED.∵AD平分∠EAC,∴∠EAD=∠CAD.在ΔEAD与ΔCAD中,AE=AC,∠EAD=∠CAD,AD=AD,∴ΔEAD≌ΔCAD(SAS).∴ED=CD,∠AED=∠ACD.∴∠FED=∠ACB,又∵∠ACB=2∠B,∴∠FED=2∠B,∵∠FED=∠B+∠EDB,∴∠EDB=∠B,∴EB=ED.∴EA+AB=EB=ED=CD.∴AC+AB=CD.[规律方法]在几何证明的过程中,当题目中的已知条件无法解决问题时,我们可以适当地添加辅助线来构造全等三角形,添加辅助线时要先分析题目中的已知条件,然后合理地作辅助线,辅助线添加得正确与否是解决问题的关键.专题七数学建模思想【专题分析】全等三角形在实际生活中有很多的应用.比如,测量零件内槽宽的工具——卡钳,它可以测量不能直接测量的两点间的距离.对于这些实际问题,往往是根据实际情况建立数学模型,利用数学原理解决问题.如图所示,有一座小山,现要在小山A,B的两端开一条隧道,施工队要知道A,B两端的距离,但A,B间的距离不能直接测得,请你用已学过的知识按以下要求设计测量方案.(1)画出测量图;(2)写出测量方案;(3)写出推理过程.〔解析〕(1)根据题意及所给图形,结合全等三角形的相关知识画出测量图;(2)根据画好的测量图,写出测量方案;(3)可通过证ΔACB≌ΔDCE来验证方案的合理性.解:(1)如图所示.(2)①找个能同时看见A点和B点的C点,然后连接AC并延长到D,使DC=AC;②连接BC并延长至E,使EC=BC;③测量DE的长度,即为A,B间的距离.(3)在ΔACB和ΔDCE中,{AC=DC,∠ACB=∠DCE, CB=CE,∴ΔACB≌ΔDCE(SAS),∴AB=DE.【针对训练7】某班同学到野外活动,为测量一池塘两端A,B间的距离,设计了几种方案,下面介绍两种:①如图(1)所示,先在平地上取一个可以直接到达A,B的点C,并分别延长AC到D,BC到E,使DC=AC,EC=BC,最后测出DE的长,即为A,B间的距离.②如图(2)所示,先过B点作AB的垂线BF,再在BF上取C,D两点,使BC=CD,接着过点D作BD的垂线DE,交AC的延长线于E,测出DE的长,即为A,B间的距离.阅读后回答下列问题:(1)方案①是否可行?并说明理由.(2)方案②是否可行?并说明理由.〔解析〕(1)由题意可证明ΔACB≌ΔDCE,得出AB=DE,故方案①可行;(2)由题意可证明ΔABC≌ΔEDC,故AB=ED,故方案②可行.解:(1)方案①可行.理由如下:∵DC=AC,EC=BC且有对顶角∠ACB=∠DCE,∴ΔACB≌ΔDCE(SAS),∴AB=DE,∴测出DE的长,即为A,B间的距离.故方案①可行.(2)方案②可行.理由如下:∵AB⊥BC,DE⊥CD,∴∠ABC=∠EDC=90°.又∵BC=CD,∠ACB=∠ECD,∴ΔABC≌ΔEDC,∴AB=ED,∴测出DE的长,即为A,B间的距离.故方案②可行.[规律方法]本类题考查了全等三角形的应用.此类题带有一定的主观性,学生要根据已学过的知识对新问题进行探索,同时对基础知识进行巩固,这种题型较常见,要熟练掌握.专题八类比思想【专题分析】对于几何图形的运动问题(如平移、旋转等)以及一些规律探究题,常常会出现一个基本图形,无论从图形上还是从解题方法上都比较简单,而其他的较复杂的图形,都是由基本图形通过变化得到的,它与基本图形有很多类似的条件和结论,类比基本图形,可以解决复杂图形的问题,主要考查观察、推理、猜想的能力.如图所示,ΔABC中,AB=AC,∠BAC=90°,D,E是BC上的两点,且∠DAE=45°.将ΔAEC绕着点A顺时针旋转90°后,得到ΔAFB,连接DF.(1)请猜想DF与DE之间有何数量关系;(2)证明你的猜想.〔解析〕(1)猜想:DF=DE.