第四章图形的相似单元测试卷及答案
- 格式:doc
- 大小:527.50 KB
- 文档页数:5
九年级上册数学单元测试卷-第四章图形的相似-北师大版(含答案)一、单选题(共15题,共计45分)1、如图,若A,B,C,P,Q,甲,乙,丙,丁都是方格纸中的格点,为使△PQR∽△ABC,则点R应是甲,乙,丙,丁四点中的().A.丁B.丙C.乙D.甲2、如果点D、E,F分别在△ABC的边AB、BC,AC上,联结DE、EF,且DE∥AC,那么下列说法错误的是()A.如果EF∥AB,那么AF:AC=BD:ABB.如果AD:AB=CF:AC,那么EF∥ABC.如果△EFC∽△ABC,那么EF∥ABD.如果EF∥AB,那么△EFC∽△BDE3、如图,BE、CD相交于点A,连接BC,DE,下列条件中不能判断△ABC∽ADE的是()A.∠B=∠DB.∠C=∠EC.D.4、如图,在△ABC中,DE∥BC,∠ADE=∠EFC,AD∶BD=5∶3,CF=6,则DE的长为( )A.6B.8C.10D.125、如图,路灯距地面8米,身高1.6米的小李从点A处沿AO所在的直线行走14米到点B 时,人影长度()A.变长3.5米B.变长2.5米C.变短3.5米D.变短2.5米6、如图,菱形ABCD的边长为10,面积为80,∠BAD<90°,⊙O与边AB,AD都相切菱形的顶点A到圆心O的距离为5,则⊙O的半径长等于()A.2.5B.C.D.37、如图,与交于点,则()A.2B.3C.3.5D.48、如图,在△ABC中,D为AB边上一点,E为CD中点,AC= ,∠ABC=30°,∠A=∠BED=45°,则BD的长为().A. B. C. D.9、如果点D、E分别在△ABC的边AB和AC上,那么不能判定DE∥BC的比例式是()A.AD:DB=AE:ECB.BD:AB=CE:ACC.DE:BC=AD:ABD.AB:AC=AD:AE10、下列几个命题中正确的有()(1)四条边相等的四边形都相似;(2)四个角都相等的四边形都相似;(3)三条边相等的三角形都相似;(4)所有的正六边形都相似。
《第四章图形的相似》一、选择题:1.如图,在平行四边形ABCD中,E为DC的中点,AE交BD于点F,S△DEF=12cm2,则S△AOB的值为()A.12cm2B.24cm2C.36cm2D.48cm22.如图,△ABC,AB=12,AC=15,D为AB上一点,且AD=AB,在AC上取一点E,使以A、D、E为顶点的三角形与ABC相似,则AE等于()A.B.10C.或10 D.以上答案都不对3.(3分)在直角三角形中,两直角边分别为3和4,则这个三角形的斜边与斜边上的高的比为()A.B.C.D.4.点P是△ABC中AB边上的一点,过点P作直线(不与直线AB重合)截△ABC,使截得的三角形与原三角形相似,满足这样条件的直线最多有()A.2条B.3条C.4条D.5条5.如图,小正方形的边长均为1,则下列图中的三角形(阴影部分)与△ABC相似的是( )A.B.C.D.6.正方形ABCD的对角线AC、BD相交于点O,E是BC中点,DE交AC于F,若DE=12,则EF等于( )A.8 B.6 C.4 D.37.已知正方形ABCD,E是CD的中点,P是BC边上的一点,下列条件中不能推出△ABP与△ECP相似的是()A.∠APB=∠EPC B.∠APE=90°C.P是BC的中点D.BP:BC=2:38.如图,矩形ABCD中,BE⊥AC于F,E恰是CD的中点,下列式子成立的是( )A.BF2=AF2 B.BF2=AF2 C.BF2>AF2D.BF2<AF29.(3分)如图,正方形ABCD的面积为1,M是AB的中点,连接CM、DM、AC,则图中阴影部分的面积为()A.B.C.D.10.在坐标系中,已知A(﹣3,0),B(0,﹣4),C(0,1),过点C作直线L交x轴于点D,使得以点D,C,O为顶点的三角形与△AOB相似,这样的直线一共可以作出()A.6条B.3条C.4条D.5条二、填空题:11.如图,把一个矩形纸片ABCD沿AD和BC的中点连线EF对折,要使矩形AEFB与原矩形相似,则原矩形长与宽的比为.12.已知: ===,2b+3d﹣5f=9,则2a+3c﹣5e= .13.如图,在Rt△ABC中,∠C=90°,MN⊥AB于M,AM=8cm,AC=AB,BC=15cm,则四边形BCNM 的面积为.14.如图,在正方形ABCD中,点E是BC边上一点,且BE:EC=2:1,AE与BD交于点F,则△AFD与四边形DEFC的面积之比是.15.如图,已知梯形AECF中,已知点D是AB边的中点,AF∥BC,CG=3,GA=1,若△AEG的面积为1,那么四边形BDGC的面积为.16.如图,在平行四边形ABCD中,M、N为AB的三等分点,DM、DN分别交AC于P、Q两点,则AP:PQ:QC= .三、解答题:(共36分)17.已知:平行四边形ABCD,E是BA延长线上一点,CE与AD、BD交于G、F.求证:CF2=GF•EF.18.(8分)已知:如图AD•AB=AF•AC,求证:△DEB∽△FEC.19.以长为2的线段AB为边作正方形ABCD,取AB的中点P,连接PD,在BA的延长线上取点F,使PF=PD,以AF为边作正方形AMEF,点M在AD上.(1)求AM,DM的长;(2)求证:AM2=AD•DM;(3)根据(2)的结论你能找出图中的黄金分割点吗?20.已知:如图,AD是Rt△ABC的角平分线,AD的垂直平分线EF交CB的延长线于点F,求证:FD2=FB•FC.21.已知,如图,在Rt△ABC中,∠ACB=90°,AD平分∠CAB交BC于点D,过点C作CE⊥AD,垂足为E,CE的延长线交AB于点F,过点E作EG∥BC交AB于点G,AE•AD=16,.(1)求AC的长;(2)求EG的长.《第四章图形的相似》参考答案与试题解析一、选择题:1.如图,在平行四边形ABCD中,E为DC的中点,AE交BD于点F,S△DEF=12cm2,则S△AOB的值为()A.12cm2B.24cm2C.36cm2D.48cm2【考点】相似三角形的判定与性质;平行四边形的性质.【分析】根据平行四边形的性质得出AB=DC=2DE,OD=OB,DC∥AB,求出△DFE∽△BFA,推出===, =()2=, ==,求出△AFB的面积是48cm2,△ADF的面积是24cm2,求出△ABD的面积即可.【解答】解:∵E为DC的中点,∴DC=2DE,∵四边形ABCD是平行四边形,∴AB=DC=2DE,OD=OB,DC∥AB,∴△DFE∽△BFA,∴===, =()2=()2=, ==,∵S△DEF=12cm2,∴△AFB的面积是48cm2,△ADF的面积是24cm2,∴△ABD的面积是72cm2,∵DO=OB,∴△ADO和△ABO的面积相等,∴S△AOB的值为×72cm2=36cm2,故选C.【点评】本题考查了相似三角形的性质和判定,平行四边形的性质的应用,解此题的关键是求出△AFB的面积和△ADF的面积.2.如图,△ABC,AB=12,AC=15,D为AB上一点,且AD=AB,在AC上取一点E,使以A、D、E 为顶点的三角形与ABC相似,则AE等于()A.B.10C.或10 D.以上答案都不对【考点】相似三角形的性质.【专题】分类讨论.【分析】△ADE与△ABC相似,则存在两种情况,即△AED∽△ACB,也可能是△AED∽△ABC,应分类讨论,求解.【解答】解:如图(1)当∠AED=∠C时,即DE∥BC则AE=AC=10(2)当∠AED=∠B时,△AED∽△ABC∴,即AE=综合(1),(2),故选C.【点评】会利用相似三角形求解一些简单的计算问题.3.(3分)在直角三角形中,两直角边分别为3和4,则这个三角形的斜边与斜边上的高的比为()A.B.C.D.【考点】勾股定理.【分析】本题主要利用勾股定理和面积法求高即可.【解答】解:∵在直角三角形中,两直角边分别为3和4,∴斜边为5,∴斜边上的高为=.(由直角三角形的面积可求得)∴这个三角形的斜边与斜边上的高的比为5: =.故选A.【点评】此题考查了勾股定理和利用面积法求高,此题考查了学生对直角三角形的掌握程度.4.点P是△ABC中AB边上的一点,过点P作直线(不与直线AB重合)截△ABC,使截得的三角形与原三角形相似,满足这样条件的直线最多有()A.2条B.3条C.4条D.5条【考点】相似三角形的判定.【专题】常规题型;压轴题.【分析】根据已知及相似三角形的判定作辅助线即可求得这样的直线有几条.【解答】解:(1)作∠APD=∠C∵∠A=∠A∴△APD∽△ABC(2)作PE∥BC∴△APE∽△ABC(3)作∠BPF=∠C∵∠B=∠B∴△FBP∽△ABC(4)作PG∥AC∴△PBG∽△ABC所以共4条故选C.【点评】本题考查相似三角形的判定的运用.5.如图,小正方形的边长均为1,则下列图中的三角形(阴影部分)与△ABC相似的是( )A.B.C.D.【考点】相似三角形的判定.【专题】网格型.【分析】根据网格中的数据求出AB,AC,BC的长,求出三边之比,利用三边对应成比例的两三角形相似判断即可.【解答】解:根据题意得:AB==,AC=,BC=2,∴AC:BC:AB=:2: =1::,A、三边之比为1::2,图中的三角形(阴影部分)与△ABC不相似;B、三边之比为::3,图中的三角形(阴影部分)与△ABC不相似;C、三边之比为1::,图中的三角形(阴影部分)与△ABC相似;D、三边之比为2::,图中的三角形(阴影部分)与△ABC不相似.故选C.【点评】此题考查了相似三角形的判定,熟练掌握相似三角形的判定方法是解本题的关键.6.正方形ABCD的对角线AC、BD相交于点O,E是BC中点,DE交AC于F,若DE=12,则EF等于()A.8 B.6 C.4 D.3【考点】相似三角形的判定与性质;正方形的性质.【专题】压轴题;探究型.【分析】先根据题意画出图形,因为四边形ABCD是正方形,E是BC中点,所以CE=AD,由相似三角形的判定定理得出△CEF∽△ADF,再根据相似三角形的对应边成比例可得出==,再根据DF=DE﹣EF即可得出EF的长.【解答】解:如图所示:∵四边形ABCD是正方形,E是BC中点,∴CE=AD,∵AD∥BC,∴∠ADF=∠DEC,∠AFD=∠EFC,∴△CEF∽△ADF,∴==, =,即=,解得EF=4.故选C.【点评】本题考查的是相似三角形的判定与性质及正方形的性质,先根据题意判断出△CEF∽△ADF,再根据相似三角形的对应边成比例进行解答是解答此题的关键.7.已知正方形ABCD,E是CD的中点,P是BC边上的一点,下列条件中不能推出△ABP与△ECP相似的是()A.∠APB=∠EPC B.∠APE=90°C.P是BC的中点D.BP:BC=2:3【考点】相似三角形的判定;正方形的性质.【专题】压轴题.【分析】利用两三角形相似的判定定理,做题即可.【解答】解:利用三角形相似的判定方法逐一进行判断.A、B可用两角对应相等的两个三角形相似;D可用两边对应成比例且夹角相等的两个三角形相似进行判断.只有C中P是BC的中点不可推断.故选C.【点评】考查相似三角形的判定定理:(1)两角对应相等的两个三角形相似.(2)两边对应成比例且夹角相等的两个三角形相似.(3)三边对应成比例的两个三角形相似.(4)如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角边对应成比例,那么这两个直角三角形相似.8.