菱形的判定教学设计
- 格式:doc
- 大小:69.00 KB
- 文档页数:3
菱形的判定课程设计一、教学目标本节课的教学目标是让学生掌握菱形的判定方法,能够运用菱形的性质解决相关问题。
知识目标包括:了解菱形的定义和性质,掌握菱形的判定方法,能够运用菱形的性质解决实际问题。
技能目标包括:通过观察、操作、推理等过程,培养学生的空间想象能力和逻辑思维能力。
情感态度价值观目标包括:培养学生对数学的兴趣,增强学生的自信心,培养学生的合作精神。
二、教学内容本节课的教学内容主要包括菱形的定义、性质和判定方法。
首先,通过引入菱形的定义,使学生了解菱形的基本特征。
然后,引导学生探究菱形的性质,如对角线互相垂直平分、四条边相等等。
最后,教授菱形的判定方法,如对角线互相垂直平分且四条边相等的四边形是菱形。
三、教学方法为了激发学生的学习兴趣和主动性,本节课采用多种教学方法。
首先,通过讲授法,向学生传授菱形的定义、性质和判定方法。
然后,运用讨论法,让学生分组讨论,交流各自的思考和心得。
接着,采用案例分析法,给出实际问题,让学生运用菱形的性质进行解决。
最后,利用实验法,让学生动手操作,验证菱形的性质和判定方法。
四、教学资源为了支持教学内容和教学方法的实施,丰富学生的学习体验,本节课准备了一系列教学资源。
教材方面,选用《数学》课本,作为学生学习的基础资料。
参考书方面,推荐学生阅读《菱形的性质与应用》等书籍,以拓展学生的知识视野。
多媒体资料方面,制作了菱形的性质和判定方法的PPT,以便于直观展示。
实验设备方面,准备了尺子、剪刀、纸张等,让学生动手操作,验证菱形的性质。
五、教学评估本节课的教学评估将采用多元化的评估方式,以全面、客观、公正地评价学生的学习成果。
评估方式包括平时表现、作业和考试。
平时表现主要考察学生的课堂参与度、提问回答等情况,通过观察和记录,对学生的学习态度和积极性进行评价。
作业方面,布置与菱形性质相关的练习题,要求学生在规定时间内完成,通过批改作业,了解学生对菱形性质的掌握情况。
考试方面,设计一份涵盖菱形定义、性质和判定方法的测试卷,以检验学生对本章节知识的掌握程度。
第2课时菱形的判定教学设计课题菱形的判定授课人素养目标 1.理解并掌握菱形的判定方法,体会类比数学思想方法的作用.2.引导学生从边和对角线探究菱形的判定定理,养成主动探索的学习习惯.3.运用菱形的判定方法进行证明或计算,发展学生的推理能力.教学重点菱形的判定方法的理解与应用.教学难点菱形的判定定理与性质定理的区别和联系教学活动教学步骤师生活动活动一:类比推理,导入新课设计意图通过类比学习,激发学生的好奇心和求知欲,引入本节课要研究的内容.【类比导入】前面我们学习平行四边形和矩形时,都可以用性质得出相应的判定,那么我们学习菱形的判定时是否也可以反推菱形的性质来得到它的判定呢?我们大家一起来尝试一下吧!【教学建议】引导学生进行类比、思考、分析,由平行四边形和矩形的判定推断菱形的判定,并回忆上一课时菱形的概念.活动二:动手验证,探究新知设计意图通过图形的变化,让学生感受四边形是菱形时对角线的特征,引导学生得出菱形的判定方法.探究点1对角线互相垂直的平行四边形是菱形如图,用一长一短两根木条,在它们的中点处固定一个小钉,做成一个可转动的十字,四周围上一根橡皮筋,做成一个四边形.(1)转动木条,这个四边形总有什么特征?它是什么四边形?答:这个四边形的对角线总是互相平分,它是平行四边形.(2)继续转动木条,观察橡皮筋围成的四边形什么时候变成菱形?答:当这个四边形的对角线互相垂直时变成菱形.猜想:对角线互相垂直的平行四边形是菱形.【教学建议】让学生动手实践得到菱形的判定方法,教师注意提醒学生:这里对角线互相垂直的前提条件是在平行四边形内,如果是一般的四边形,则应教学步骤师生活动设计意图利用逆向思维思考性质,让同学们在解决问题的过程中总结判定定理.下面我们来进行验证:已知:如图,在ABCD 中,对角线AC ,BD 相交于点O ,且BD ⊥AC.求证:ABCD 是菱形.证明:∵四边形ABCD 是平行四边形,∴AO =CO.∵BD ⊥AC ,∴AB =BC(线段垂直平分线上的点到这条线段两个端点的距离相等).∴ABCD 是菱形.归纳总结:对角线互相垂直的平行四边形是菱形.几何语言:∵四边形ABCD 是平行四边形,且AC ⊥BD ,∴ABCD 是菱形.例1(教材P 57例4)如图,ABCD 的对角线AC ,BD 交于点O ,且AB =5,AO =4,BO =3.求证:ABCD 是菱形.证明:∵AB =5,AO =4,BO =3,∴AB 2=AO 2+BO 2,∴∠AOB =90°.∴AC ⊥BD ,∴ABCD 是菱形.