(2)ΔAEC绕点A顺时针旋转90°后,得到ΔAFB,根据旋转的知识得AE=AF,∠FAB=∠EAC,而∠DAE=45°,易得∠DAF=45°,根据SAS证出ΔADF≌ΔADE,则DF=DE.解:(1)猜想:DF=DE.证明:(2)∵∠BAC=90°,∠DAE=45°,∴∠BAD+∠EAC=45°.∵将ΔAEC绕着点A顺时针旋转90°后,得到ΔAFB,∴AF=AE,∠FAB=∠EAC,∴∠FAD=∠FAB+∠BAD=45°=∠DAE.在ΔADF和ΔADE中,{AF=AE,∠FAD=∠EAD, AD=AD,∴ΔADF≌ΔADE(SAS),∴DF=DE.【针对训练8】直线CD经过∠BCA的顶点C,CA=CB.E,F是直线CD上两点,且∠BEC=∠CFA=∠α.(1)若直线CD经过∠BCA的内部,且E,F在射线CD上,请解决下面两个问题:①如图(1)所示,若∠BCA=90°,∠α=90°,判断EF与|BE-AF|的数量关系;②如图(2)所示,若0°<∠BCA<180°,若使①中的结论仍然成立,则∠α与∠BCA应满足什么数量关系?理由是什么?(2)如图(3)所示,若直线CD经过∠BCA的外部,∠α=∠BCA,请探究EF,BE,AF三条线段之间的数量关系,并给予证明.〔解析〕(1)①由∠BCA=90°,∠α=90°可得∠CBE+∠BCE=90°,∠BCE+∠ACD=90°,可推得∠CBE=∠ACD,且已知CA=CB,∠BEC=∠CFA,可证ΔBEC≌ΔCFA,得BE=CF,EC=AF,又知EF=CF-CE,所以可得EF与|BE-AF|的关系.②只有满足ΔBEC≌ΔCFA,才有①中的结论,即∠BCE=∠CAF,∠CBE=∠ACF.由三角形内角和等于180°,可知∠α+∠BCE+∠CBE=180°,即∠α+∠BCE+∠FCA=180°,即可得到∠α+∠BCA=180°.(2)通过条件证明ΔBEC≌ΔCFA(可通过AAS证得),可得BE=CF,EC=AF,即可得到EF=EC+CF=BE+AF.解:(1)①∵∠BCA=90°,∠α=90°,∴∠CBE+∠BCE=90°,∠BCE+∠ACD=90°,∴∠CBE=∠ACD,在ΔBEC与ΔCFA中,∵{∠BEC=∠CFA,∠CBE=∠ACF, BC=CA,∴ΔBEC≌ΔCFA(AAS),∴BE=CF,EC=FA.∵EF=CF-CE,∴EF=|BE-AF|.②∠α与∠BCA应满足的数量关系是∠α+∠BCA=180°,理由如下:∵∠α+∠BCA=180°,∴∠α+∠BCE+∠FCA=180°,∵∠α+∠BCE+∠CBE=180°(三角形内角和等于180°),∴∠CBE=∠ACD,又∵∠BEC=∠CFA,CA=CB,∴ΔBEC≌ΔCFA(AAS),∴BE=CF,EC=FA,∵EF=CF-CE,∴EF=|BE-AF|.(2)EF=BE+AF.证明如下:如图所示,∵∠1+∠2+∠BCA=180°,∠2+∠3+∠CFA=180°,∠BCA=∠α=∠CFA,∴∠1=∠3.又∵∠BEC=∠CFA=∠α,CB=CA,∴ΔBEC≌ΔCFA(AAS),∴BE=CF,EC=FA,∴EF=EC+CF=BE+AF.[规律方法]本类题主要考查三角形全等的判定,涉及三角形内角和定理、线段比较长短等知识点.题目的阅读量大,因此在解决此类问题时一定要仔细阅读,理解题目中的已知条件,寻找解题思路,并要在不断地探索中发现规律和总结规律.1.进一步掌握轴对称的性质、会画轴对称图形.2.掌握等腰三角形和等边三角形的性质和判定方法.3.掌握含30°角的直角三角形的性质.1.通过练习巩固所学的知识,提高学生解决问题的能力.2.培养学生对知识的综合运用能力.通过对问题的解决,使学生树立认真、严谨的科学态度.【重点】轴对称的性质;等腰三角形和等边三角形的性质和判定.