如图,矩形ABCD中,BE⊥AC于F,E恰是CD的中点,下列式子成立的是()A.BF2=AF2 B.BF2=AF2 C.BF2>AF2D.BF2<AF2【考点】相似三角形的判定与性质;矩形的性质;射影定理.【分析】此题即是探求BF2与AF2之间的关系.利用△ABF∽△CEF所得比例线段探究求解.【解答】解:根据射影定理可得BF2=AF×CF;∵△ABF∽△CEF,∴CF:AF=CE:AB=1:2∴BF2=AF×AF=AF2.故选A.【点评】本题主要考查了射影定理及三角形的相似的性质.9.(3分)如图,正方形ABCD的面积为1,M是AB的中点,连接CM、DM、AC,则图中阴影部分的面积为()A.B.C.D.【考点】相似三角形的判定与性质;正方形的性质.【分析】根据正方形的性质可得到△AME∽△CDE,根据相似三角形的边对应边成比例,求得EH,EF的长,从而即可求得阴影部分的面积.【解答】解:如图,过点E作HF⊥AB∵AM∥CD,∴∠DCE=∠EAM,∠CDE=∠EMA,∴△AME∽△CDE∴AM:DC=EH:EF=1:2,FH=AD=1∴EH=,EF=.∴阴影部分的面积=S正﹣S△AME﹣S△CDE﹣S△MBC=1﹣﹣﹣=.故选B.【点评】本题考查了正方形的性质,相似三角形的判定和性质,找出各线段之间的比例关系是本题解题的关键.10.在坐标系中,已知A(﹣3,0),B(0,﹣4),C(0,1),过点C作直线L交x轴于点D,使得以点D,C,O为顶点的三角形与△AOB相似,这样的直线一共可以作出()A.6条B.3条C.4条D.5条【考点】相似三角形的判定;坐标与图形性质.【专题】常规题型;分类讨论.【分析】△AOB是直角三角形,所作的以点D,C,O为顶点的三角形中∠COD=90度,OC与AD 可能是对应边,这样就可以求出CD的长度,以C为圆心,以所求的长度为半径作圆,圆与x 轴有两个交点,因而这样的直线就是两条.同理,当OC与BD是对应边时,又有两条满足条件的直线,共有四条.【解答】解:以点D,C,O为顶点的三角形中∠COD=90度,当OC与AO是对应边,以C为圆心,以CD的长度为半径作圆,圆与x轴有两个交点,因而这样的直线就是两条.同理,当OC与OB是对应边时,又有两条满足条件的直线,所以共有四条.故选C.【点评】本题主要考查了三角形的相似,注意到分两种情况进行讨论是解决本题的关键.二、填空题:11.如图,把一个矩形纸片ABCD沿AD和BC的中点连线EF对折,要使矩形AEFB与原矩形相似,则原矩形长与宽的比为.【考点】相似多边形的性质.【分析】根据相似多边形对应边的比相等,设出原来矩形的长与宽,就可得到一个方程,解方程即可求得.【解答】解:根据条件可知:矩形AEFB∽矩形ABCD.∴=.设AD=x,AB=y,则AE=x.则=,即: x2=y2.∴=2.∴x:y=:1.即原矩形长与宽的比为:1.故答案为::1.【点评】本题考查了相似多边形的性质,根据相似形的对应边的比相等,把几何问题转化为方程问题,正确分清对应边,以及正确解方程是解决本题的关键.12.已知: ===,2b+3d﹣5f=9,则2a+3c﹣5e= .【考点】比例的性质.【分析】根据等比性质解答即可.【解答】解:∵ ===,∴=,∵2b+3d﹣5f=9,∴2a+3c﹣5e=×9=6.故答案为:6.【点评】本题考查了比例的性质,熟记并理解等比性质是解题的关键.13.如图,在Rt△ABC中,∠C=90°,MN⊥AB于M,AM=8cm,AC=AB,BC=15cm,则四边形BCNM的面积为.【考点】相似三角形的判定与性质.【分析】由△AMN∽△ACB,推出==,由AC:AB=4:5,设AC=4k,AB=5k,则BC=3k,由BC=15,推出k=5,AC=20,AB=25,根据四边形BCNM的面积=S△ABC﹣S△AMN即可解决问题.【解答】解:∵MN⊥AB,∴∠AMN=∠C=90°,∵∠A=∠A,∴△AMN∽△ACB,∴==,∵AC:AB=4:5,设AC=4k,AB=5k,则BC=3k,∵BC=15,∴3k=15,∴k=5,AC=20,AB=25,∴MN=6,AN=8,∴四边形BCNM的面积=S△ABC﹣S△AMN=×20×15﹣×8×6=126.故答案为126.【点评】本题考查相似三角形的性质和判定、勾股定理等知识,解题的关键是灵活运用这些知识解决问题,属于中考常考题型.14.如图,在正方形ABCD中,点E是BC边上一点,且BE:EC=2:1,AE与BD交于点F,则△AFD与四边形DEFC的面积之比是.【考点】正方形的性质;相似三角形的判定与性质.【专题】压轴题.【分析】根据题意,先设CE=x,S△BEF=a,再求出S△ADF的表达式,利用四部分的面积和等于正方形的面积,得到x与a的关系,那么两部分的面积比就可以求出来.【解答】解:设CE=x,S△BEF=a,∵CE=x,BE:CE=2:1,∴BE=2x,AD=BC=CD=AD=3x;∵BC∥AD∴∠EBF=∠ADF,又∵∠BFE=∠DFA;∴△EBF∽△ADF∴S△BEF:S△ADF===,那么S△ADF=a.∵S△BCD﹣S△BEF=S四边形EFDC=S正方形ABCD﹣S△ABE﹣S△ADF,∴x2﹣a=9x2﹣×3x•2x﹣,化简可求出x2=;∴S△AFD:S四边形DEFC=: =: =9:11,故答案为9:11.【点评】此题运用了相似三角形的判定和性质,还用到了相似三角形的面积比等于相似比的平方.15.如图,已知梯形AECF中,已知点D是AB边的中点,AF∥BC,CG=3,GA=1,若△AEG的面积为1,那么四边形BDGC的面积为.【考点】相似三角形的判定与性质;梯形.【分析】先求出△AFG的面积,然后找出S△CEG=9S△AFG=3,再求出S△AFD=2S△AFC=2×=,S△DEB=S△AFD=,最后用面积差即可.【解答】解:AF∥BC,CG=3,GA=1,∴,∴FG=EF,∵AF∥BC,∴,∵D是AB的中点,∴AD=BD,∴ED=FD,∴FD=EF,∵=,∴S△AFG=S△AEG=,∵AF∥BC,∴△CEG∽△AFG,∴,∴S△CEG=9S△AFG=3,∵FG=EF,FD=EF,∴FD=2FG,∴DG=FG,∴S△AFD=2S△AFC=2×=,∵△BED≌△AFD,∴S△DEB=S△AFD=,∴S四边形BDGC的面积=S△CGE﹣S△BED=3﹣=.【点评】此题是相似三角形的性质和判定,主要考查了相似三角形的性质,面积比等于相似比的平分,等底的两三角形面积的比等于高的比,解本题的关键是求出△AFG的面积.16.如图,在平行四边形ABCD中,M、N为AB的三等分点,DM、DN分别交AC于P、Q两点,则AP:PQ:QC= .【考点】相似三角形的判定与性质;平行四边形的性质.【分析】根据题意,可得出△AMP∽△CDP和△ANQ∽△CDQ,可分别得到AP、PQ、QC的关系式,进而求出AP、PQ、QC的比值.【解答】解:由已知得:△AMP∽△CDP,∴AM:CD=AP:PC=AP:(PQ+QC)=,即:3AP=PQ+QC,①△ANQ∽△CDQ,∴AN:CD=AQ:QC=(AP+PQ):QC=,即2QC=3(AP+PQ),②解①、②得:AQ=AC,PQ=AQ﹣AP=AC,QC=AC﹣AQ=AC,∴AP:PQ:QC=5:3:12.【点评】主要考查了三角形相似的性质和平行四边形的性质,要熟练掌握灵活运用.三、解答题:(共36分)17.已知:平行四边形ABCD,E是BA延长线上一点,CE与AD、BD交于G、F.求证:CF2=GF•EF.【考点】平行线分线段成比例;平行四边形的性质.【专题】证明题.【分析】根据平行四边形的性质得AD∥BC,AB∥CD,再根据平行线分线段成比例定理得=, =,利用等量代换得到=,然后根据比例的性质即可得到结论.【解答】证明:∵四边形ABCD是平行四边形,∴AD∥BC,AB∥CD,∴=, =,∴=,即CF2=GF•EF.【点评】本题考查了平行线分线段成比例定理:平行于三角形一边的直线截其他两边(或两边的延长线),所得的对应线段成比例.也考查了平行四边形的性质.18.(8分)已知:如图AD•AB=AF•AC,求证:△DEB∽△FEC.【考点】相似三角形的判定.【专题】证明题.【分析】利用两边对应比值相等,且夹角相等的两三角形相似,进而得出即可.【解答】证明:∵AD•AB=AF•AC,∴=,又∵∠A=∠A,∴△DEB∽△FEC.【点评】此题主要考查了相似三角形的判定,熟练掌握判定定理是解题关键.19.以长为2的线段AB为边作正方形ABCD,取AB的中点P,连接PD,在BA的延长线上取点F,使PF=PD,以AF为边作正方形AMEF,点M在AD上.(1)求AM,DM的长;(2)求证:AM2=AD•DM;(3)根据(2)的结论你能找出图中的黄金分割点吗?【考点】黄金分割;勾股定理;正方形的性质.【分析】(1)由勾股定理求PD,根据AM=AF=PF﹣PA=PD﹣PA,DM=AD﹣AM求解;(2)由(1)计算的数据进行证明;(3)根据(2)的结论得: =,根据黄金分割点的概念,则点M是AD的黄金分割点.【解答】(1)解:在Rt△APD中,PA=AB=1,AD=2,∴PD==,∴AM=AF=PF﹣PA=PD﹣PA=﹣1,DM=AD﹣AM=2﹣(﹣1)=3﹣;(2)证明:∵AM2=(﹣1)2=6﹣2,AD•DM=2(3﹣)=6﹣2,∴AM2=AD•DM;(3)点M是AD的黄金分割点.理由如下:∵AM2=AD•DM,∴═=,∴点M是AD的黄金分割点.【点评】此题综合考查了正方形的性质、勾股定理和黄金分割的概念.先求得线段AM,DM的长,然后求得线段AM和AD,DM和AM之间的比,根据黄金分割的概念进行判断.20.已知:如图,AD是Rt△ABC的角平分线,AD的垂直平分线EF交CB的延长线于点F,求证:FD2=FB•FC.【考点】相似三角形的判定与性质.【专题】证明题.【分析】首先连接AF,可证得△AFC∽△BFA,然后由相似三角形的对应边成比例证得FA2=FB•FC,则可得FD2=FB•FC.【解答】证明:连接AF,∵EF是AD的垂直平分线,∴AF=DF,∴∠FAE=∠FDE,∵∠FAE=∠FAB+∠BAD,∠FDE=∠C+∠CAD,且∠BAD=∠CAD,∴∠FAB=∠C,∵∠AFB是公共角,∴△AFB∽△CFA,∴,∴FA2=FB•FC,即FD2=FB•FC.【点评】此题考查了相似三角形的判定与性质,线段垂直平分线的性质以及角平分线的定义.此题难度适中,注意掌握辅助线的作法,注意数形结合思想的应用.21.已知,如图,在Rt△ABC中,∠ACB=90°,AD平分∠CAB交BC于点D,过点C作CE⊥AD,垂足为E,CE的延长线交AB于点F,过点E作EG∥BC交AB于点G,AE•AD=16,.(1)求AC的长;(2)求EG的长.【考点】相似三角形的判定与性质;角平分线的性质;勾股定理;三角形中位线定理.【专题】几何图形问题.【分析】(1)∠CAD是公共角,∠ACB=∠AEC=90°,所以△ACE和△ADC相似,根据相似三角形对应边成比例,列出比例式整理即可得到AC2=AE•AD,代入数据计算即可;(2)根据勾股定理求出BC的长度为8,再根据AD平分∠CAB交BC于点D,CE⊥AD证明△ACE 和△AFE全等,根据全等三角形对应边相等,CE=EF,最后根据三角形的中位线平行于第三边并且等于第三边的一半EG=BC.【解答】解:(1)∵CE⊥AD,∴∠AEC=90°,∵∠ACB=90°,∴∠AEC=∠ACB,又∠CAE=∠CAE,∴△ACE∽△ADC,∴,即AC2=AE•AD,∵AE•AD=16,∴AC2=16,∴AC=4;(2)在△ABC中,BC===8,∵AD平分∠CAB交BC于点D,∴∠CAE=∠FAE,∵CE⊥AD,∴∠AEC=∠AEF=90°,在△ACE和△AFE中,,∴△ACE≌△AFE(ASA),∴CE=EF,∵EG∥BC,∴EG=BC=×8=4.【点评】本题主要考查两角对应相等,两三角形相似,相似三角形对应边成比例,三角形的中位线平行于第三边并且等于第三边的一半的性质,熟练掌握性质并灵活运用是解题的关键,难度适中.尊敬的读者:本文由我和我的同事在百忙中收集整编出来,本文稿在发布之前我们对内容进行仔细校对,但是难免会有不尽如人意之处,如有疏漏之处请指正,希望本文能为您解开疑惑,引发思考。