【对应训练】1.如图,在ABCD 中,对角线AC 与BD 交于点O ,若添加一个条件,可推出ABCD 是菱形,则该条件可以是(C )A.AB =AC B .AC =BD C.AC ⊥BD D .AB ⊥AC2.教材P58练习第2题.探究点2四条边相等的四边形是菱形老师拿四根长度一样的新粉笔,首尾顺次相接拼成一个四边形,在黑板上画出相应的图形并标上字母(如图),得到的四边形ABCD 是菱形吗?是猜想:四条边相等的四边形是菱形.下面我们来进行验证:如图,在四边形ABCD 中,AB =BC =CD =AD.求证:四边形ABCD 是菱形.证明:∵AB =CD ,BC =AD ,∴四边形ABCD 是平行四边形.又AB =BC ,∴四边形ABCD 是菱形.归纳总结:四条边相等的四边形是菱形.几何语言:∵AB =BC =CD =AD ,∴四边形ABCD 是菱形.【对应训练】1.如图,在矩形ABCD 中,E ,F ,G ,H 分别是AB ,BC ,CD ,AD 的中点.求证:四边形EFGH 是菱形.证明:∵四边形ABCD 是矩形,∴∠A =∠B =∠C =∠D =90°,AD =BC ,AB =CD.满足对角线互相垂直且平分.【教学建议】提醒学生:若已知邻边相等,要证明这个四边形是菱形,可用两种方法:(1)先证明这个四边形是平行四边形,再利用邻边相等得到菱形;(2)直接证明四条边都相等.教学步骤师生活动∵E ,F ,G ,H 分别是AB ,BC ,CD ,AD 的中点,∴AH =DH =BF =CF ,AE =BE =CG =DG.∴△AHE ≌△BFE ≌△CFG ≌△DHG(SAS),∴HE =FE =FG =HG ,∴四边形EFGH 是菱形.2.教材P58练习第3题.活动三:综合运用,巩固提升设计意图巩固学生对菱形的判定的认识.例2如图,在ABCD 中,BF 平分∠ABC 交AD 于点F ,AE ⊥BF于点O ,交BC 于点E ,连接EF.(1)求证:四边形ABEF 是菱形;(2)若AE =6,BF =8,CE =3,求ABCD 的面积.(1)证明:∵四边形ABCD 是平行四边形,∴AO =EO ,AD ∥BC ,∴∠EBF =∠AFB.∵BF 平分∠ABC ,∴∠ABF =∠EBF ,∴∠ABF =∠AFB ,∴AB =AF.∵BO ⊥AE ,AO =EO ,∴AB =EB ,∴BE =AF.∵BE ∥AF ,∴四边形ABEF 是平行四边形.又AB =AF ,∴ABEF 是菱形.(2)解:如图,过点F 作FG ⊥BC 于点G.∵四边形ABEF 是菱形,AE =6,BF =8,OE =12AE =3,OB =12BF=4.在Rt △BOE 中,BE =OB 2+OE 2=42+32=5.∵S 菱形ABEF =12AE·BF =BE·FG ,∴12×6×8=5FG ,∴FG =245.∵BC =BE +CE =5+3=8,∴SABCD =BC·FG =8×245=1925.【教学建议】学生独立思考并完成例题,教师点评.提醒学生注意:(1)已知角方面的条件可考虑利用其得到边的相等关系,为证明菱形创造条件;(2)进行第(2)问计算时,求ABCD 的面积,可利用第(1)问的结论,先由菱形的两种面积计算方法求得关键的线段长.活动四:随堂训练,课堂总结【随堂训练】相应课时训练.【课堂总结】师生一起回顾本节课所学主要内容,并请学生回答以下问题:菱形的判定方法有哪几种?矩形和菱形小结:【知识结构】【作业布置】1.教材P 60习题18.2第6,10题.2.相应课时训练.教学步骤师生活动板书设计18.2.2菱形第2课时菱形的判定解题方法:根据题设条件灵活选择菱形的判定方法.(1)用边来判定:①先说明四边形是平行四边形,再说明有一组邻边相等;②说明四边形的四条边都相等.(2)用对角线进行判定:①先说明四边形是平行四边形,再说明四边形的对角线互相垂直;②说明四边形的对角线互相垂直平分.注意:对角线垂直的四边形不一定是菱形,必须是对角线互相垂直的平行四边形才是菱形.例1如图,四边形ABCD 是平行四边形,DE ∥BF ,且分别交对角线AC 于点E ,F ,连接BE ,DF.(1)求证:AE =CF ;(2)若BE =DE ,求证:四边形EBFD 为菱形.证明:(1)∵四边形ABCD 是平行四边形,∴AD =CB ,AD ∥CB ,∴∠DAE =∠BCF.∵DE ∥BF ,∴∠DEF =∠BFE ,∴∠AED =∠CFB.在△ADE 和△CBF中,∠DAE =∠BCF ,∠AED =∠CFB ,AD =CB ,∴△ADE ≌△CBF(AAS ),∴AE =CF.(2)由(1)知△ADE ≌△CBF ,∴DE =BF.