【难点】等腰三角形和等边三角形的性质和判定.专题一轴对称及轴对称图形【专题分析】轴对称和轴对称图形的概念是本章的重点,通过观察日常生活中的轴对称现象,理解轴对称图形和轴对称的概念的区别与联系;学习轴对称变换,不但要会画一个图形关于某直线对称的图形,还要学会通过轴对称设计确定最短路线等.【针对训练1】从对称轴角度看,和其他三个不一样的图形是()〔解析〕A,C,D都只有两条对称轴,只有B有无数条对称轴.故选B.[规律方法]判断某图形是否为轴对称图形(或两个图形是否成轴对称),关键是能否找到一条直线,将这个图形(或两个图形)沿着这条直线对折,使对折后的两部分(或两个图形)完全重合.如果能,就是轴对称图形(或成轴对称),这条直线就是它的对称轴.专题二利用轴对称作变换后的图形及设计图案【专题分析】利用轴对称变换设计精美图案,当对称轴改变方向时,原图形的对称图形也改变方向,一个图形经过若干次轴对称变换,再结合平移、旋转等,就可以得到非常美丽的图案.经过轴对称变换将甲图案变成乙图案的是()〔解析〕A,B,D中的甲图案通过旋转或平移,和乙图案中各点对应,均错误;C.经过轴对称变换将甲图案变成乙图案,故此选项正确.故选C.[解题策略]本题考查了利用轴对称设计图案,属于基础题,关键是掌握几何变换不改变图形的大小.【针对训练2】如图所示的是三个小正方形组成的图形,现再给你一个同样的小正方形“接”在原图形上,使其变成一个轴对称图形,请你分别在图a,b,c,d中画出不同的拼接方案,并画出对称轴.。
章末复习【知识与技能】1.了解全等三角形的概念和性质,能够准确辨认全等三角形中的对应元素.2.探索三角形全等的条件,能够利用三角形全等进行证明,掌握综合法证明的格式.3.会作角的平分线,了解角的平分线的性质,能利用三角形全等证明角的平分线的性质,会利用角的平分线的性质进行证明.【过程与方法】通过学习全等三角形的性质与条件,培养学生综合应用能力,培养学生的几何直觉.【情感态度】通过综合运用全等三角形性质和全等三角形条件以及角平分线的过程中,感受数学与生活息息相关,从而激发学数学的兴趣.【教学重点】全等三角形的性质和条件的综合应用.【教学难点】全等三角形性质、条件与其他知识的综合应用.一、知识框图,整体把握【教学说明】教师依据以上框图,带领学生一起全面回忆本章知识点.二、释疑解惑,加深理解教师针对本章易错点引导学生予以归纳并分析错因.1.寻找全等三角形的对应边和对应角时出错.例1 如图,已知△ABC≌△FED,∠C=∠D,AE=BF,指出其它的对应边和对应角.【常见错解】对应边BC与DF,AE与BF,对应角∠DFE和∠ABC.【错解分析】识图能力差,不能从重合的角度(将其中一个三角形先平移使AB与EF重合,然后沿EF翻折)来认识三角形的对应,从而无法正确找到对应边\,对应角.“SSS”掌握不熟练,自造条件用于判定三角形全等.例2 如图,AB=CD,AC和BD交于点O,若AC=BD,则∠B=∠C吗?为什么?【常见错解】∵AC=BD,∴∵AB=CD,∴△ABO≌△DCO(SSS),∴∠B=∠C.【错解分析】OA=OD,OB=OC属于自造条件,由AC=BD无法推出OA=OD,OB=OC.3.对SAS,AAS中的“夹角”“对应边”的内涵理解不清,导致用错.例3 如图,AE=AC,AB=AD,∠EAB=∠CAD.求证:∠B=∠D.【常见错解】在△ABC和△ADE中,AC=AE,∠CAD=∠EAB,AB=AD,∴△ABC≌△ADE(SAS),∴∠B=∠D.【错解分析】没有认真地结合图形来分析条件,对应角认识不明确,错把∠EAB和∠CAD 看成△ABC和△ADE的内角.三、典例精析,复习新知例4 已知,如图,AB=AC,∠BAC=∠DAE,∠ABD=∠ACE.试证明BD=CE.