北师大版数学九年级上册《第四章图形相似》单元测试一.选择题(共12小题)1.若,则的值为()A.1 B.C.D.2.若△ABC∽△DEF,且对应中线比为2:3,则△ABC与△DEF 的面积比为()A.3:2 B.2:3 C.4:9 D.9:163.如图,为估算某河的宽度,在河对岸边选定一个目标点A,在近岸取点B,C,D,使得AB⊥BC,CD⊥BC,点E在BC上,并且点A,E,D在同一条直线上.若测得BE=30m,EC=15m,CD=30m,则河的宽度AB长为()A.90m B.60m C.45m D.30m 4.如图,已知点E(﹣4,2),F(﹣2,﹣2),以O为位似中心,按比例尺1:2,把△EFO缩小,则点E的对应点E′的坐标为()A.(2,﹣1)或(﹣2,1)B.(8,﹣4)或(﹣8,﹣4)C.(2,﹣1)D.(8,﹣4)5.如图,已知AD为△ABC的角平分线,DE∥AB交AC于E,如果=,那么等于()A.B.C.D.6.如图,直线l1∥l2∥l3,直线AC分别交l1,l2,l3于点A,B,C;直线DF分别交l1,l2,l3于点D、E、F,AC与DF相交于点H,且AH=2,HB=1,BC=5,则=()A.B.2 C.D.7.如图▱ABCD,E是BC上一点,BE:EC=2:3,AE交BD于F,则BF:FD等于()A.2:5 B.3:5 C.2:3 D.5:7 8.如图,在▱ABCD中,AC与BD相交于点O,E为OD的中点,连接AE并延长交DC于点F,则S△DEF:S△AOB的值为()A.1:3 B.1:5 C.1:6 D.1:11 9.如图,在△ABC中,∠C=90°,点D是BC边上一动点,过点B 作BE⊥AD交AD的延长线于E.若AC=6,BC=8,则的最大值为()A.B.C.D.[来源:学] 10.如图,△ABC中,D、E是BC边上的点,BD:DE:EC=3:2:1,M在AC边上,CM:MA=1:2,BM交AD,AE于H,G,则BH:HG:GM等于()A.3:2:1 B.5:3:1 C.25:12:5 D.51:24:10 11.如图为两正方形ABCD、BEFG和矩形DGHI的位置图,其中G、F两点分别在BC、EH上.若AB=5,BG=3,则△GFH的面积为何?()A.10 B.11 C.D.12.如图,,∠1=∠2,则对于结论:①△ABE∽△ACF;②△ABC∽△AEF;③;④.其中正确的结论的个数是()A.1 B.2 C.3 D.4二.填空题(共5小题)13.如图,△ABC中,AD是中线,BC=8,∠B=∠DAC,则线段AC的长为.14.已知直线a∥b∥c,直线m,n与直线a,b,c分别交于点A,C,E,B,D,F,AC=4,CE=6,BD=3,则BF=.15.如图,在斜边长为1的等腰直角三角形OAB中,作内接正方形A1B1D1C1;在等腰直角三角形OA1B1中作内接正方形A2B2D2C2;在等腰直角三角形OA2B2中作内接正方形A3B3D3C3;…;依次做下去,则第n个正方形A n B n D n C n的边长是.16.如图,在Rt△ABC中,∠ABC=90°,AB=3,BC=4,Rt△MPN,∠MPN=90°,点P在AC上,PM交AB于点E,PN交BC于点F,当PE=2PF时,AP=.17.如图,四边形DEFG是△ABC的内接矩形,其中D、G分别在边AB,AC上,点E、F在边BC上,DG=2DE,AH是△ABC的高,BC=20,AH=15,那么矩形DEFG的周长是.三.解答题(共6小题)18.已知,如图,△ABC中,AB=2,BC=4,D为BC边上一点,BD=1.(1)求证:△ABD∽△CBA;(2)在原图上作DE∥AB交AC与点E,请直接写出另一个与△ABD相似的三角形,并求出DE的长.19.如图,在正方形ABCD中,E、F分别是边AD、CD上的点,AE=ED,DF=DC,连接EF并延长交BC的延长线于点G.(1)求证:△AB E∽△DEF;(2)若正方形的边长为4,求BG的长.20.如图,正方形ABCD中,M为BC上一点,F是AM的中点,EF⊥AM,垂足为F,交AD的延长线于点E,交DC于点N.(1)求证:△ABM∽△EFA;(2)若AB=12,BM=5,求DE的长.21.如图,在平行四边形ABCD中,过点A作AE⊥BC,垂足为E,连接DE,F为线段DE上一点,且∠AFE=∠B.(1)求证:△ADF∽△DEC;(2)若AB=4,AD=,AE=3,求AF的长.22.已知:△ABC在直角坐标平面内,三个顶点的坐标分别为A(0,3)、B(3,4)、C(2,2)(正方形网格中每个小正方形的边长是一个单位长度).(1)画出△ABC向下平移4个单位长度得到的△A1B1C1,点C1的坐标是;(2)以点B为位似中心,在网格内画出△A2B2C2,使△A2B2C2与△ABC位似,且位似比为2:1,点C2的坐标是.23.如图,在矩形ABCD和矩形PEFG中,AB=8,BC=6,PE=2,PG=4.PE与AC交于点M,EF与AC交于点N,动点P从点A出发沿AB以每秒1个单位长的速度向点B匀速运动,伴随点P的运动,矩形PEFG在射线AB上滑动;动点K从点P出发沿折线PE﹣﹣EF 以每秒1个单位长的速度匀速运动.点P、K同时开始运动,当点K 到达点F时停止运动,点P也随之停止.设点P、K运动的时间是t 秒(t>0).(1)当t=1时,KE=,EN=;(2)当t为何值时,△APM的面积与△MNE的面积相等?(3)当点K到达点N时,求出t的值;(4)当t为何值时,△PKB是直角三角形?参考答案一.选择题1.C.2.C.3.B.4.A.5.B.6.A.7.A.8.C.9.B10.D.11.D.12.B.二.填空题13.]4.14.7.5.15.].16.3.17.36.三.解答题18.(1)证明:∵AB=2,BC=4,BD=1,∵∠ABD=∠CBA,∴△ABD∽△CBA;(2)解:∵DE∥AB,∴△CDE∽△C BA,∴△ABD∽△CDE,∴DE=1.5.19.(1)证明:∵ABCD为正方形,∴AD=AB=DC=BC,∠A=∠D=90°,∵AE=ED,∵DF=DC,∴△ABE∽△DEF;(2)解:∵ABCD为正方形,∴ED∥BG,又∵DF=DC,正方形的边长为4,∴ED=2,CG=6,∴BG=BC+CG=10.20.(1)证明:∵四边形ABCD是正方形,∴AB=AD,∠B=90°,AD∥BC,∴∠AMB=∠EAF,又∵EF⊥AM,∴∠AFE=90°,∴∠B=∠AFE,∴△ABM∽△EFA;(2)∵∠B=90°,AB=12,BM=5,∴AM==13,AD=12,∵F是AM的中点,∴AF=AM=6.5,∵△ABM∽△EFA,∴,即,∴AE=16.9,∴DE=AE﹣AD=4.9.21.解:(1)∵四边形ABCD是平行四边形,∴AB∥CD,AD∥BC,∴∠B+∠C=180°,∠ADF=∠DEC,∵∠AFD+∠AFE=180°,∠AFE=∠B,∴∠AFD=∠C,∴△ADF∽△DEC;(2)∵AE⊥BC,AD=3,AE=3,∴在Rt△DAE中,DE===6,由(1)知△ADF∽△DEC,得=,∴AF===2.22.解:(1)如图所示,画出△ABC向下平移4个单位长度得到的△A1B1C1,点C1的坐标是(2,﹣2);(2)如图所示,以B为位似中心,画出△A2B2C2,使△A2B2C2与△ABC位似,且位似比为2:1,点C2的坐标是(1,0),故答案为:(1)(2,﹣2);(2)(1,0)23.解:(1)当t=1时,根据题意得,AP=1,PK=1,∵PE=2,∴KE=2﹣1=1,∵四边形ABCD和PEFG都是矩形,∴△APM∽△ABC,△APM∽△NEM,∴MP=,ME=,∴NE=;故答案为:1;;(2)由(1)并结合题意可得,AP=t,PM=t,ME=2﹣t,NE=﹣t,∴t×t=(2﹣t)×(﹣t),解得,t=;(3)当点K到达点N时,则PE+NE=AP,由(2)得,﹣t+2=t,解得,t=;(4)①当K在PE边上任意一点时△PKB是直角三角形,即,0<t≤2;②当点k在EF上时,则KE=t﹣2,BP=8﹣t,∵△BPK∽△PKE,∴PK2=BP×KE,PK2=PE2+KE2,∴4+(t﹣2)2=(8﹣t)(t﹣2),解得t=3,t=4;③当点K运动6秒时,点K到点F,点P还没到点B,∴点K不可能在BC边上,.综上,当0<t≤2或t=3或t=4时,△PKB是直角三角形.。
第四章图形的相似数学九年级上册-单元测试卷-北师大版(含答案)一、单选题(共15题,共计45分)1、如图,▱ABCD中,AE∶ED=1∶2,S△AEF=6 cm2,则S△CBF等于( )A.12 cm 2B.24 cm 2C.54 cm 2D.15 cm 22、如图,已知DE∥BC,CD和BE相交于点O,S△DOE:S△COB=4:9,则AE:EC为()A.2:1B.2:3C.4:9D.5:43、如图,在矩形ABCD中,AB=6,BC=10,P是AD边上一动点(不含端点A,D),连接PC,E是AB边上一点,设BE=a,若存在唯一点P,使∠EPC=90°,则a的值是( )A. B. C.3 D.64、如图,丁轩同学在晚上由路灯AC走向路灯BD,当他走到点P时,发现身后他影子的顶部刚好接触到路灯AC的底部,当他向前再步行20m到达Q点时,发现身前他影子的顶部刚好接触到路灯BD的底部,已知丁轩同学的身高是1.5m,两个路灯的高度都是9m,则两路灯之间的距离是()A.24mB.25mC.28mD.30m5、如图,△ABC是边长为6的等边三角形,AD=2,AE∥BC,直线BD交AE于点E,则BE的长为()A.3B.4C.3D.56、如图,用一个交叉卡钳(两条尺长AC和BD相等,OC=OD)量零件的内孔直径AB.若OC:OA=1:2,量得CD=10,则零件的内孔直径AB长为()A.30B.20C.10D.57、在图(1)、(2)所示的△ABC中,AB=4,AC=6.将△ABC沿图示中的虚线剪开裁剪办法已在图上标注,对于各图中剪下的两个阴影三角形而言,下列说法正确的是()A.只有(1)中的与△ABC相似B.只有(2)中的与△ABC相似C.都与△ABC相似D.都与△ABC不相似8、如图所示,图中共有相似三角形( )A.2对B.3对C.4对D.5对9、如图,△ABC中,点D在线段BC上,且△ABC∽△DBA,则下列结论一定正确的是()A. =BC•BDB. =AC•BDC.AB•AD=BC•BDD.AB•AC=AD•CD10、如图,身高为1.5米的某学生想测量一棵大树的高度,她沿着树影BA由B向A走去当走到C点时,她的影子顶端正好与树的影子顶端重合,测得BC=3米 , CA=1米, 则树的高度为()A.4.5米B.6米C.3米D.4米11、如图,在中,点D,E分别是,的中点,与交于点O,连接.下列结论:(1);(2);(3);(4).