∵DE ∥BF ,∴四边形EBFD 是平行四边形.又BE =DE ,∴四边形EBFD 为菱形.例2如图,ABCD 的对角线AC ,BD 相交于点O ,过点O 作EF ⊥AC ,分别交AB ,DC 于点E ,F ,连接AF ,CE.(1)若OE =32,求EF 的长;(2)判断四边形AECF 的形状,并说明理由.解:(1)∵四边形ABCD 是平行四边形,∴AB ∥CD ,AO =CO ,∴∠FCO =∠EAO.在△AOE 和△COF 中,∠FCO =∠EAO ,AO =CO ,∠AOE =∠COF ,∴△AOE ≌△COF(ASA ).∴OE =OF =32,∴EF =2OE =3.(2)四边形AECF 是菱形.理由:∵△AOE ≌△COF ,∴AE =CF.∵AE ∥CF ,∴四边形AECF 是平行四边形.1.菱形的概念.2.菱形的判定定理1.3.菱形的判定定理2.教学反思新课导入时让学生动手制作菱形,感知菱形判定的条件,让学生在轻松愉快的氛围中自然、水到渠成地得到菱形的判定定理.在运用判定时,要遵循先易后难的原则,让学生先会运用判定解决简单的证明题,再由浅入深,学会灵活运用.又EF ⊥AC ,∴四边形AECF 是菱形.例1如图,两张等宽的纸条交叉叠放在一起,若重合部分构成的四边形ABCD 中,AB =3,AC =2,则四边形ABCD 的面积为(A )A .42B .62C .82D .5解析:如图,过点A 分别作AE ⊥CD 于点E ,AF ⊥BC 于点F ,连接BD 交AC 于点O.∵两条纸条宽度相同,∴AE =AF.∵AB ∥CD ,AD ∥BC ,∴四边形ABCD 是平行四边形.∵S ABCD =BC·AF =CD·AE ,AE =AF ,∴BC =CD ,∴四边形ABCD 是菱形.∴AO =CO =12AC =12×2=1,BO =DO ,AC ⊥BD.∴BO =AB 2-AO 2=32-12=22,∴BD =4 2.∴四边形ABCD 的面积=12BD·AC =12×42×2=42.故选A .例2如图,在ABCD 中,对角线AC 与BD 相交于点O ,点E ,F 分别在BD 和DB的延长线上,且DE =BF ,连接AE ,CF.(1)求证:△ADE ≌△CBF ;(2)连接AF ,CE.当BD 平分∠ABC 时,四边形AFCE 是什么特殊四边形?请说明理由.(1)证明:∵四边形ABCD 是平行四边形,∴AD ∥CB ,AD =CB.∴∠ADB =∠CBD ,∴∠ADE =∠CBF.在△ADE 和△CBF =CB ,ADE =∠CBF ,=BF ,∴△ADE ≌△CBF(SAS ).(2)解:当BD 平分∠ABC 时,四边形AFCE 是菱形.理由:∵BD 平分∠ABC ,∴∠ABD =∠CBD.∵四边形ABCD 是平行四边形,∴OA =OC ,OB =OD ,AD ∥BC ,∴∠ADB =∠CBD.∴∠ABD =∠ADB ,∴AB =AD ,∴ABCD 是菱形.∴AC ⊥BD ,∴AC ⊥EF.∵DE =BF ,∴OE =OF.又OA =OC ,∴四边形AFCE 是平行四边形.∵AC ⊥EF ,∴四边形AFCE 是菱形.。
《菱形判定》优秀教学设计作为一位不辞辛劳的人民教师,就难以避免地要准备教学设计,教学设计是对学业业绩问题的解决措施进行策划的过程。
那么你有了解过教学设计吗?下面是店铺精心整理的《菱形判定》优秀教学设计,欢迎大家分享。
《菱形判定》优秀教学设计1一、教学目的:1.理解并掌握菱形的定义及两个判定方法;会用这些判定方法进行有关的论证和计算;2.在菱形的判定方法的探索与综合应用中,培养学生的观察能力、动手能力及逻辑思维能力.二、重点、难点1.教学重点:菱形的两个判定方法.2.教学难点:判定方法的证明方法及运用.三、例题的意图分析本节课安排了两个例题,其中例1是教材P109的例3,例2是一道补充的题目,这两个题目都是菱形判定方法的直接的运用,主要目的是能让学生掌握菱形的判定方法,并会用这些判定方法进行有关的论证和计算.这些题目的推理都比较简单,学生掌握起来不会有什么困难,可以让学生自己去完成.程度好一些的班级,可以选讲例3.四、课堂引入1.复习(1)菱形的定义:一组邻边相等的平行四边形;(2)菱形的性质1 菱形的四条边都相等;性质2 菱形的对角线互相平分,并且每条对角线平分一组对角;(3)运用菱形的定义进行菱形的判定,应具备几个条件?(判定:2个条件)2.【问题】要判定一个四边形是菱形,除根据定义判定外,还有其它的判定方法吗?3.【探究】(教材P109的探究)用一长一短两根木条,在它们的中点处固定一个小钉,做成一个可转动的十字,四周围上一根橡皮筋,做成一个四边形.转动木条,这个四边形什么时候变成菱形?