【分析】欲证BD=CE,结合已知条件可知,只需证明BD,CE所在的△ABD和△ACE全等.【归纳】证明两条线段相等,可通过两个三角形全等得到,首先结合图形和已知条件观察它们所在的三角形是否全等,再予以证明.2.证明两角相等.例5 如图,AB=DC,∠A=∠D.求证:∠ABC=∠DCB【分析】由AB=DC,∠A=∠D,想到如果取AD的中点N,连NB,NC,再由“SAS”得△ABN≌△D,所以BN=,∠ABN=∠∠NBC=∠NCB,再取BC中点M,连MN,则由“SSS”证得△NBM≌△NCM,推得∠NBC=∠NCB,从而使问题得证.【归纳】所证的两角没有分布在两个三角形中,所以不能直接利用两个三角形全等的性质来证明,但取AD的中点N,连BN,,把四边形分解成三角形,再用三角形知识来解题,体现了转化的思想.例6 如图,△ABC中,AD平分∠BAC交BC于点D,过D点作DE⊥AB于E,DF⊥AC于F.连EF交AD于G.求证:EF⊥AD.【分析】由已知条件不难看出△ADE≌△ADF,进一步易证△AGE≌△AGF或△DGE≌△DGF,从而得到∠AGE与∠AGF相等且互补,故EF⊥AD.【证明】∵AD平分∠BAC,DE⊥AB,DF⊥AC,∴△ADE和Rt△ADF中,AD=ADDE=DF∴Rt△ADE≌Rt△ADF(HL)∴AE=AF在△AGE和△AGF中AE=AF,∠EAG=∠FAG,AG=AG.∴△AGE≌△AGF(SAS),∴∠AGE=∠AGF.∵∠AGE+∠AGF=180°,∴∠AGE=12×180°=90°,即EF⊥AD.4.证明两线平行例7 如图,△ABC中,AD平分∠BAC,E,F分别在BD,AD上,且DE=CD,EF=AC.求证:EF∥AB.【分析】要证EF∥AB,必须∠1=∠3,而∠1=∠2,故应有∠2=∠3,根据条件DE=CD,EF=AC,通过辅助线构造两个三角形全等来证明.【证明】分别作CM⊥AD于M,EN⊥AD交AD的延长线于N,在△EDN和△CDM中,∠END=∠CMD=90°,∠NDE=∠MDC(对顶角相等),DE=CD.∴△EDN≌△CDM(AAS),∴EN=CM.在Rt△FEN和Rt△ACM中,EF=AC,EN=CM.∴Rt△FEN≌Rt△ACM(HL),∴∠2=∠3.∵∠1=∠2,∴∠1=∠3,∴EF∥AB.例8 如图所示,CE,CB分别是△ABC,△ADC的中线,且AB=AC.求证:CD=2CE.【分析】为了证明CD=2CE,考虑CE是△ABC底边AB上的中线,故把CE延长到F,使CF=2CE,把原来证CD=2CE转化为证明CD=CF,如此把线段“倍半”的数量关系转化为证两条线段的相等关系.【归纳】三角形中有中线时,常加倍延长中线,构造全等三角形,使边\,角条件转换,将分散的边、角集中在一些图形中,使问题易于解决.【教学说明】在讲解例题的过程中,老师引导学生回顾三角形全等和角平分线性质的知识.1.布置作业:从教材“复习题12”中选取.2.完成练习册中本课时的练习.本课时教学应重点突出:1.利用知识回顾与错例剖析,使学生进一步巩固和深化对所学知识的理解,建立起清晰的知识框架,形成严谨的思维习惯.2.强调转化思想的认识与应用,证明线段与角的相等可以转化成证明三角形全等去解决,实际生活中的测量问题也可以利用全等三角形知识解决.利用这一系列问题帮助学生领悟和掌握这种数学思想方法.。
2021-2022学年度秋季八年级上学期人教版数学总复习教案教导处签字:日期:年月日龙文教育教师一对一讲义教学目标:1.掌握八年级上册十一章至十五章的知识点2.能熟练的运用各章节的知识点解决相应的问题教学重点,难点:1.掌握八年级上册十一章至十五章的知识点2.能熟练的运用各章节的知识点解决相应的问题教学过程:第十一章全等三角形复习一、全等三角形1.定义:能够完全重合的两个三角形叫做全等三角形。
