平面切割回转曲面体
- 格式:ppt
- 大小:4.09 MB
- 文档页数:27
曲面立体常见的曲面立体是回转体,回转体是由回转面或回转面与平面围成的立体。
回转面通常由一条直线或曲线绕一固定直线作回转运动而形成的曲面,如图所示。
固定的直线称为轴线,作回转运动的线称为母线,母线在运动过程中所处的任意位置称为素线,母线上任意一点的运动轨迹是圆,常称为纬圆。
(a)圆柱 (b)圆锥 (c)球 (d)圆环回转面的形成绘制回转体的三视图归结为绘制回转体的轮廓线、顶点和曲面转向轮廓线的投影。
转向轮廓线:投射线与曲面的切线转向轮廓线投影:是指切于曲面的各投射线与投影面的交点的集合,也就是这些投射线所组成的投射面(平面或柱面)与投影面的交线,如图所示。
曲面转向轮廓线的投影也是曲面在该投影面上投影可见与不可见的分界线。
1.圆柱1)圆柱的三视图圆柱由圆柱面和两个平面围成。
三视图如图b所示。
圆柱的尺寸注法如图c所示。
(a)立体图(b)三视图(c)尺寸注法圆柱体的三视图及尺寸注意:绘制圆柱等回转体的三视图时应先用细点画线画出立体的轴线、对称中心线。
2)圆柱表面上取点在圆柱面上取点,首先要确定点在圆柱面的哪个部分,然后利用圆柱面投影的积聚性以及点的投影规律,确定圆柱面上点的位置、投影及可见性。
例题:如图a所示,已知圆柱面上M点的正面投影m’和N点的侧面投影n”。
求M点和N点的其余两个投影。
分析:因圆柱轴线垂直于水平投影面,M、N点在圆柱面上,它们的水平投影面投影必在圆上。
由已知条件可知,M点在左前圆柱面上,故m”为可见;N 点在右前圆柱面上,n’为可见。
作图:m’求得m,由m’、m得m”,判别可见性。
n”求得n,由n”、n得m’,判别可见性。
(a)已知条件(b)M点作图(c)N点作图圆柱表面取点3)圆柱表面上取线回转体表面上的线通常是空间曲线,特殊情况下是平面曲线或直线。
步骤:①确定出该线段在立体表面上的特殊点:线段的端点、该线经过立体表面转向轮廓线投影上的点;②在特殊点之间插入一些一般点;③光滑、平顺地连接各点。
第三章基本立体的投影、截交线、相贯线§1立体的投影1.1平面立体的投影本节教学目标:掌握平面立体的投影特性和作图方法;掌握拉伸体的形成、投影及画法;熟悉平面立体表面中特殊位置的点、线的三面投影及画法。
重点:平面立体的投影特性及表面取点、取线的投影。
难点:平面立体表面中特殊位置处点、线的投影。
引入:通过对前面知识的学习已经知道,很多的机械零件都是由一些简单的基本形体组成,比如螺栓,我们可以将它分成正六棱柱、圆柱体和圆锥台三部分。
如果我们要绘制此螺栓的三视图,同学们都应该知道必须要绘制正六棱柱、圆柱体和圆锥台的三视图。
任何一个复杂的物体都可以看成由基本体组成,按组成基本体表面的性质进行分类,基本体可分为平面体和曲面体。
平面立体侧表面的交线称为棱线若平面立体所有棱线互相平行,称为棱柱。
若平面立体所有棱线交于一点,称为棱锥。
1.1.1棱柱的投影1. 以正六棱柱为例,分析平面立体的结构,(1)正六棱柱共有几个表面?有何关系?(2)正六棱柱共有几条侧棱?有何关系?提问:1)不同位置的投影有什么不同?2)应怎样放置最合理?提示:使尽可能多的表面和棱线处于特殊位置。
2.投影特性分析(1)投影分析:上、下两个底面——平行的两个侧面——其余的几个侧面(2)三面投影图分析(3)绘图步骤:1)建立投影面系;2)根据三等原则绘制三面投影;3)区分可见性。
3. 棱柱体的投影特性(重点:学生应掌握)(1)当棱柱的底面平行于某一投影面时,棱柱的投影在该面上为与底面相等的正多边形。
(2)另两面投影为几个相邻的矩形线框。
4. 棱柱表面取点、线重点:所取的点、线属于棱柱的哪个面上?进而再求三面投影。
***若点所在平面的投影可见,点的投影可见;若平面的投影积聚成直线,点的投影也可见。
例:例:已知四棱柱,试完成其V、H投影。
(图7-1)图7-1四棱柱的投影1.1.2棱锥的投影棱锥的投影是棱锥各顶点同面投影连线的集合。
1. 棱锥的定义2. 棱锥的形体分析(1)投影分析:下底面——顶点——其余的几个侧面(2)三面投影图分析(3)绘图步骤:1)建立投影面系;2)根据三等原则绘制三面投影;3)区分可见性。
第四章 回转体及其投影曲面体的表面由曲面或曲面与平面构成,最常见的曲面体是回转体。
本章主要讨论曲面体的构成要素曲线、曲面的投影特征;回转体的投影;平面与回转体相交、回转面与回转面相交,交线的投影。
§4-1 曲线、曲面的投影曲线、曲面和直线、平面一样都是构成立体表面形状及其轮廓线的几何元素。
掌握曲线、曲面的投影特征,有利于学习曲面立体的投影作图,本节将概括介绍曲线、曲面的形成、分类及常见曲线、曲面的投影特征。
一、曲线1.曲线的基本知识(1)曲线的形成工程上常用的曲线都具有一定规律,称为规律曲线。
规律曲线的形成通常有下列三种形式:图4-1 曲线的形成1) 动点的运动轨迹L(图4-1a),即动点A在运动方向连续改变下所形成的轨迹。
2) 两面的交线L,平面与曲面或者曲面与曲面的交线(图4-1b)。
3) 直线族或曲线族的包络线L,即与直线族中每一条直线都相切的曲线L,或与圆族中每一个圆都相切的曲线L(图4-1c)。
(2)曲线的分类平面曲线曲线上所有的点都在同一平面内,如圆、椭圆、双曲线等。
空间曲线曲线上任意连续的四点不在同一平面内。
如圆柱螺旋线等。
(3)曲线的投影特征1) 曲线的投影一般仍为曲线,平面曲线在特殊情况下(平面曲线所在平面垂直于投影面时)可投影为直线(图4-2a)。
2)点在曲线上,点的各面投影均在曲线的同面投影上。
因此,取曲线上若干个点,求出这些点的投影,并依次光滑地连接这些点的同面投影,就可得曲线的投影。
这是作曲线投影的基本方法(图4-2a)。
3) 曲线上某点的切线的投影,一般情况下,该切线的投影也过切点与曲线的投影相切(图4-2b)。
但当曲线的切线垂直于投影面时,切线在该投影面上的投影积聚为一点,曲线的该面投影则在该点形成一个尖的回折点(图4-2c)。
根据曲线的这些投影特性,可以作出曲线的投影和检查曲线投影的正确性。
图4-2 曲线的投影特征2.常见平面曲线(圆)的投影圆是最常见的一种规律曲线,下面介绍特殊位置平面内的圆的投影。