通过演示,容易得到:菱形判定方法1 对角线互相垂直的平行四边形是菱形.注意此方法包括两个条件:(1)是一个平行四边形;(2)两条对角线互相垂直.通过教材P109下面菱形的作图,可以得到从一般四边形直接判定菱形的方法:菱形判定方法2 四边都相等的四边形是菱形.五、例习题分析例1 (教材P109的例3)略例2(补充)已知:如图ABCD的对角线AC的垂直平分线与边AD、BC分别交于E、F.求证:四边形AFCE是菱形.证明:∵ 四边形ABCD是平行四边形,∴ AE∥FC.∴ ∠1=∠2.又∠AOE=∠COF,AO=CO,∴ △AOE≌△COF.∴ EO=FO.∴ 四边形AFCE是平行四边形.又EF⊥AC,∴ AFCE是菱形(对角线互相垂直的平行四边形是菱形).※例3(选讲)已知:如图,△ABC中,∠ACB=90°,BE平分∠ABC,CD⊥AB与D,EH⊥AB于H,CD交BE于F.求证:四边形CEHF为菱形.略证:易证CF∥EH,CE=EH,在Rt△BCE中,∠CBE+∠CEB=90°,在Rt△BDF中,∠DBF+∠DFB=90°,因为∠CBE=∠DBF,∠CFE=∠DFB,所以∠CEB=∠CFE,所以CE=CF.所以,CF=CE=EH,CF∥EH,所以四边形CEHF为菱形.六、随堂练习1.填空:(1)对角线互相平分的四边形是;(2)对角线互相垂直平分的四边形是________;(3)对角线相等且互相平分的四边形是________;(4)两组对边分别平行,且对角线的四边形是菱形.2.画一个菱形,使它的两条对角线长分别为6cm、8cm.3.如图,O是矩形ABCD的对角线的交点,DE∥AC,CE∥BD,DE和CE相交于E,求证:四边形OCED是菱形。
初中数学《菱形的判定》教学设计及说明教学设计:菱形的判定一、教学目标:1.知识与技能:掌握菱形的判定方法。
2.过程与方法:培养学生观察、分析和推理的能力;培养学生合作学习和独立思考的能力。
3.情感态度价值观:培养学生对菱形的认识和兴趣,培养学生观察问题、思考问题和解决问题的能力。
二、教学重点:掌握菱形的定义和判定方法。
三、教学难点:能够独立进行菱形的判定。
四、教学准备:教师准备:教师PPT,黑板、白板及相应的书写工具。
学生准备:学生大致了解几何形状概念,了解正方形和长方形的定义。
五、教学过程:1.导入(10分钟)通过展示几张带有菱形的图片,引起学生对菱形的认识和兴趣,询问学生是否知道菱形是什么形状以及如何判断一个图形是否为菱形。
2.探究(15分钟)教师分发一些菱形、正方形和长方形的纸板,学生在小组合作中观察这些图形的特点和区别,并提出判定菱形的条件。
3.归纳(10分钟)学生在教师的引导下,将判定菱形的条件总结出来,教师在黑板上进行记录并进行必要解释。
4.例题练习(20分钟)教师给学生出若干个菱形的例子,要求学生在纸上进行判定,并将判断过程写出来。
5.反馈与讲解(15分钟)教师选几个例子请学生上台讲解自己的判断过程,引导学生归纳出正确的判定方法,并进行讲解。
6.练习(15分钟)教师分发练习册,学生独立完成其中关于菱形判定的练习题。
7.拓展与应用(15分钟)教师设计一些拓展问题,要求学生在小组合作中解决,并进行展示。
例如:如何判定一个几何图形是一个平行四边形但不是菱形?8.总结与评价(10分钟)教师对本节课的内容进行总结,并对学生进行评价,对于学生的问题进行解答。
六、板书设计:菱形的判定1.对角线相等;2.对角线互相垂直。
七、教学反思:通过本节课的教学,学生对菱形的判定方法有了更深入的理解,能够通过观察和推理进行判断。
通过合作学习和独立思考,学生的动手能力和创新精神得到了一定的培养和发展。
为了更好地激发学生的学习兴趣,可以在课堂中设置一些有趣的练习题和问题,提高课堂氛围和学生的参与度。
《菱形的判定》教案一、教学目标:1. 让学生掌握菱形的定义和性质。
2. 培养学生运用几何知识分析问题、解决问题的能力。
3. 通过对菱形的判定方法的学习,提高学生的逻辑思维能力。
二、教学内容:1. 菱形的定义:四条边相等的四边形。
2. 菱形的性质:对角线互相垂直平分,对角相等,邻边垂直。
3. 菱形的判定方法:(1)四条边相等的四边形是菱形。
(2)对角线互相垂直平分的四边形是菱形。
(3)一组邻边相等且垂直的四边形是菱形。
三、教学重点与难点:重点:菱形的定义、性质和判定方法。
难点:菱形判定方法的灵活运用。
四、教学过程:1. 导入:通过展示实物或图片,引导学生观察并思考:这些图形是否为菱形?从而引出本节课的主题。
2. 新课讲解:(1)介绍菱形的定义,让学生理解菱形的概念。
(2)讲解菱形的性质,引导学生通过画图或举例验证。