理解:①全等三角形形状与大小完全相等,与位置无关;②一个三角形经过平移、翻折、旋转可以得到它的全等形;③三角形全等不因位置发生变化而改变。
2、全等三角形有哪些性质(1)全等三角形的对应边相等、对应角相等。
理解:①长边对长边,短边对短边;最大角对最大角,最小角对最小角;②对应角的对边为对应边,对应边对的角为对应角。
(2)全等三角形的周长相等、面积相等。
(3)全等三角形的对应边上的对应中线、角平分线、高线分别相等。
3、全等三角形的判定边边边:三边对应相等的两个三角形全等(可简写成“SSS”)边角边:两边和它们的夹角对应相等两个三角形全等(可简写成“SAS”)角边角:两角和它们的夹边对应相等的两个三角形全等(可简写成“ASA”)角角边:两角和其中一角的对边对应相等的两个三角形全等(可简写成“AAS”)斜边.直角边:斜边和一条直角边对应相等的两个直角三角形全等(可简写成“HL”)4、证明两个三角形全等的基本思路:1、性质:角的平分线上的点到角的两边的距离相等.2、判定:角的内部到角的两边的距离相等的点在角的平分线上。
三、学习全等三角形应注意以下几个问题:(1)要正确区分“对应边”与“对边”,“对应角”与“对角”的不同含义;(2表示两个三角形全等时,表示对应顶点的字母要写在对应的位置上;(3)“有三个角对应相等”或“有两边及其中一边的对角对应相等”的两个三角形不一定全等;(4)时刻注意图形中的隐含条件,如“公共角”、“公共边”、“对顶角”(5)截长补短法证三角形全等。
21DCBAD CB ADCBA八年级上期末复习第一章 三角形的初步知识1、 三角形的定义:由不在同一直线上的三条线段首尾顺次相接组成的图形叫做三角形.2、 三角形的分类:(1)按角分类: (2)按边分类:3、 三角形的主要线段的定义:(1)三角形的中线: 三角形中,连结一个顶点和它对边中点的线段. 表示法:① AD 是△ABC 的BC 上的中线.② BD=DC=12BC. ③ BC =2BD =2DC 注意:①三角形的中线是线段;②三角形三条中线全在三角形的内部; ③三角形三条中线交于三角形内部一点; ④中线把三角形分成两个面积相等的三角形.(2)三角形的角平分线: 三角形一个内角的平分线与它的对边相交,这个角顶点与交点之间的线段表示法:① AD 是△ABC 的∠BAC 的平分线.② ∠1=∠2=12∠BAC. ③ ∠BAC=2∠1=2∠2注意:①三角形的角平分线是线段;②三角形三条角平分线全在三角形的内部; ③三角形三条角平分线交于三角形内部一点;(3)三角形的高:从三角形的一个顶点向它的对边所在的直线作垂线,顶点和垂足之间的线段. 表示法:① AD 是△ABC 的BC 上的高线.② AD⊥BC 于D. ③∠ADB=∠ADC=90°.注意:①三角形的高是线段;②锐角三角形三条高全在三角形的内部,直角三角形有两条高是边,钝角三角形有两条高在形外;③三角形三条高所在直线交于一点.4、三角形的三边关系: 三角形的任意两边之和大于第三边;任意两边之差小于第三边. 注意:(1)三边关系的依据是:两点之间线段是短;(2)围成三角形的条件是任意两边之和大于第三边. 5、 三角形的角与角之间的关系: (1)三角形三个内角的和等于180 ;三角形直角三象形 锐角三角形钝角三角形三角形等腰三角形不等边三角形底边和腰不相等的等腰三角形 等边三角形(2)三角形的一个外角等于和它不相邻的两个内角的和; (3)三角形的一个外角大于任何一个和它不相邻的内角. (4)直角三角形的两个锐角互余. 6、三角形的稳定性:三角形的三边长确定,则三角形的形状就唯一确定,这叫做三角形的稳定性. 注意:(1)三角形具有稳定性; (2)四边形没有稳定性. 7、全等三角形(1)全等三角形的概念: 能够完全重合的两个三角形叫做全等三角形。