其中正确的个数有()A.4B.3C.2D.112、如图,在矩形ABCD中,E是AD边的中点,BE⊥AC,垂足为点F,连接DF,下列四个结论:①△AEF∽△CAB;②CF=2AF;③DF=DC;④tan∠CAD= .其中正确的结论有()A.4个B.3个C.2个D.1个13、若=,则的值为()A. B. C. D.14、如图,△ACD和△ABC相似需具备的条件是()A. B. C.AC 2=AD•AB D.CD 2=AD•BD15、下列命题中,是真命题的为( )A.锐角三角形都相似B.直角三角形都相似C.等腰三角形都相似 D.等边三角形都相似二、填空题(共10题,共计30分)16、如图:ΔABC中,AB=AC,D,E是ΔABC内两点,AD平分∠BAC,∠EBC=∠E= ,若BE=6,DE=2,则BC=________17、如图,已知△ABC∽△DEF,且相似比为k,则k=________,直线y=kx+k的图象必经过________象限.18、在中,D、E分别在AB.AC的反向延长线上,,若,,则________.19、已知△ABC中,∠C=90°,AB=9,,把△ABC 绕着点C旋转,使得点A落在点A′,点B落在点B′.若点A′在边AB上,则点B、B′的距离为________.20、如图,在平行四边形ABCD中,点E在边DC上,△DEF的面积与△BAF的面积之比为9:16,则DE:EC=________.21、如图,AB∥CD∥EF,如果AC=2,AE=5.5,DF=3,那么BD=________.22、如图所示,D,E分别在△ABC的边AB、AC上,DE与BC不平行,当满足________条件时,有△ABC∽△AED.23、如图,在▱ABCD中,∠B=30°,AB=AC,O是两条对角线的交点,过点O作AC的垂线分别交边AD,BC于点E,F,点M是边AB的一个三等分点,则△AOE与△BMF的面积比为________.24、位似图形上任意一对对应点到________ 的距离之比等于位似比.25、如图,l1∥l2∥l3,两条直线与这三条平行线分别交于点A、B、C和D、E、F,已知=,若DF=10,则DE=________.三、解答题(共5题,共计25分)26、已知,求.27、如图,△ABC是一张锐角三角形的硬纸片,AD是边BC上的高,BC=40 cm,AD=30 cm,从这张硬纸片上剪下一个长HG是宽HE的2倍的矩形EFGH,使它的一边EF在BC上,顶点G、H分别在AC、AB上,AD与HG的交点为M. 求矩形的长与宽.28、正方形网格中,每个小正方形的顶点称为格点,以格点为顶点的三角形叫格点三角形.在图中正方形网格(每个小正方形边长为1)中有一格点△ABC和一线段DE(1)以DE为一边做格点△DEF与△ABC相似;(2)直接写出△DEF的面积.29、如图,在中,,,,点P由点A出发沿方向向终点B以每秒的速度匀速移动,点Q由点B出发沿方向向终点C以每秒的速度匀速移动,速度为.如果动点同时从点A,B出发,当点P或点Q到达终点时运动停止.则当运动几秒时,以点Q,B,P为顶点的三角形与相似?30、如图,已知矩形OABC中,OA=2,AB=4,双曲线y=(k>0)与矩形两边AB、BC分别交于E、F.(1)若E是AB的中点,求F点的坐标;(2)若将△BEF沿直线EF对折,B点落在x轴上的D点,作EG⊥OC,垂足为G,请证明△EGD∽△DCF,并求出k的值.参考答案一、单选题(共15题,共计45分)1、C2、A3、B4、D5、A6、B7、B8、C9、A11、A12、B13、A14、C15、D二、填空题(共10题,共计30分)16、17、18、19、20、21、22、23、24、三、解答题(共5题,共计25分)26、27、28、29、30、。
第四章 图形的相似(单元综合卷)一、单选题1.若0234a b c ==≠,则22a b c a-+= ( ) A .45 B .54 C .34 D .无法确定【答案】B【解析】【分析】设比值为k ,然后用k 表示出a 、b 、c ,再代入算式进行计算即可求解.【详解】 设234a b c k ===、 则2a k =、3b k =、4c k =、 ∴2223452224a b c k k k a k -+⨯-+==⨯. 故选、B .【点睛】本题考查了比例的性质,利用设“k ”法表示出a 、b 、c 是解题的关键,设“k ”法是中学阶段常用的方法之一,需熟练掌握并灵活运用.2.若、ABC、、DEF ,且、ABC 与、DEF 的面积比是94,则、ABC 与、DEF 对应中线的比为( ) A .23 B .8116 C .94 D .32【解析】【分析】根据相似三角形的面积比等于相似比的平方,再结合相似三角形的对应中线的比等于相似比解答即可.【详解】、、ABC、、DEF、、ABC与、DEF的面积比是9 4、、、ABC与、DEF的相似比为3 2、、、ABC与、DEF对应中线的比为3 2、故选D、【点睛】考查的是相似三角形的性质,相似三角形周长的比等于相似比;相似三角形面积的比等于相似比的平方;相似三角形对应高的比、对应中线的比、对应角平分线的比都等于相似比.3.如图,在ABC中,点D在BC边上,连接AD,点G在线段AD上,过点G作//GE BD,交AB边于点E,作//GF AC,交BC边于点F,则下列结论中一定正确的是()A.AB AGAE AD=B.DF DGCF AD=C.FG EGAC BD=D.AE CFBE DF=【答案】D 【解析】由GE、BD、GF、AC利用平行线分线段成比例,可得出AE AGBE DG=,AG CFDG DF=,进而可得出AE CFBE DF=,此题得解.【详解】、GE、BD,GF、AC,、AE AGBE DG=,AG CFDG DF=,、AE CF BE DF=.故选:D.【点睛】本题考查了平行线分线段成比例,利用平行线分线段成比例,找出AE AGBE DG=,AG CFDG DF=是解题的关键.4.如图,平面直角坐标系中,点E(﹣4,2),F(﹣1,﹣1),以原点O为位似中心,把、EFO缩小为、E′F′O,且、E′F′O与、EFO的相似比为1:2,则点E的对应点E′的坐标为()A.(2,﹣1)B.(8,﹣4)C.(2,﹣1)或(﹣2,1)D.(8,﹣4)或(﹣8,4)【答案】C【解析】【分析】利用位似图形的性质,即可求得点E的对应点E'的坐标.【详解】、点E(﹣4,2),以O为位似中心,按2:1的相似比把、EFO缩小为、E'F'O,、点E的对应点E'的坐标为:(2,﹣1)或(﹣2,1).故选C.【点睛】本题考查了位似图形的性质.此题比较简单,注意熟记位似图形的性质是解答此题的关键.5.兴趣小组的同学要测量树的高度.在阳光下,一名同学测得一根长为1米的竹竿的影长为0.4米,同时另一名同学测量树的高度时,发现树的影子不全落在地面上,有一部分落在教学楼的第一级台阶上,测得此影子长为0.2米,一级台阶高为0.3米,如图所示,若此时落在地面上的影长为4.4米,则树高为(、A.11.5米B.11.75米C.11.8米D.12.25米【答案】C【解析】【分析】在同一时刻物高和影长成正比,即在同一时刻的两个物体,影子,经过物体顶部的太阳光线三者构成的两个直角三角形相似.本题中:经过树在台阶上的影子的顶端作树的垂线和经过树顶的太阳光线以及树所成三角形,与竹竿,影子光线形成的三角形相似,这样就可求出垂足到树的顶端的高度,再加上台阶的高就是树高.【详解】如图,根据题意可知EF=BC=4.4米,DE=0.2米,BE=FC=0.3米,则ED=4.6米,、同一时刻物高与影长成正比例,、AE、ED=1、0.4、即AE、4.6=1、0.4、、AE=11.5米,、AB=AE+EB=11.5+0.3=11.8米,、树的高度是11.8米、故选C.【点睛】本题考查了相似三角形的应用,把实际问题抽象到相似三角形中,根据相似三角形的相似比,列出方程进行求解是关键.6.如图所示的两个四边形相似、则α的度数是()A.60°B.75°C.87°D.120°【答案】C【解析】【分析】根据相似多边形性质:对应角相等.【详解】由已知可得:α的度数是:360〫-60〫-75〫-138〫=87〫故选C【点睛】本题考核知识点:相似多边形.解题关键点:理解相似多边形性质.7.下列条件中,能使ABC DEF ∽△△成立的是( )A .、C =98°,、E =98°,AC DE BC DF; B .AB =1,AC =1.5,BC =2,EF =8,DE =10,FD =6C .、A =、F =90°,AC =5,BC =13,DF =10,EF =26;D .、B =35°,BC =10,BC 上的高AG =7;、E =35°,EF =5,EF 上的高DH =3.5【答案】D【解析】【分析】根据相似三角形的判定定理对四个选项进行分析即可.【详解】A 、若、ABC~、DEF ,则AC DF =BC EF,故本选项错误; B 、若、ABC~、DEE ,则AB AC BC ==DE DF EF 而AB 1=DE 10≠AC 1.5=DF 6,故本选项错误; C 、若、ABC~、DEF ,、A =90°,则、D =90°,故本选项错误;D 、BC AG ==2EF DH且、AGC =、BHF =90°,因此、AGC、、BHF ,所以、C =、F ,而、B =、E =35°,因此可判断相似,故本选项正确;所以D 选项是正确的.【点睛】本题考查的是相似三角形的判定定理,解答此类题目时要熟知相似三角形的判定方法,即:(1)三组对应边的比相等的两个三角形相似;(2)两组对应边的比相等且夹角对应相等的两个三角形相似;(3)有两组角对应相等的两个三角形相似8.如图,、ABC 中,点D 在AB 上,过点D 作DE、BC 交AC 于点E ,过点E 作 EF、AB 交BC 于点F ,连接CD ,交EF 于点G ,则下列说法不正确的是( 、A .BD BF FG FC =B .DE AE BC AC = C .AD AE AB AC = D .BF AD BC AB= 【答案】A【解析】因为DE、BC, 所以,,DE AE AD AE BC AC AB AC== 因为EF、AB, 所以,,BF AE BD BC BC AC FK CF== 所以,BF AD BC AB = 故选A.9.如图, ABC 中, 90C ∠=︒,3,4,AC BC M ==是BC 边上的动点,过M 作//MN AB 交AC 于点,N P 是MN 的中点,当PA 平分BAC ∠时, BM =( )A .2011B .2013C .1511D .2513【答案】A【解析】【分析】根据题意作PD AC ⊥于D ,PE AB ⊥于,E MF AB ⊥于F ,利用相似三角形判定证得BMF BAC ∽,进而设3,PD PE MF x ===建立方程求解即可.【详解】解:作PD AC ⊥于D ,PE AB ⊥于,E MF AB ⊥于F ,则,PD PE MF BMF BAC ==∽.、3,4,AC BC ==、5AB =设3,PD PE MF x ===则26,5CM PD x BM x ===由65114,BC x x x =+==得420 =,1111x BM =. 故选:A .【点睛】 本题考查三角形动点问题,熟练掌握相似三角形判定并运用方程结合思维进行分析是解题的关键. 10.