(3)讲解菱形的判定方法,引导学生通过实例进行分析。
3. 课堂练习:4. 总结与拓展:对本节课的内容进行总结,强调菱形的判定方法。
提出拓展问题,引导学生思考:还有其他判定菱形的方法吗?五、课后作业:1. 复习本节课的内容,整理笔记。
2. 完成课后练习题,巩固所学知识。
3. 探索其他判定菱形的方法,并与同学交流分享。
六、教学评价:1. 通过课堂讲解、练习和课后作业,评估学生对菱形定义、性质和判定方法的掌握程度。
2. 观察学生在解决问题时的思维过程,评价其逻辑思维能力和运用几何知识分析问题的能力。
3. 鼓励学生参与课堂讨论,评估其合作交流能力。
七、教学策略:1. 采用直观演示法,通过实物、图片和几何画板等工具,帮助学生形象地理解菱形的定义和性质。
2. 运用案例分析法,让学生通过分析具体实例,掌握菱形的判定方法。
3. 设计课后作业和练习题,让学生在实践中巩固所学知识。
八、教学资源:1. 实物或图片:用于导入和直观展示菱形。
2. 几何画板:用于演示菱形的性质和判定方法。
3. 练习题和作业:用于巩固所学知识。
菱形的判定教案一、教学目标1. 知识与技能:(1)理解菱形的定义及性质;(2)掌握菱形的判定方法;(3)能够运用菱形的性质和判定方法解决实际问题。
2. 过程与方法:(1)通过观察、操作、推理等过程,培养学生的空间想象能力和逻辑思维能力;(2)学会运用排除法、反证法等数学方法。
3. 情感态度与价值观:(1)培养学生对数学的兴趣和自信心;(2)培养学生勇于探索、克服困难的意志品质;(3)培养学生合作交流、分工协作的能力。
二、教学内容1. 菱形的定义:菱形是四条边相等的四边形。
2. 菱形的性质:(1)四条边相等;(2)对角线互相垂直,且平分;(3)相邻角互补,对角相等;(4)对角线将菱形分成的角为直角。
3. 菱形的判定方法:(1)四条边相等的四边形是菱形;(2)对角线互相垂直,且平分的四边形是菱形;(3)对角互补,对角相等的四边形是菱形;(4)对角线将菱形分成的角为直角的四边形是菱形。
三、教学重点与难点1. 教学重点:(1)菱形的定义及性质;(2)菱形的判定方法。
2. 教学难点:(1)菱形性质的综合运用;(2)菱形判定方法的灵活运用。
四、教学方法1. 采用问题驱动法,引导学生探索菱形的性质和判定方法;2. 利用多媒体课件,展示菱形的实物模型和图形,增强学生的空间想象力;3. 通过小组讨论、互助合作等方式,培养学生的合作精神和团队意识;4. 运用排除法、反证法等数学方法,提高学生的逻辑思维能力。
五、教学过程1. 导入新课:展示一组四边形,引导学生观察、讨论它们的共同特点,从而引出菱形的定义。
2. 探索菱形的性质:(1)让学生自主探究菱形的性质,总结出四条边相等、对角线互相垂直平分等性质;(2)通过多媒体课件展示菱形的实物模型和图形,帮助学生直观地理解菱形的性质;(3)运用排除法、反证法等数学方法,证明菱形的性质。
3. 学习菱形的判定方法:(1)让学生根据已知的菱形性质,尝试给出菱形的判定方法;(2)通过多媒体课件展示判定方法的应用,让学生学会灵活运用;(3)进行判定方法的训练,提高学生的判断能力。
《菱形的判定》教案教案:菱形的判定一、教学目标1.理解菱形的定义和性质。
2.能够判断一个四边形是否为菱形。
3.能够根据菱形的性质解决一些几何问题。
二、教学重难点1.菱形的定义和性质。
2.如何判断四边形是否为菱形。
3.如何应用菱形的性质解决几何问题。
三、教学方法1.理论授课相结合的方法。
2.案例分析法和讨论法,培养学生的分析和解决问题的能力。
四、教学步骤1.导入(5分钟)通过展示一些几何图形,让学生回答这些图形是否为菱形,引起学生对菱形的兴趣和思考。
2.理论讲解(20分钟)a)定义:什么是菱形?菱形是指四条边相等的四边形。
b)性质:-对角线的长度相等。
-对角线相互垂直。
-相邻角的和为180度。
-具有对称性。
-内角均是直角。
-具有平移不变性。
3.判断菱形的方法(15分钟)a)根据定义:判断四边形的四条边是否相等。
b)根据性质:判断四边形的对角线是否相等,是否互相垂直。
4.案例分析(20分钟)给出一些几何图形,让学生判断是否为菱形,并解释判断的过程和原因。
5.拓展应用(20分钟)a)设计一些菱形的几何问题,让学生应用菱形的性质解决。
b)分组讨论,学生互相出题并进行解答。
五、教学反思本节课通过对菱形的定义和性质的讲解,让学生对菱形有了初步的了解。
通过判断菱形的方法和解决菱形相关问题的练习,培养了学生的观察能力、分析和解决问题的能力。
此外,通过案例分析和拓展应用,提高了学生的思维能力和创造能力。