21DCBAD CB ADCBA八年级上期末复习第一章 三角形的初步知识1、 三角形的定义:由不在同一直线上的三条线段首尾顺次相接组成的图形叫做三角形.2、 三角形的分类:(1)按角分类: (2)按边分类:3、 三角形的主要线段的定义: (1)三角形的中线: 三角形中,连结一个顶点和它对边中点的线段.表示法:① AD 是△ABC 的BC 上的中线.② BD=DC=12BC. ③ BC =2BD =2DC 注意:①三角形的中线是线段;②三角形三条中线全在三角形的内部; ③三角形三条中线交于三角形内部一点; ④中线把三角形分成两个面积相等的三角形.(2)三角形的角平分线: 三角形一个内角的平分线与它的对边相交,这个角顶点与交点之间的线段表示法:① AD 是△ABC 的∠BAC 的平分线.② ∠1=∠2=12∠BAC. ③ ∠BAC=2∠1=2∠2注意:①三角形的角平分线是线段;②三角形三条角平分线全在三角形的内部; ③三角形三条角平分线交于三角形内部一点;(3)三角形的高:从三角形的一个顶点向它的对边所在的直线作垂线,顶点和垂足之间的线段. 表示法:① AD 是△ABC 的BC 上的高线.② AD⊥BC 于D. ③∠ADB=∠ADC=90°.注意:①三角形的高是线段;②锐角三角形三条高全在三角形的内部,直角三角形有两条高是边,钝角三角形有两条高在形外; ③三角形三条高所在直线交于一点.4、三角形的三边关系: 三角形的任意两边之和大于第三边;任意两边之差小于第三边. 注意:(1)三边关系的依据是:两点之间线段是短;(2)围成三角形的条件是任意两边之和大于第三边.三角形直角三象形 锐角三角形钝角三角形三角形等腰三角形不等边三角形底边和腰不相等的等腰三角形 等边三角形5、 三角形的角与角之间的关系: (1)三角形三个内角的和等于180 ;(2)三角形的一个外角等于和它不相邻的两个内角的和; (3)三角形的一个外角大于任何一个和它不相邻的内角. (4)直角三角形的两个锐角互余. 6、三角形的稳定性:三角形的三边长确定,则三角形的形状就唯一确定,这叫做三角形的稳定性. 注意:(1)三角形具有稳定性; (2)四边形没有稳定性. 7、全等三角形(1)全等三角形的概念: 能够完全重合的两个三角形叫做全等三角形。
(2)三角形全等的判定三角形全等的判定定理:① 边角边定理:有两边和它们的夹角对应相等的两个三角形全等(可简写成“边角边”或“SAS ”) ② 角边角定理:有两角和它们的夹边对应相等的两个三角形全等(可简写成“角边角”或“ASA ”) ③ 角角边定理:有两角和其中一个角的对边对应相等的两个三角形全等(可简写成“角角边”或“AAS ”)④边边边定理:有三边对应相等的两个三角形全等(可简写成“边边边”或“SSS ”)。
⑤直角三角形全等的判定: 有斜边和一条直角边对应相等的两个直角三角形全等(可简写成“斜边、直角边”或“HL ”)8、全等变换:只改变图形的位置,不改变其形状大小的图形变换叫做全等变换。
全等变换包括一下三种:(1)平移变换:把图形沿某条直线平行移动的变换叫做平移变换。
(2)对称变换:将图形沿某直线翻折180°,这种变换叫做对称变换。
(3)旋转变换:将图形绕某点旋转一定的角度到另一个位置,这种变换叫做旋转变换。
9、线段的垂直平分线性质:线段的垂直平分线上的点到线段两个端点的距离相等。
10、角的平分线的性质:线上的点到角的两边的距离相等。
典例分析例1 如图,已知∠1=∠2,则不一定能使△ABD ≌△ACD 的条件是( ) A 、AB=ACB 、BD=CDC 、∠B=∠CD 、∠BDA=∠CDA例2 (1)在△ABC 中,已知∠B = 40°,∠C = 80°,则∠A = 。