如图,平行四边形ABCD 的对角线AC ,BD 相交于点O ,CE 平分、DCB 交BD 于点F ,且、ABC =60°,AB =2BC ,连接OE ,下列结论:、、ACD =30°;、S 平行四边形ABCD =AC BC ⋅;、OE :AC =1:4;、S 、OCF =2S 、OEF .其中正确的有( )A .1个B .2个C .3个D .4个【答案】C【解析】【分析】 由四边形ABCD 是平行四边形,得到、ABC=、ADC=60°,、BAD=120°,根据角平分线的定义得到、DCE=、BCE=60°推出、CBE 是等边三角形,证得、ACB=90°,求出、ACD=、CAB=30°,故、正确; 由AC、BC ,得到S、ABCD=AC•BC ,故、正确;根据直角三角形的性质得到,根据三角形的中位线的性质得到OE=12BC ,于是得到OE :AC=6,故、错误;由三角形的中位线可得BC、OE ,可判断、OEF、、BCF ,根据相似三角形的性质得到CF BC EF OE==2,求得S 、OCF =2S 、OEF ;故、正确.【详解】解:、四边形ABCD是平行四边形,、、ABC=、ADC=60°,、BCD=120°,、CE平分、BCD交AB于点E,、、DCE=、BCE=60°、、CBE是等边三角形,、BE=BC=CE,、AB=2BC,、AE=BC=CE,、、ACB=90°,、、ACD=、CAB=30°,故、正确;、AC、BC,、S、ABCD=AC•BC,故、正确,在Rt、ACB中,、ACB=90°,、CAB=30°,,、AO=OC,AE=BE,、OE=12 BC,、OE:6;故、错误;、AO=OC,AE=BE,、OE、BC,、、OEF、、BCF , 、CF BC EF OE==2 、S 、OCF :S 、OEF =CF EF =2, 、S 、OCF =2S 、OEF ;故、正确.故选C .【点睛】本题考查了平行四边形的性质、三角形中位线、相似三角形的性质,熟练掌握并灵活运用是解题的关键.二、填空题11.如图,已知一组平行线////a b c ,被直线m 、n 所截,交点分别为A 、B 、C 和D 、E 、F ,且3AB =,4BC =, 4.8EF =,则DE 的长为__________.【答案】3.6【解析】【分析】根据平行线分线段成比例定理即可得.【详解】由平行线分线段成比例定理得:AB DE BC EF= 3AB =,4BC =, 4.8EF =34 4.8DE ∴= 解得 3.6DE =故答案为:3.6.【点睛】本题考查了平行线分线段成比例定理,熟记平行线分线段成比例定理是解题关键.12.已知x 是正整数,且x 是4和16的比例中项,那么x =______.【答案】8【解析】【分析】根据比例中项的性质进行求解.【详解】解:、x 是4和16的比例中项,且是正整数,、241664x =⨯=,解得8x =.故答案是:8.【点睛】本题考查比例中项的性质,解题的关键是掌握比例中项的性质.13.如图,、ABC 与、A′B′C′是位似图形,且顶点都在格点上,则位似中心的坐标是__、【答案】(9,0)【解析】【分析】【详解】根据位似图形的定义,连接A′A,B′B并延长交于(9,0),所以位似中心的坐标为(9,0).故答案为:(9,0).14.如图,小明在A时测得某树的影长为2m,B时又测得该树的影长为8m,若两次日照的光线互相垂直,则树的高度为_____m.【答案】4【解析】【分析】根据题意,画出示意图,易得:Rt、EDC、Rt、CDF,进而可得EDDC=DCFD;即DC2=ED•FD,代入数据可得答案.【详解】如图:过点C作CD、EF,由题意得:、EFC是直角三角形,、ECF=90°,、、EDC=、CDF=90°,、、E+、ECD=、ECD+、DCF=90°,、、E=、DCF,、Rt、EDC、Rt、CDF,有EDDC=DCFD;即DC2=ED FD,代入数据可得DC2=16,DC=4;故答案为4.【点睛】本题考查了相似三角形的应用,能够将实际问题转化为相似三角形的问题是解题的关键.15.如图,E,F分别为矩形ABCD的边AD,BC的中点,且矩形ABCD与矩形EABF相似,AB=1,则BC 的长为_____.【解析】【分析】根据相似多边形的性质列出比例式,计算即可.【详解】、矩形ABCD与矩形EABF相似,、AEAB=ABAD,即121AD=1AD,解得,AD,、矩形ABCD 的面积=AB •AD ,.【点睛】本题考查了相似多边形的性质,掌握相似多边形的对应边的比相等是解题的关键.16.如图,////AB EF DC ,//AD BC ,EF 与AC 交于点G ,则是相似三角形共有__________对.【答案】6【解析】【分析】图中三角形有:、AEG ,、ADC ,、CFG ,、CBA ,因为////AB EF DC ,//AD BC ,所以、AEG、、ADC、、CFG、、CBA ,有6中组合,据此可得出答案.【详解】图中三角形有:、AEG ,、ADC ,、CFG ,、CBA ,、////AB EF DC ,//AD BC ,、、AEG、、ADC、、CFG、、CBA共有6个组合分别为:、AEG、、ADC ,、AEG、、CFG ,、AEG、、CBA ,、ADC、、CFG ,、ADC、、CBA ,、CFG、、CBA故答案为6.【点睛】本题考查的是相似三角形的判定,熟练掌握相似三角形的判定方法是解题的关键.17.如图,在三角形ABC中,AB=24,AC=18,D是AC上一点,AD=12,在AB上取一点E,使A、D、E三点组成的三角形与ABC相似,则AE=__________.【答案】9或16【解析】【分析】根据相似三角形的判断,要使得、ADE与、ABC相似,已经满足、BAC=、DAE,因此只要两边对应成比例即可,由于本题中三角形相似,对应点没有确定,因此分两种情况,画出图形,然后根据相似三角形对应边成比例,就出AE的长.【详解】第一种情况:当、ABC、、ADE时,如图、;、、ABC、、ADE,、AB AC AD AE=,、AB=24,AC=18,AD=12,、2418 12AE=,、AE=9.第二种情况:当、ABC、、AED ,如图、;、、ABC、、AED , 、AB AC AE AD=, 、AB =24,AC =18,AD =12, 、241812AE =, 、AE =16.故填9或16.考点:相似三角形的性质.18.如图,在ABC ∆中,D 、E 分别是AB 、BC 上的点,且DE AC ,若:1:4BDE CDE S S ∆∆=,则:BDE ACD S S ∆∆=______.【答案】1:20【解析】【分析】根据、BDE和、CDE高相同得到BE:EC=1:4,再证明、BDE、、BAC,利用面积比等于相似比的平方即可解题.【详解】、、BDE和、CDE高相同,且:1:4BDE CDES S=,、BE:EC=1:4,、//DE AC、、BDE、、BAC,即BE:BC=1:5、:BDE BACS S=1:25、:BDE ACDS S=1、、25-1-4、=1:20【点睛】本题考查了相似三角形的判定和性质,属于简单题,熟悉相似三角形性质是解题关键.19.如图,在矩形ABCD中,BC=4,AB=2,Rt、BEF的顶点E在边CD上,且、BEF=90°,EF=12 BE,DF BE=_____.【解析】【分析】过F作FG、CD,交CD的延长线于G,依据相似三角形的性质,即可得到FG=12EC,GE=2=CD;设EC=x,则DG=x,FG=12x,再根据勾股定理,即可得到CE2=94,最后依据勾股定理进行计算,即可得出BE的长.【详解】解:如图所示,过F作FG、CD,交CD的延长线于G,则、G=90°,、四边形ABCD是矩形,、、C=90°,AB=CD=2,又、、BEF=90°,、、FEG+、BEC=90°=、EBC+、BEC,、、FEG=、EBC,又、、C=、G=90°,、、BCE、、EGF,、FG GE EF EC CB BE ==,即142EG CE EC ==, 、FG =12EC ,GE =2=CD , 、DG =EC ,设EC =x ,则DG =x ,FG =12x , 、Rt、FDG 中,FG 2+DG 2=DF 2,、(12x )2+x 22, 解得x 2=94, 即CE 2=94,、Rt、BCE 中,BE ==.【点睛】本题主要考查了相似三角形和勾股定理的结合,准确分析计算是解题的关键.20.如图,在直角坐标系中,将OAB 绕原点旋转到OCD ,其中()3,1A -、()4,3B ,点D 在x 轴正半轴上,则点C 的坐标为_______.【答案】913,55⎛⎫- ⎪⎝⎭【解析】【分析】连接AC 、BD ,设点C 的坐标为(a ,b ),根据平面直角坐标系中任意两点之间的距离公式即可求出OA 、OB ,由旋转的性质即可求出OC 和OD ,从而证出OAC、OBD ,列出比例式即可求出AC ,再利用平面直角坐标系中任意两点之间的距离公式列出方程即可求出结论.【详解】解:连接AC 、BD ,设点C 的坐标为(a ,b )、()3,1A -、()4,3B ,=5由旋转的性质可得,OD=OB=5,、AOC=、BOD、点D 的坐标为(5,0),OA OC OB OD==OAC、OBD、AC OA BDOB== 解得AC=2、()()222210314a b a b ⎧+=⎪⎨++-=⎪⎩ 解得:95135a b ⎧=-⎪⎪⎨⎪=⎪⎩或31a b =-⎧⎨=-⎩ 、点C 在第二象限,、95135a b ⎧=-⎪⎪⎨⎪=⎪⎩即点C 913,55⎛⎫- ⎪⎝⎭ 故答案为:913,55⎛⎫- ⎪⎝⎭. 【点睛】此题考查的是坐标与图形的变化、相似三角形的判定及性质和平面直角坐标系中任意两点之间的距离公式,此题难度较大,掌握旋转的性质、相似三角形的判定及性质和平面直角坐标系中任意两点之间的距离公式是解决此题的关键.三、解答题21.化简并求值:已知2,235a c e a c e b d f===-+=,求b -2d+3f 的值. 【答案】52【解析】【分析】 由2a c e b d f===可知2,2,2a b c d e f ===,代入235a c e -+=易得b -2d+3f 的值. 【详解】 解:2a c e b d f=== 2,2,2a b c d e f ∴===232462(23)5a c e b d f b d f ∴-+=-+=-+=5232b d f ∴-+=【点睛】 本题考查了比例的性质,灵活的利用比例进行等量代换是解题的关键.22.如图,已知DE、BC ,FE、CD ,AF =3,AD =5,AE =4.(1)求CE 的长;(2)求AB 的长.【答案】(1)CE=83;(2)AB=253.【解析】【分析】(1)根据平行线分线段成比例定理列出比例式求出AC即可解决问题;(2)根据平行线分线段成比例定理列出比例式,然后代入数据计算即可.【详解】解:(1)、FE、CD,、AEAC=AFAD,即4AC=35,解得,AC=203,则CE=AC﹣AE=203﹣4=83;(2)、DE、BC,、ADAB=AEAC,即5AB=4203,解得,AB=253.【点睛】本题考查的是平行线分线段成比例定理,灵活运用定理、找准对应关系是解题的关键.23.如图,在、ABC中,点D,E分别在边AB,AC上,、AED=、B,射线AG分别交线段DE,BC于点F,G,且AD DF AC CG=.(1)求证:、ADF、、ACG;(2)若12ADAC=,求AFFG的值.【答案】(1)证明见解析;(2、1.【解析】(1)欲证明、ADF、、ACG,由可知,只要证明、ADF=、C即可.(2)利用相似三角形的性质得到,由此即可证明.