总之,本节课通过理论讲解和实际应用相结合的方法,使学生对菱形的理解更加深入,能够灵活运用菱形的性质解决几何问题。
菱形的性质和判定教案一、教学目标:知识与技能:1. 理解菱形的定义及其性质;2. 学会菱形的判定方法;3. 能够运用菱形的性质和判定方法解决实际问题。
过程与方法:1. 通过观察、操作、探究等活动,培养学生的观察能力和动手能力;2. 利用菱形的性质和判定方法,培养学生的逻辑思维能力和解决问题的能力。
情感态度价值观:1. 激发学生对几何图形的兴趣,培养学生的审美观念;2. 培养学生的团队合作意识和勇于探究的精神。
二、教学重点与难点:重点:1. 菱形的性质;2. 菱形的判定方法。
难点:1. 菱形性质的证明;2. 菱形判定方法的灵活运用。
三、教学准备:教师准备:1. 菱形的图片和实例;2. 菱形性质和判定方法的讲解资料;3. 练习题和答案。
学生准备:1. 笔记本;2. 尺子、圆规、剪刀等作图工具。
四、教学过程:环节一:导入1. 引导学生观察一些生活中的菱形实例,如蜂巢、骰子等,引发学生对菱形的兴趣;2. 提问:你们对这些菱形有什么发现和疑问?环节二:探究菱形的性质1. 学生分组讨论,观察菱形的特征,发现菱形的性质;2. 教师引导学生总结菱形的性质,并给出证明;3. 学生通过实际操作,验证菱形的性质。
环节三:学习菱形的判定方法1. 教师介绍菱形的判定方法,引导学生理解判定方法的意义;2. 学生通过练习题,巩固菱形的判定方法;3. 教师讲解判定方法的灵活运用。
环节四:应用与拓展1. 学生分组讨论,运用菱形的性质和判定方法解决实际问题;2. 教师选取一些学生的解题方法进行点评和讲解。
环节五:小结与作业1. 教师引导学生总结本节课的主要内容和收获;2. 布置作业,让学生巩固菱形的性质和判定方法。
五、教学反思:本节课通过观察生活中的菱形实例,引导学生发现菱形的性质,学习菱形的判定方法,并运用所学知识解决实际问题。
在教学过程中,注意调动学生的积极性,让学生充分参与课堂讨论,培养学生的观察能力、动手能力和解决问题的能力。
6.2菱形的判定一等奖创新教学设计2.6.2 菱形的判定教学目标:(1)理解并掌握“对角线互相垂直的平行四边形是菱形”;(2)理解并掌握“四边都相等的四边形是菱形.”(3)会用判定方法进行有关的论证和计算;(4)在菱形的判定方法的探索与综合应用中,培养学生的观察能力与逻辑思维能力.教学重点:菱形的两个判定方法.教学难点:判定方法的证明方法及综合运用.教学过程:引入知识回顾:(1)菱形的定义:一组邻边相等的平行四边形;(2)菱形的性质1 菱形的四条边都相等;性质2 菱形的对角线互相平分,并且每条对角线平分一组对角;问题:我们可经根据菱形的定义判断是否为菱形,但除根据定义判定外,还有其它的判定方法吗?如图2-52,用4支长度相等的铅笔能摆成菱形吗?把上述问题抽象出来就是:四条边都相等的四边形是菱形吗?下面我们来证明这个结论.如图2-53,在四边形ABCD中,AB=BC=CD=DA.∵AD=BC,AB=DC,∴四边形ABCD是平行四边形.又AB=AD,∴四边形ABCD是菱形.由此得到菱形的判定定理1:四条边都相等的四边形是菱形.例题讲解:分析解题过程并板书.如图2-54,在四边形ABCD中,线段BD垂直平分AC,且相交于点O,∠1=∠2.求证:四边形ABCD 是菱形.证明:∵线段BD垂直平分AC,∴BA=BC,DA=DC,OA=OC.在△AOB和△COD中,∵∠1=∠2,∠AOB=∠COD,OA=OC,∴△AOB ≌△COD∴AB=CD.∴AB=BC=CD=DA.∴四边形ABCD是菱形(四条边都相等的四边形是菱形).动脑筋菱形的两条对角线既互相垂直,又互相平分. 从菱形的这一性质受到启发,你能画出一个菱形吗?过点O画两条互相垂直的线段AC和BD,使得OA=OC,OB=OD. 连结AB,BC,CD,DA,则四边形ABCD是菱形,如图:你能说出这样画出的四边形ABCD一定是菱形的道理吗?如图2-55,由画法可知,四边形ABCD 的两条对角线AC 与BD 互相平分,因此它是平行四边形. 又已知其对角线互相垂直,上述问题抽象出来就是:对角线互相垂直的平行四边形是菱形吗?我们来进行证明.由于四边形ABCD的两条对角线AC与BD互相平分,因此它是平行四边形.又由于DB是线段AC的垂直平分线,因此,DA=DC.从而平行四边形ABCD是菱形.由此得到菱形的判定定理2:对角线互相垂直的平行四边形是菱形.例2 如图2-56,在平行四边形ABCD中,AC = 6,BD = 8,AD = 5. 求AB的长.解∵四边形ABCD为平行四边形,∴AB=AD=5 .又∵AD=5,满足___,∴△DAO是直角三角形.∴∠DOA = 90°,即DB⊥AC.∴平行四边形ABCD是菱形.(对角线互相垂直的平行四边形是菱形)∴AB=AD=5 .随堂训练画一个菱形,使它的两条对角线长度分别为4cm,3cm.如图,在平行四边形ABCD中,对角线AC,BD相交于点O,过点O 作MN⊥BD,分别交AD,BC于点M,N.求证:四边形BNDM 是菱形.课堂小结判定定理1:四条边都相等的四边形是菱形.判定定理2:对角线互相垂直的平行四边形是菱形.。