(2)在△ABC 中,∠A = 60°,∠C = 50°,则∠B 的外角= 。
(3)下列长度的三条线段能组成三角形的是( )A.3cm ,4cm ,8cmB.5cm ,6cm ,11cmC.5cm ,6cm ,10cmD.3cm ,8cm ,12cm (4)小华要从长度分别为5cm 、6cm 、11cm 、16cm 的四根小木棒中选出三根摆成 一个三角形,那么他选的三根木棒的长度分别是_ ._____._____. 例3 如图,AD 是△ABC 的角平分线,DF ⊥AB ,垂足为F ,DE=DG , △ADG 和△AED 的面积分别为50和39,则△EDF 的面积为( ) A 、11B 、5.5C 、7D 、 3.5例 1例 3例4例4 如图,在下列条件中,不能证明△ABD≌△ACD的是()A.BD=DC,AB=AC B.∠ADB=∠ADC,BD=DCC.∠B=∠C,∠BAD=∠CADD.∠B=∠C,BD=DC例5 如图,点B、F、C、E在同一条直线上,点A、D在直线BE的两侧,AB∥DE,BF=CE,请添加一个适当的条件:,使得AC=DF.例6如图所示,已知,AD为△ABC的高,E为AC上一点,BE交AD于F,且有BF=AC,FD=CD,求证:B E⊥AC例7如图所示,已知△ABC和△BDE都是等边三角形,下列结论:①AE=CD;②BF=BG;③BH平分∠AHD;④∠AHC=60°;⑤△BFG是等边三角形;⑥FG∥AD,其中正确的有()A.3个 B. 4个 C. 5个 D. 6个例8如图:在△ABC中,BE、CF分别是AC、AB两边上的高,在BE上截取BD=AC,在CF的延长线上截取CG=AB,连结AD、AG求证:(1)AD=AG(2)AD与AG的位置关系如何例9如图,在Rt△ABC中,∠ACB=45°,∠BAC=90°,AB=AC,点D是AB的中点,AF⊥CD于H,交BC于F,BE∥AC交AF的延长线于E,求证:BC垂直且平分DE.BABB例10在△ABC 中,∠ACB=90°,AC=BC ,直线MN 经过点C ,且AD ⊥MN 于D ,BE ⊥MN 于E (1)当直线MN 绕点C 旋转到图①的位置时,求证:DE=AD+BE (2)当直线MN 绕点C 旋转到图②的位置时,求证:DE=AD-BE(3)当直线MN 绕点C 旋转到图③的位置时,试问DE 、AD 、BE量关系。
例11如图(1)所示,OP 是∠MON 的平分线,•请你利用该图形画一对以OP 所在直线为对称轴的全等三角形.请你参考这个作全等三角形方法,解答下列问题:(1)如图(2),在△ABC 中,∠ACB=90°,∠B=60°,AC 、CE 分别是∠BAC ,∠BCA 的平分线交于F ,试判断FE 与FD 之间的数量关系.(2)如图(3),在△ABC 中,若∠ACB ≠90°,而(1)中其他条件不变,请问(1)中所得的结论是否仍然成立?若成立,请证明;若不成立,说明理由.M图1AA第二章 特殊三角形知识点概要1、图形的轴对称性质:对称轴垂直平分连接两个对称点的线段;成轴对称的两个图形是全等图形2、等腰三角形的性质(1)等腰三角形的性质:等腰三角形的两个底角相等(简称:等边对等角) (2)等腰三角形顶角平分线平分底边并且垂直于底边(三线合一)。
3、等边三角形的性质:等边三角形的各个角都相等,并且每个角都等于60°。
4、直角三角形的性质 (1)直角三角形的两个锐角互余(2)在直角三角形中,30°角所对的直角边等于斜边的一半。