【解答】(1)证明:、、AED=、B,、DAE=、DAE,、、ADF=、C,、,、、ADF、、ACG.(2)解:、、ADF、、ACG,、,又、,、,、1.24.已知:平行四边形ABCD,E是BA延长线上一点,CE与AD、BD交于G、F.求证:2CF GF EF=⋅.【答案】详见解析【解析】【分析】由平行四边形对边互相平行,可得平行线分线段成比例,得出比例式进行等比代换即可得证.【详解】解:、四边形ABCD 是平行四边形,、AD BC ∥,AB CD ∥. 、GF DF CF BF =,CF DF EF BF= 、GF CF CF EF =, 即2CF GF EF =⋅.【点睛】本题考查证明线段乘积关系,由平行线分线段成比例得到比例式是解决本题的关键.25.如图,在边长为1个单位长度的小正方形组成的网格中,给出了格点、ABC (顶点是网格线的交点),在建立的平面直角坐标系中,、ABC 绕旋转中心P 逆时针旋转90°后得到、A 1B 1C 1、、1)在图中标示出旋转中心P ,并写出它的坐标;、2)以原点O 为位似中心,将、A 1B 1C 1作位似变换且放大到原来的两倍,得到、A 2B 2C 2,在图中画出、A 2B 2C 2,并写出C 2的坐标.【答案】、1、见解析、P点坐标为(3、1、、、2、作图见解析、C2的坐标为(2、4)或(﹣2、、4、、【解析】【分析】、1)作BB1和AA1的垂直平分线,它们的交点即为P点,然后写出P点坐标;(2)把点A1、B1、C1的横纵坐标都乘以2或-2得到对应点A2、B2、C2的坐标,然后描点即可得到、A2B2C2、【详解】、、、1)如图,点P为所作,P点坐标为(3、1、、、2)如图,、A2B2C2为所作,C2的坐标为(2、4)或(﹣2、、4、、【点睛】本题考查了位似变换:先确定位似中心;再分别连接并延长位似中心和能代表原图的关键点;接着根据位似比,确定能代表所作的位似图形的关键点;然后顺次连接上述各点,得到放大或缩小的图形.26.如图,在平行四边形ABCD中,过点A作AE、BC,垂足为E,连接DE,F为线段DE上一点,且、AFE=、B(1)求证:、ADF、、DEC;(2)若AB=8,AE的长.【答案】(1)见解析(2)6【解析】【分析】(1)利用对应两角相等,证明两个三角形相似、ADF、、DEC.(2)利用、ADF、、DEC,可以求出线段DE的长度;然后在在Rt、ADE中,利用勾股定理求出线段AE的长度.【详解】解:(1)证明:、四边形ABCD是平行四边形,、AB、CD,AD、BC、、C+、B=180°,、ADF=、DEC、、AFD+、AFE=180°,、AFE=、B,、、AFD=、C在、ADF与、DEC中,、、AFD=、C,、ADF=、DEC,、、ADF、、DEC(2)、四边形ABCD是平行四边形,、CD=AB=8.由(1)知、ADF、、DEC,、AD AF DE CD=,、AD CDDE12AF⋅===在Rt、ADE中,由勾股定理得:AE6===27.如图,在菱形ABCD中,60C︒∠=,4AB=,点E是边BC的中点,连接DE,AE.(1)求DE的长;(2)点F为边CD上的一点,连接AF,交DE于点G,连接EF,若DAG FEG∠=∠,、求证:、AGE∽、DGF;、求DF的长.【答案】(1)DE=(2)、详见解析;、1.【解析】【分析】(1)只要证明DE 是等边、DBC 的高即可解决问题;(2)、由、AGD、、EGF ,可得AG DG EG FG=,即可推出AG EG DG FG =又、AGE=、DGF ,即可推出、AGE、、DGF ; 、根据相似求出EF,再根据勾股定理求出FH 的长,再求出CF 即可解决问题.【详解】解:(1)连结BD4604122∵四边形是菱形,∵△是等边三角形∵点是边的中点ABCD CB CD AB C CDB DB DC BC E BC BE EC BC DE BCDE ︒∴===∠=∴∴===∴===∴⊥∴==(2)、DAG FEG AGD EGFAGD EGFAG DG EG FG AG EG DG FGAGE DGFAGE DGF∠=∠∠=∠∴∴=∴=∠=∠∴∵,△∽△又∵△∽△ 、,9030,901222131∵△∽△∵又∵过点作于点在△中,AGE DGF DE BCEAG GDF C AGD EGF AGE DGFGFE ADG DE EF AE E EH DC HRt ECH FH CF FH CH DF CD CF ︒︒︒⊥∴∠=∠=-∠=∠=∠∠=∠∴∠=∠==∴===⊥==∴=+=+=∴=-=【点睛】此题考查菱形的性质、相似三角形的判定和性质、直角三角形30°角性质、勾股定理等知识,解题的关键是准确寻找相似三角形解决问题,所以中考常考题型.。
第四章测试卷(时间:100分钟 满分:120分)一、选择题(每小题3分,共30分,)题号12345678910答案B C A D B C C C A C1.下列形状分别为正方形、矩形、正三角形、圆的边框,其中不一定是相似图形的是( )2.在比例尺为1:500000的交通地图上,玉林到灵山的长度约为 23.6cm ,则它的实际长度约为( )A.0.118km B.1.18km C.118km D.1180km3.如图,以A ,B ,C 为顶点的三角形与以D ,E ,F 为顶点的三角形相似,则这两个三角形的相似比为( )A.2:1B.3:1C.4:3D.3:24.在△ABC 中,D 是AB 中点,E 是AC 中点,若△ADE 的面积是3,则△ABC 的面积是 ( )A.3 B.6 C.9 D.125.如图,在△ABC 中,点D 在AB 边上,过点 D 作DE ∥BC 交AC 于点E,DF ∥AC 交BC 于F,若AE:DF=2:3,则BF:BC 的值是 ( )A. 23 B. 35 C. 12D. 256.如图,在四边形ABCD 中,如果∠ADC=∠BAC,那么下列条件中不能判定△ADC 和△BAC 相似的是 ( )A.∠DAC=∠ABC B. AC 是∠BCD 的平分线 C.AC²=BC ⋅CD D.ADAB =DCAC7. 若△ABC 的各 边都分别扩大到原来的 2 倍,得到△A ₁B ₁C ₁,下列结论正确的是 ( )A.△ABC 与△A ₁B ₁C ₁的对应角不相等 B.△ABC 与△A ₁B ₁C ₁不一定相似C.△ABC 与△A ₁B ₁C ₁的相似比为1:2 D.△ABC 与△A ₁B ₁C ₁的相似比为2:18.如图,点 E 是▱ABCD 的边 BC 延长线上的一点,AE 和CD 交于点G ,AC 是▱ABCD 的对角线,则图中相似三角形共有 ( )A.2 对B.3 对C.4 对D.5 对9.如图,已知E(-4,2),F(--2,--2),以O 为位似中心,把△EFO 缩小到原来的 12,则点E 的对应点的坐标为( )A.(2,一1)或(-2,1)B.(8,一4)或(一8,4)C.(2,-1)D.(8,-4)10.如图,在正方形 ABCD 中,点 E 、F 分别在边AD 和CD 上,AF ⊥BE,垂足为G,若 AEED =2,则 AGGF 的值为( )A. 45B. 56C.67D.78二、填空题(每小题3分,共15分)11.若△ABC ∽△A'B'C',且相似比为3:5,已知△ABC 的周长为21,则△A'B'C'的周长为 .12.如图是一架梯子的示意图,其中 AA₁‖BB₁‖CC₁‖DD₁,且AB=BC=CD.为使其更稳固,在A ,D ₁间加绑一条安全绳( 线段AD ₁),量得 AE=0.4m,则 AD₁= m13.如图,阳光通过窗口照到室内,在地上留下3m 宽的亮区.已知亮区一边到窗下的墙角的距离CE=7m ,窗口高AB=1.8m,那么窗口底边离地面的高BC 等于 m.14.如图,已知每个小方格的边长均为1,则△ABC 与△CDE 的面积比为 .15.如图,在正方形ABCD 中,E 是BC 的中点,F 是CD 上一点,且 CF =14CD,下列结论:①∠BAE=30°,②△ABE ∽△ECF,③AE ⊥EF,④△ADF ∽△ECF.其中正确的结论是 (填序号).三、解答题(本大题8个小题,共75 分)16.(8分)根据下列条件,判断△ABC 与△A'B'C'是否相似,并说明理由. AB =3,BC =4,AC =5,A 'B '=12,B 'C '=16,C 'A '=2017.(9分)如图,D 是△ABC 的边AC 上的一点,连接BD,已知∠ABD=∠C,BC=6,BD=4,如果△ABD 的面积为4,求△BC D 的面积.18.(9分)在平面直角坐标系中,△ABC 的三个顶点的坐标分别是 A(1,3),B(4,1),C(1,1).(1)画出△ABC 关于x 轴成轴对称的△A ₁B ₁C ₁;(2)画出△ABC 以点O 为位似中心,相似比为 1:2的△A ₂B ₂C ₂.19.(9分)如图,四边形ABCD 是菱形,AF ⊥BC 交BD 于E,交 BC 于F.求证: AD 2=12DE ⋅DB.20.(10分)周末,小华和小亮想用所学的数学知识测量家门前小河的宽.测量时,他们选择了河对岸边的一颗大树,将其底部作为点 A,在他们所在的岸边选择了 B,使得AB与河岸垂直,并在B点竖起标杆BC,再在AB 的延长线上选择点 D 竖起标杆DE,使得点 E 与点C、A共线.已知:CB⊥AD,ED⊥AD,测得 BC=1m,DE=1.5m,BD=8.5m,测量示意图如图所示.请根据相关测量信息,求河宽 AB.21.(10分)如图,E是平行四边形ABCD的边 DA 延长线上一点,连结 EC 交AB 于 P.(1)写出图中的三对相似三角形(不添加辅助线);(2)请在你所写的相似三角形中选一对,说明相似的理由.22.(10分)阅读与计算:请阅读以下材料,并完成相应的问题.角平分线分线段成比例定理:如图1,在△ABC中,AD平分∠BAC,则ABAC =BDCD.下面是这个定理的部分证明过程.证明:如图2,过点C作CE∥DA,交 BA的延长线于点 E⋯任务:(1)请按照上面的证明思路,写出该证明过程的剩余部分;(2)如图3,在△ABC中,AD是角平分线,AB=5cm ,AC=4 cm,BC=7 cm.求 BD的长.23.(10分)在矩形 ABCD中,点 E 是对角线AC 上一动点,连接 DE,过点 E 作EF⊥DE 交AB 于点 F.(1)如图1,当DE=DA时,求证:AF=EF;(2)如图2,点E 在运动过程中,DEEF的值是否发生变化?请说明理由.第四章测试卷答案一、选择题1、B2、C3、A4、D5、B6、C7、C8、C9、A 10、C 二、填空题11、35 12、1.2m 13、2.4m 14、4:1 15、②③三、解答题16、解:相似,理由: ∵AB A 'B '=312=14,BC B 'C '=416=14,AC A 'C '=520=14,∴ABA 'B'=BCB 'C '=ACA 'C ',∴ABC ∽A 'B 'C '.17、解:∵∠ABD=∠C,又∠A=∠A,∴△ABD ∽△ACB,S ABD S ACB=(BD CB )2=(46)2=49,18、解:如图所示19、证明:连接AC 交 BD 于点O,∵四边形ABCD 为菱形,∴AC ⊥BD,BO=OD,∵AE ⊥AD,∴△AOD ∽△EAD, ∴AD OD=ED AD,∴A D 2=ED ⋅OD,即 A D 2=12DE ⋅DB.20、解:∵CB ⊥AD,ED ⊥AD, ∴∠CBA =∠EDA =90°.∵∠CAB=∠EAD, ∴ABCOADE,∴AB AD=BC DE,∴AB AB +8.5=11.5,∴AB =17,.∴河宽为17m.21、解:(1)△EAP ∽△CBP,△AEP ∽△DEC,△BCP ∽△DEC.(2)选. △EAPO △CBP,理由如下:在▱ABCD 中AD ∥BC,∴∠EAP=∠B.又∵∠APE=∠BPC,∴△EAP ∽△CBP.22、解:(1)证明:如图2,过点C作CE∥DA,交BA的延长线于点E, ∵CEDA,∴BDCD =BAEA,∠CAD=∠ACE,∠BAD=∠E,∵AD平分∠BAC,∴∠BAD=∠CAD, ∠ACE=∠E,∴AE=AC,∴ABAC =BDCD;(2)∵AD是角平分线, ∴ABAC =BDCD,AB=5 cm,AC=4 cm,BC=7 cm, C.54=BD7−BD,解得BD=359cm.23、解:(1)证明:如图,连接 DF,在矩形ABCD 中,∠DAF=90°,又∵DE⊥EF,∴∠DEF=90°,∵AD=DE,DF=DF,∴Rt△DAF≌Rt△DEF(HL),∴AF=EF;(2)DEEF 的值不变.如图,过点E作EM⊥AD于点M,过点E 作EN⊥AB 于点 N,∵EM∥CD,EN∥BC,∴EMCD =AEAC,ENBC=AEAC,∴EMEN=CDBC,∵∠DEF=∠MEN=90°,∴∠DEM=∠FEN,又·∴∠DME=∠ENF=90°,∴△DME⊗△FNE,∴DEEF =EMEN,∴DEEF=CDBC,∵CD 与BC 的长度不变, ∴DEFF的长度不变.。