菱形判定定理教案【篇一:菱形的判定(公开课教案)】菱形的判定授课教师:黄石授课班级:初二(10)班一、教学目标:经历菱形的判定方法的探究过程,掌握菱形的三种判定方法.二、教学重点: 菱形判定方法的探究.三、教学难点: 菱形判定方法的探究及灵活运用.四、教学过程:活动1、引入新课,激发兴趣1、复习(1)菱形的定义:一组邻边相等的平行四边形是菱形。
(2)菱形的性质1 菱形的两组对边分别平行,四条边都相等;性质2 菱形的两组对角分别相等,邻角互补;性质3 菱形的两条对角线互相平分,菱形的两条对角线互相垂直,且每一条对角线平分一组对角。
2、导入(1)如果一个四边形是一个平行四边形,则只要再有什么条件就可以判定它是一个菱形?依据是什么?根据菱形的定义可知:一组邻边相等的平行四边形是菱形.所以只要再有一组邻边相等的条件即可.(2)要判定一个四边形是菱形,除根据定义判定外,还有其它的判定方法吗?活动2、探究与归纳菱形的第二个判定方法【问题牵引】用一长一短两根细木条,在它们的中点处固定一个小钉子,做成一个可转动的十字架,四周围上一根橡皮筋,做成一个四边形。
问: 任意转动木条,这个四边形总有什么特征?你能证明你发现的结论吗?继续转动木条,观察什么时候橡皮筋周围的四边形变成菱形?你能证明你的猜想吗?学生猜想:对角线互相垂直的平行四边形是菱形。
教师提问:这个命题的前提是什么?结论是什么?学生用几何语言表示命题如下:已知:在□abcd中,对角线ac⊥bd,【归纳定理】通过探究和进一步证明可以归纳得到菱形的第二个判定方法(判定定理1): 对角线互相垂直的平行四边形是菱形。
提示:此方法包括两个条件——(1)是一个平行四边形;(2)两条对角线互相垂直。
对角线互相垂直且平分的四边形是菱形。
活动3、菱形第二个判定方法的应用例3 如图,如图,□abcd的对角线ac、bd相交于点o,且ab=5,ao=4,bo=3,求证:□abcd是菱形。
菱形的判定教学设计菱形的判定教学设计教学目标•学生能够理解菱形的定义和特征•学生能够判定一个图形是否是菱形•学生能够绘制一个菱形教学内容1.菱形的定义–菱形是一个有四个角的四边形,四条边相等,对角线相等,且相交于90度角。
2.菱形的特征–四个角都是直角–对角线相等–两对边相等–对角线相交于90度角3.菱形的判定方法–判断四边是否相等–判断对角线是否相等–判断对角线是否垂直4.菱形的绘制方法–画一条水平线段作为菱形的底边–在底边上分别取两个点,作为对角线长–以这两个点为中心分别画两个同样长度的线段,刚好垂直于底边–连接底边两个点与对角线段两个点,得到一个菱形教学步骤1.导入菱形定义和特征的概念。
让学生看图,讨论菱形的形状和特征。
2.示范判断一个图形是否是菱形的方法。
给出几个图形,并要求学生逐个判断其是否为菱形,解释判断的依据。
3.引导学生总结判断菱形的方法,并进行练习。
给学生一些图形,让他们自己判断是否为菱形。
4.示范绘制一个菱形的步骤。
使用白板或投影仪展示绘制菱形的步骤,让学生跟随示范操作。
5.学生自己练习绘制菱形。
让学生根据自己的理解,绘制几个菱形。
拓展活动•让学生找到周围环境中的菱形,并描述其特征。
教学评估•对学生进行个人演示,要求他们判断一个给定图形是否为菱形,并绘制一个菱形。
•对学生绘制的菱形进行评估,评判其是否符合菱形的特征。
教学反思通过本课的教学,学生能够理解菱形的定义和特征,能够判断一个图形是否是菱形,并能够绘制一个菱形。
在教学过程中需要注意引导学生总结判断菱形的方法,并通过练习和评估来巩固学生的学习成果。
另外,拓展活动可以增加学生的实际应用能力和观察能力。
菱形的判定教学设计教学目标•学生能够理解菱形的定义和特征•学生能够判定一个图形是否是菱形•学生能够绘制一个菱形教学内容1.菱形的定义–菱形是一个有四个角的四边形,四条边相等,对角线相等,且相交于90度角。
2.菱形的特征–四个角都是直角–对角线相等–两对边相等–对角线相交于90度角3.菱形的判定方法–判断四边是否相等–判断对角线是否相等–判断对角线是否垂直4.菱形的绘制方法–画一条水平线段作为菱形的底边–在底边上分别取两个点,作为对角线长–以这两个点为中心分别画两个同样长度的线段,刚好垂直于底边–连接底边两个点与对角线段两个点,得到一个菱形教学步骤1.导入菱形定义和特征的概念。