(3)直角三角形斜边上的中线等于斜边的一半(4)勾股定理:直角三角形两直角边a ,b 的平方和等于斜边c 的平方,即222c b a =+(5)常用关系式:由三角形面积公式可得:AB ∙CD=AC ∙BC (6)如图,CD 是Rt △ABC 斜边上的高,则∠ACD=∠B ,∠DCB=∠A 5、等腰三角形的判定:等角对等边.6、等边三角形的判定:(1)三个角都相等(都是60°), (2)有一个角等于60°的等腰三角形.7、直角三角形的判定(1)两锐角互余的三角形.(2)如果三角形一边上的中线等于这边的一半. (3)两条边的平方和等于第三边的平方. (4)如图,AD 是△ABC 的高,且∠DAC=∠B. (5)证明一个三角形与另一个直角三角形全等. 典例分析例1 在△ABC 中,AB=AC ,∠1=0.5∠ABC ,∠2=0.5∠ACB ,BD 与CE 相交于点O ,如图,∠BOC 的大小与∠A 的大小有什么关系? 若∠1=∠ABC/3,∠2=∠ACB/3,则∠BOC 与∠A 大小关系如何? 若∠1=∠ABC/n ,∠2=∠ACB/n ,则∠BOC 与∠A 大小关系如何?例 6例6例2.如图,在△ABC 中,(1)PB,PC 平分∠ABC 和∠ACB ,交于点P (图1),则∠BPC 与∠A 的关系式为 .(2)PB ,PC 平分∠EBC 和∠BCF ,交于点P (图2),则∠BPC 与∠A 的关系式为 . (3)PB ,PC 平分∠ABC 和∠ACE ,交于点P (图3),则∠BPC 与∠A 的关系式为 .例3.如图,BE 、CD 交于A 点,∠C 与∠E 的平分线交于F.若 ∠F =40°, ∠B =50°,则∠D = .例4 如图,P 是等边三角形ABC 内的一点,连结PA 、PB 、PC ,•以BP 为边作∠PBQ=60°,且BQ=BP ,连结CQ .(1)观察并猜想AP 与CQ 之间的大小关系,并证明你的结论.(2)若PA :PB :PC=3:4:5,连结PQ ,试判断△PQC 的形状,并说明理由.例5已知:在△ABC 中,AB =AC ,BD =BC ,AD =DE =BE , 求∠A 的度数.例6 如图,已知:在△ABC 中,AB =AC ,BE =CD ,∠B =70 °, BD =CF .求:∠EDF 的度数.(1) 例5例4例6例5例7在△ABC中,AD是∠BAC的平分线,E、F分别为AB、AC上的点,且∠EDF+∠EAF=180°,求证:DE=DF.例8如图,在△ABC中,∠ACB=90°,CD是AB边上的高,∠A=30°.求证:AB=4BD.例9已知,如图,AF平分∠BAC,BC⊥AF,垂足为点E,点D与点A关于点E对称,PB分别与线段CF,AF相交于点P,M.(1)求证:AB=CD;(2)若∠BAC=2∠MPC,请你判断∠F与∠MCD的数量关系,并说明理由.例10如图,点O是正△ABC内一点,∠AOB=1100,∠BOC=α. 以OC为一条作正△OCD,连结AD.(1)当α=1500时,试判断△AOD的形状,并说明理由;(2)探究α为多少度时,△AOD是等腰三角形?ABCOD1100α例10例8ACFPMDE例9例7例9如图,AC⊥BC,AD⊥BD,AD=BC,CE⊥AB,DF⊥AB,垂足分别是E,F,那么,CE=DF吗?例10如图,已知等腰Rt△ABC中,∠ACB=90°,点D为等腰Rt△ABC内一点,∠CAD=∠CBD=15°,E为AD延长线上的一点,且CE=CA.(1)求证:DE平分∠BDC;(2)连接BE,设DC=a,求BE的长.例11已知在△ABC中,∠A=90°,AB=AC,D为BC的中点.(1)如图,E、F分别是AB,AC上的动点,且BE=AF,求证:△DEF为等腰直角三角形;(2)在(1)的条件下,四边形AEDF的面积是否变化,证明你的结论;(3)若E、F分别为AB,CA延长线上的点,仍有BE=AF,其他条件不变,那么△DEF是否仍为等腰直角三角形?证明你的结论.例6例6 例6第三章一元一次不等式知识点概要一、不等式的概念1、不等式:用不等号表示不等关系的式子,叫做不等式。