2.3.4.5.第四章图形的相似单元测试卷.选择题〔共12小题〕&二旦,b 13〔2021淅州〕的值是〔〕C.-1如图,直线a// b// c,b, c于点D, E, F,假设BC 2DE_EF直线m交直线a, b, c于点A, B, C,直线n交直线a,C.B.D CbB〔第2题〕〔第3题〕B〔第4题〕〔2021睑华〕在四边形ABCD中, / B=90°, AC=4, AB // CD, DH 垂直平分AC ,点H为垂足.AB=x, AD=y,那么y关于x的函数关系用图象大致可以表示为〔〔2021?安徽〕C. 0 4 AD.如图, 4ABC中,AD是中线,BC=8, 那么线段AC的长为〔〕C. 6D. 4.:〔2021渐疆〕111A . DE=-BC 2如图,在△ ABC中,D、E分别是AB、AC的中点,以下说法中不正确的选项是〔B.AD AE靛=最C. △ ADEABCD. S A ADE:S AABC=1 : 2C2〔第5题〕〔第6题〕〔第7题〕6. 〔2021?台湾〕如图的4ABC中有一正方形DEFG,其中D在AC上,E、F在AB上,直线AG分别交DE、BC 于M、N 两点.假设/B=90°, AB=4, BC=3 , EF=1 ,贝U BN 的长度为何?〔〕树的高度为〔〕C.7 .如图,在同一时刻,身高1.6米的小丽在阳光下的影长为 2.5 米,一棵大树的影长为5米,那么这棵A . 1.5 米 B. 2.3米 C. 3.2 米8. 〔2021确博〕如图是由边长相同的小正方形组成的网格,D. 7.8 米A, B, P, Q四点均在正方形网格的格)D. 29. 〔2021?东营〕如图,在平面直角坐标系中,点A 〔中央,相似比为-1,把^ABO缩小,那么点A的对应点/ 3A. 〔T, 2〕B. 〔-9, 18〕C. 〔-9, 18〕10. 如图,在直角坐标系中,有两点A 〔6, 3〕, B 〔6, 0〔第10题〕-3, 6〕 , B 〔 - 9, - 3〕,以原点O为位似'的坐标是〔〕或〔9, - 18〕 D. 〔-1, 2〕或〔1, - 2〕〕,以原点O为位似中央,相似比为士,在第一象限内把线段AB缩小后得到新的线段,那么点A的对应点坐标为〔〕A . (2, 1) B, (2, 0) C, (3, 3) D. (3, 1)11.复印纸的型号有A0、A1、A2、A3、A4等,它们之间存在着这样一种关系:将其中某一型号〔如A3〕的复印纸较长边的中点对折后,就能得到两张下一型号〔A4〕的复印纸,且得到的两个矩形都和原来的矩形相似〔如图〕,那么这些型号的复印纸的长宽之比为〔〕A. 2: 1 B, 1^/2: 1 C,遮:1 D, 3: 1点上,线段AB, PQ相交于点M,那么图中/QMB12. 〔2021?烟台〕如图,在平面直角坐标中,正方形 ABCD 与正方形BEFG 是以原点.为位似中央且相似比为 ▲,点A, B, E 在x 轴上,假设正方形 BEFG 的边长为6,那么C 点坐标为3A . 〔3, 2〕 B, 〔3, 1〕 C. 〔2, 2〕 D, 〔4, 2〕二.填空题〔共5小题〕13. 〔2021陆迁〕假设两个相似三角形的面积比为 1:4,那么这两个相似三角形的周长比是 14. 〔2021?娄底〕如图, /A=/D,要使△ABCs^DEF,还需添加一个条件,你添加的条件是.〔只需写一个条件,不添加辅助线和字母〕15. 〔2021?宾州〕如图,矩形 ABCD 中,AB 小巧,BC=R ,点E 在对角线BD 上,且BE=1.8,连接AE 并延长交DC 于点F ,那么工里=.CD ----------16. 〔2021彼海〕如图,直线 y=^x+1与x 轴交于点 A,与y 轴交于点B, 4BOC 与△ BO C 是以点A 为位似中央的位似图形,且相似比为1: 3,那么点B 的对应点B'的坐标为 .17. 〔2021跳山〕如图,在△ ABC 中,D 、E 分别是边 AB 、AC 上的点,且DE//BC,假设△ ADE 与△ ABC 的周长之比为 2: 3, AD=4,那么DB=. 三.解做题〔共5小题〕18. 〔2021?广州〕如图,在平面直角坐标系 xOy 中,直线y=-x+3与x 轴交于点C,与直线AD 交于 点A 〔士口〕,点D 的坐标为〔0, 1〕 J J 〔1〕求直线AD 的解析式;〔2〕直线AD 与x 轴交于点B,假设点E 是直线AD 上一动点〔不与点 B 重合〕,当△ BOD 与4BCE 相似时,求点E 的坐标.的位似图形,〔第15题〕 〔第16题〕〔第1719. (2021?临夏州)如图, EC II AB, /EDA = /ABF.(1)求证:四边形ABCD是平行四边形;2(2)求证:OA =OE?OF.20. (2021?聊城)如图,以Rt^ABC的直角边AB为直径作OO,交斜边AC于点D ,点E为OB的中点,连接CE 并延长交..于点F,点F恰好落在忘的中点,连接AF并延长与CB的延长线相交于点G,连接OF.(1)求证:OF=£BG;(2)假设AB=4,求DC的长.21. (2021泡州)如图,在4ABC中,点D, E分别在边AB, AC上,/AED=/B,射线AG分别交线段DE, BC于点F, G,且理』!).AC CG(1)求证:△ADF S^ACG;(2) 假设旭」求鲤的值.AC- 2 FG22. (2021?南京)如图,在?ABCD中,E是AD上一点,延长CE到点F,使/FBC=/DCE.(1)求证:/ D= / F ;(2)用直尺和圆规在AD上作出一点P,使△BPC S^CDP (保存作图的痕迹,不写作法)..选择题〔共12小题〕出 G a 一 b1 .—,那么一「的值是〔〕b 13 a+bA. -2B. -士C. -£D.」3. 149【分析】 根据等式的性质,可用 b 表示a,根据分式的性质,可得答案.应选:D.【点评】 此题考查了比例的性质,利用等式的性质得出a 〕Lb 是解题关键.134. 〔2021淅州〕如图,直线 a// b//c,直线 m 交直线a, b, c 于点A, B, C,直线n 交直线a,【分析】直接根据平行线分线段成比例定理求解. 【解答】解:a // b// c, DE AB 1 ...—=—=—.EF EC 2应选B.【点评】 此题考查了平行线分线段成比例定理:三条平行线截两条直线,所得的对应线段成比例.5. 〔2021殓华〕在四边形 ABCD 中,ZB=90°, AC=4, AB//CD, DH 垂直平分 AC,点H 为垂足.设AB=x, AD=y,那么y 关于x 的函数关系用图象大致可以表示为〔〕试卷解析卷49'解:由月丁殳,得 b13A .亍 B. C. 9 D. 11 £Jx的取值范围即可解决问题.【解答】解:•••DH垂直平分AC,DA=DC, AH=HC=2,/DAC = /DCH , ••• CD // AB,/DCA = /BAC,ZDAN = ZBAC, ••• ZDHA = ZB=90 °, • . ADAHs △ CAB,里理AC AB. AB VAC,x< 4,图象是D .应选D.【点评】此题科学相似三角形的判定和性质、相等垂直平分线性质、反比例函数等知识,解题的关键是正确寻找相似三角形,构建函数关系,注意自变量的取值范围确实定,属于中考常考题型.6. 〔2021?安徽〕如图, 4ABC中,AD是中线,BC=8, / B=/DAC ,那么线段AC的长为〔A . 4 B. 4强C. 6 D. 4/3【分析】根据AD是中线,得出CD=4,再根据AA证出△CBA S^CAD,得出屈@,求出AC即可.BC AC【解答】解:♦••BC=8,CD=4,在4CBA和ACAD中,•. /B=/DAC, ZC=ZC,ACBA^ACAD,£=里BC AC' -2・•. AC2=CD?BC=4 X8=32,AC=4 二;应选B.【点评】此题考查了相似三角形的判断与性质, 关键是根据AA证出△CBAs^CAD,是一道根底题.7. 〔2021硝疆〕如图,在4ABC中,D、E分别是AB、AC的中点,以下说法中不正确的选项是〔C. AADE^AABCD. S AADE:S AABC=1:2【分析】根据中位线的性质定理得到DE//BC, DE」BC,再根据平行线分线段成比例定理和相似三2角形的性质即可判定.【解答】解:.「□、E分别是AB、AC的中点,DE // BC, DE—BC,蛆AC BC 2'△ ADE^A ABC,. - 一上-口△⑪E iAABC 卷 4'・•.A, B, C正确,D错误;【点评】该题主要考查了平行线分线段成比例定理和相似三角形的性质即可判定;解题的关键是正确找出对应线段,准确列出比例式求解、计算、判断或证实.8. 〔2021?台湾〕如图的GABC中有一正方形DEFG,其中D在AC上,E、F在AB上,直线AG分别交DE、BC 于M、N 两点.假设ZB=90°, AB=4 , BC=3 , EF=1 ,贝U BN 的长度为何?〔〕【分析】由DE // BC可得迎=5?求出AE的长,由GF // BN可得空支,将AE的长代人可求得AB BC AB BNBN.【解答】解::四边形DEFG是正方形,・ .DE//BC, GF// BN,且DE=GF=EF=1 ,AADE^AACB, AAGF^ AANB,T 口①,遇理旦②,AB BC AB BN由①可得,鲤』解得:AE J,4 3 3将AE=^t入②,得:[3解得:BN=—,应选:D.【点评】此题主要考查正方形的性质及相似三角形的判定与性质,根据相似三角形的性质得出AE的长是解题的关键.7 .如图,在同一时刻,身高1.6米的小丽在阳光下的影长为 2.5米,一棵大树的影长为5米,那么这棵树的高度为〔〕A. 1.5 米B. 2.3 米C. 3.2 米D. 7.8 米【分析】在同一时刻物高和影长成正比,即在同一时刻的两个物体,影子,经过物体顶部的太阳光线 三者构成的两个直角三角形相似.【解答】解:二.同一时刻的两个物体,影子,经过物体顶部的太阳光线三者构成的两个直角三角形相BC=X5=3.2 米.2. 