《菱形的判定》教案一、教学目标1. 让学生理解菱形的定义和性质,掌握菱形的判定方法。
2. 培养学生的观察能力、推理能力和解决问题的能力。
3. 通过对菱形的判定方法的学习,提高学生对平面几何图形的理解和认识。
二、教学内容1. 菱形的定义:菱形是四条边相等的四边形。
2. 菱形的性质:菱形的对角线互相垂直,且平分对方;菱形的对边平行且相等。
3. 菱形的判定方法:a. 四条边相等的四边形是菱形;b. 对角线互相垂直,且平分对方的四边形是菱形;c. 对边平行且相等的四边形是菱形。
三、教学重点与难点1. 教学重点:菱形的定义、性质和判定方法。
2. 教学难点:菱形判定方法的灵活运用。
四、教学方法1. 采用问题驱动法,引导学生通过观察、思考、讨论等方式探索菱形的性质和判定方法。
2. 使用多媒体课件,展示菱形的图形和性质,增强学生的直观感受。
3. 进行适量练习,巩固学生对菱形判定方法的掌握。
五、教学过程1. 导入:通过展示一些生活中的菱形图形,如蜂巢、骰子等,引导学生关注菱形,激发学生的学习兴趣。
2. 新课导入:介绍菱形的定义和性质,引导学生理解菱形的特点。
3. 判定方法的学习:引导学生通过观察、讨论,总结出菱形的判定方法。
4. 判定方法的巩固:进行适量练习,让学生运用判定方法判断给出的四边形是否为菱形。
5. 课堂小结:对本节课的内容进行总结,强调菱形的定义、性质和判定方法。
6. 作业布置:布置一些有关菱形的练习题,让学生课后巩固所学知识。
7. 课后反思:对本节课的教学进行反思,找出不足之处,为下一步教学做好准备。
六、教学评价1. 评价内容:学生对菱形的定义、性质和判定方法的掌握程度。
2. 评价方法:a. 课堂问答:观察学生在课堂上的回答是否准确、流畅。
b. 练习题:批改学生完成的练习题,评估其对菱形判定方法的掌握情况。
c. 小组讨论:评估学生在小组讨论中的参与程度和表现。
七、教学拓展1. 引导学生思考:除了菱形,还有哪些四边形具有特殊的性质和判定方法?2. 推荐相关资料:为学生提供一些关于菱形和其他特殊四边形的拓展阅读材料,供有兴趣的学生进一步学习。
课题:19.2.2 菱形(二)
教学目标:
教学重点:菱形的两个判定方法.
教学难点:判定方法的证明方法及运用.
教学课时:教学课件:
生讨论归纳后,并板书):
第二步:应用举例:
例1 (教材P109的例3)略
例2(补充)已知:如图ABCD的对角
线AC的垂直平分线与边AD、BC分别交于E、
F.求证:四边形
AFCE是菱形.
证明:∵
四边形ABCD是
平行四边形,
∴AE∥
FC.
∴∠1=∠2.
又∠AOE=∠COF,AO=CO,
∴△AOE≌△COF.
∴EO=FO.
∴四边形AFCE是平行四边形.
又EF⊥AC,
∴AFCE是
菱形(对角线互相垂直的
平行四边形是菱形).
※例3(选讲)已
知:如图,△ABC中,∠
ACB=90°,BE平分∠
ABC,CD⊥AB与D,
EH⊥AB于H,CD交BE于F.
求证:四边形CEHF为菱形.
略证:易证CF∥EH,
CE=EH,在Rt△BCE
中,
∠CBE+∠CEB=90°,
在Rt△BDF中,
∠DBF+∠DFB=90°,
因为∠CBE=∠DBF,
∠CFE=∠DFB,所以
∠CEB=∠CFE,所以
CE=CF.
所以,CF=CE=EH,
CF∥EH,所以四边
形CEHF为菱形.
学生先
独立思
考,再
谈自己
的解题
思路。
第三步:随堂练习1.填空:
(1)对角线互相平分的四边形是;
(2)对角线互相垂直平分的四边形是________;(3)对角线相等且互相平分的四边形是________;
(4)两组对边分别平行,且对角线的四边形是菱形.
2.画一个菱形,
使它的两条对
角线长分别为
6cm、8cm.
3.如图,O是
矩形ABCD的对角线的交点,DE∥AC,CE∥BD,DE和CE相交于E,求证:四边形OCED
是菱形。
第四步:课后练习1.下列条件中,能判定四
边形是菱形的是
().
(A)两条对角线相等
(B)两条对角线互相垂
直
(C)两条对角线相等
且互相垂直(D)两条对角线互相垂直平
分
2.已知:如图,M是等腰三角形ABC底边BC 上的中点,DM⊥AB,EF⊥AB,ME⊥AC,DG ⊥AC.求证:四边形MEND是菱形.
第五
步:课堂小结:菱形可根据哪些进行判定?填写下表、填图:
应具备两个条件
菱形的
判定
菱形的
定义
判定定
理1
判定定
理2
板书设计:
应具备两个条件
菱形的判定
菱形的定义
判定定理1
判定定理2
辅备设计:教学反思:。