5【点评】此题考查了相似三角形在测量高度时的应用,解题时关键是找出相似的三角形, 然后根据对应边成比例列出方程,建立适当的数学模型来解决问题.8. 〔2021确博〕如图是由边长相同的小正方形组成的网格, 点上,线段 AB, PQ 相交于点M,那么图中ZQMB 的正切值是〔【分析】根据题意得出△PAM S ^QBM ,进而结合勾股定理得出 求出答案.【解答】解:连接AP, QB, 由网格可得: ZFAB=ZQBA=90° ,应选:C. A, B, P, Q 四点均在正方形网格的格AP=3\/2, BQ =/2, AB=2/2,进而又••• /AMP = /BMQ, APAM^AQBM,,幽鲤, QB EM•, AP=3\/2, BQ=72, AB=2&,V2 2V2 "AM解得:AM = %,仅2tan ZQMB =tan/PMA=^=r £=2 .Afl[ WZ应选:D.【点评】此题主要考查了勾股定理以及相似三角形的判定与性质以及锐角三角函数关系,正确得出△ PAM S ^QBM 是解题关键.中央,相似比为 工,把^ABO 缩小,那么点A 的对应点A'的坐标是〔〕3A. (-1, 2)B. (-9, 18)C. (-9, 18)或(9, — 18)【分析】利用位似变换是以原点为位似中央,相似比为 k,那么位似图形对应点的坐标的比等于k 或 -k 进行求解.【解答】 解:二“〔-3, 6〕, B 〔-9, -3〕,以原点O 为位似中央,相似比为把^ABO 缩小,3或[—3X 〔 一白〕,6X 〔一1〕],即A 点的坐标为〔—1,应选D.【点评】此题考查了位似变换:在平面直角坐标系中,如果位似变换是以原点为位似中央,相似比为9. 〔2021?东营〕如图,在平面直角坐标系中,点A (- 3, 6) ,B ( - 9, - 3),以原点O 为位似D. (-1, 2)或(1, - 2)•••点A 的对应点A'的坐标为〔-3k,那么位似图形对应点的坐标的比等于k或-k.10 .如图,在直角坐标系中,有两点A (6, 3), B (6, 0),以原点O为位似中央,相似比为第一象限内把线段AB缩小后得到新的线段,那么点A的对应点坐标为(234567-2A . (2, 1) B. (2, 0) C. (3, 3) D, (3, 1)【分析】由以原点O为位似中央,相似比为根据位似图形的性质,即可求得答案.3【解答】解:二.以原点O为位似中央,相似比为-1, A (6, 3), 恸,在第一象限内,点A的对应点坐标为:(2, 1).应选A.【点评】此题考查了位似图形的变换. 注意在平面直角坐标系中, 如果位似变换是以原点为位似中央, 相似比为k,那么位似图形对应点的坐标的比等于k或-k.11 .复印纸的型号有A.、A1、A2、A3、A4等,它们之间存在着这样一种关系:将其中某一型号(如A3)的复印纸较长边的中点对折后,就能得到两张下一型号( A4)的复印纸,且得到的两个矩形都和原来的矩形相似(如图),那么这些型号的复印纸的长宽之比为( )A . 2: 1 B. V2: 1 C.立:1 D, 3: 1【分析】设这些型号的复印纸的长、宽分别为b、a,根据相似多边形的对应边的比相等列出比例式, 计算即可.【解答】解:设这些型号的复印纸的长、宽分别为b、a,•••得到的矩形都和原来的矩形相似,b---」 - ----- ,3 L那么 b 2=2a 2,/二a..这些型号的复印纸的长宽之比为 V2: 1, 应选:B.【点评】此题考查的是相似多边形的性质,相似多边形的性质为:① 对应角相等;② 对应边的比相12. 〔2021?烟台〕如图,在平面直角坐标中,正方形 ABCD 与正方形BEFG 是以原点.为位似中央AO 的长,即可得出答案.【解答】 解:二,正方形ABCD 与正方形BEFG 是以原点.为位似中央的位似图形,且相似比为 工3BG 3'••• BG=6, AD=BC=2, . AD // BG, AOAD^AOBG,.•.OB=3,・•.C 点坐标为:(3, 2),【点评】此题主要考查了位似变换以及相似三角形的判定与性质,正确得出 AO 的长是解题关键.的位似图形, 且相似比为 1,点A, B, E 在x 轴上,假设正方形BEFG 的边长为6,那么C 点坐标为〔A . (3, 2) B, (3, 1) C. (2, 2) D. (4,2)【分析】直接利用位似图形的性质结合相似比得出AD 的长,进而得出 △OAD S ^OBG ,进而得出二.填空题〔共5小题〕13. 〔2021?宿迁〕假设两个相似三角形的面积比为1: 4,那么这两个相似三角形的周长比是1: 2 .【分析】根据相似三角形面积的比等于相似比的平方求出相似比, 根据似三角形周长的比等于相似比得到答案.【解答】解:二.两个相似三角形的面积比为1: 4,・♦.这两个相似三角形的相似比为1:2,・•.这两个相似三角形的周长比是1: 2,故答案为:1: 2.【点评】此题考查的是相似三角形的性质, 掌握相似三角形周长的比等于相似比、相似三角形面积的比等于相似比的平方是解题的关键.14. 〔2021?娄底〕如图,/ A=/D,要使△ABCs^DEF,还需添加一个条件,你添加的条件是AB // DE .〔只需写一个条件,不添加辅助线和字母〕【分析】根据有两组角对应相等的两个三角形相似进行添加条件.【解答】B:••ZA=ZD,・•・当/B=/DEF 时,△ABCs^DEF,. AB // DE 时,/ B=/DEF ,・•・添加AB// DE 时,使△ ABCs △ DEF .故答案为AB // DE.【点评】此题考查了相似三角形的判定:有两组角对应相等的两个三角形相似.15. 〔2021?宾州〕如图,矩形ABCD中,AB=/3, BC=R,点E在对角线BD上,且BE=1.8,连接CF 111AE并延长交DC于点F,那么—二;_.CD 厂【分析】 根据勾股定理求出 BD,得到DE 的长,根据相似三角形的性质得到比例式,代入计算即可求出DF 的长,求出CF,计算即可. 【解答】 解:二•四边形ABCD 是矩形, /BAD=90 ;又 AB=71, BC=几, •.•孙五屋十&俨3, ••• BE=1.8, DE=3 - 1.8=1.2, . AB // CD,. DF_DE DF-1.2AB =BE'即 解得,DF=织&3贝U CF=CD - DF=1,3V3 ,CF 3 1而一m =密 故答案为:3|【点评】此题考查的是矩形的性质、相似三角形的判定和性质,掌握矩形的性质定理和相似三角形的 判定定理、性质定理是解题的关键.16. 〔2021彼海〕如图,直线 y=,x+1与x 轴交于点 A,与y 轴交于点B, 4BOC 与△ BO C 是以点A 为位似中央的位似图形, 且相似比为1:3,那么点B 的对应点B 的坐标为〔-8, -3〕或〔4, 3〕.【分析】 首先解得点A 和点B 的坐标,再利用位似变换可得结果. 【解答】 解:二•直线y=L+1与x 轴交于点A,与y 轴交于点B,EB令x=0可得y=1 ;令y=0可得x= - 2,.•・点A和点B的坐标分别为〔-2, 0〕; 〔0, 1〕,••• ^BOC与ABO'C是以点A为位似中央的位似图形,且相似比为1: 3,..0B =以上O' Q 3• .OB' =3AO' = 6,B的坐标为〔-8, - 3〕或〔4, 3〕.故答案为:〔-8, - 3〕或〔4, 3〕.【点评】此题主要考查了位似变换和一次函数图象上点的坐标特征,得出点A和点B的坐标是解答此题的关键.17. 〔2021跳山〕如图,在△ ABC中,D、E分别是边AB、AC上的点,且DE//BC,假设△ ADE与△ ABC【分析】由DE// BC,易证△ADE S^ABC,由相似三角形的性质即可求出的长.AB的长,进而可求出DB 【解答】解:.「DE//BC,AADE^AABC,••・ 4ADE与4ABC的周长之比为2: 3,AD: AB=2: 3,••• AD=4,AB=6,DB=AB-AD=2,故答案为:2.【点评】此题主要考查的是相似三角形的性质:相似三角形的一切对应线段〔包括对应边、对应中线、对应高、对应角平分线等〕的比等于相似比,面积比等于相似比的平方.三.解做题〔共5小题〕18. 〔2021?广州〕如图,在平面直角坐标系 xOy 中,直线y=-x+3与x 轴交于点C,与直线AD 交于点A 〔工上〕,点D 的坐标为〔0, 1〕3 3〔1〕求直线AD 的解析式;〔2〕直线AD 与x 轴交于点B,假设点E 是直线AD 上一动点〔不与点 B 重合〕,当△ BOD 与4BCE 【解答】 解:〔1〕设直线AD 的解析式为y=kx+b,(2)二.直线AD 与x 轴的交点为(-2, 0), OB=2,•・•点D 的坐标为(0, 1), OD=1 ,= y= - x+3与x 轴交于点C (3, 0), .•.OC=3, BC=5•. △BOD 与ABCE 相似,.BD BO OD^OB OD BC BE CE BC CE'普盍表或看卷BE=2/5, CE=氐或 CE±【分析】〔1〕设直线AD 的解析式为y=kx+b,用待定系数法将〔2〕由直线AD 与x 轴的交点为〔- 得BC=5,根据相似三角形的性质得到2, 0〕,得到OB=2,由点D 的坐标为〔0, 1〕,得到OD=1,求BD BO EL —二—=—旦 BC BE CE要工,代入数据即可得到结论.BC CE故直线AD 的解析式为:y —x+1 ;2相似时,求点E 的坐标.A ,D 〔0, 1〕的坐标代入即将A (士上),D (0, 1)代入得:J J解得:•.E (2, 2),或(3, 3.2【点评】此题考查了相似三角形的性质,待定系数法求函数的解析式,正确的作出图形是解题的关键.19. (2021?临夏州)如图, EC//AB, /EDA=/ABF.(1)求证:四边形ABCD是平行四边形;2(2)求证:OA =OE?OF.【分析】(1)由EC // AB, ZEDA = ZABF,可证得/DAB=/ABF,即可证得AD// BC,贝U得四边形ABCD为平行四边形;(2)由EC//AB,可得空=迷,由AD // BC,可得更旦,等量代换得出空3,即OA2=OE?OFOE CD OD 0A OE OA【解答】证实:(1) .「EC//AB,ZEDA=ZDAB,••• ZEDA=ZABF,ZDAB=ZABF,AD // BC,••• DC // AB,四边形ABCD为平行四边形;(2) 「EC//AB,・.△OAB S^OED,,囱妈OE OD. AD // BC,・•.△OBF S^ODA,..再阐OD 0A.忸」阐OE 0A【点评】此题考查了相似三角形的判定与性质,平行四边形的判定,平行线的性质,解题时要注意识图,灵活应用数形结合思想.20. (2021?聊城)如图,以Rt^ABC的直角边AB为直径作OO,交斜边AC于点D ,点E为OB的中点,连接CE并延长交..于点F,点F恰好落在AB的中点,连接AF并延长与CB的延长线相交于点G,连接OF.(1)求证:OF=:BG;(2)假设AB=4,求DC的长.【分析】(1)直接利用圆周角定理结合平行线的判定方法得出FO是4ABG的中位线,即可得出答案; (2)首选得出△FOE^^CBE (ASA),那么BC=FO」AB=2,进而得出AC的长,再利用相似三角形2的判定与性质得出DC的长.【解答】(1)证实:二.以Rt^ABC的直角边AB为直径作.0,点F恰好落在的中点,AF=B F,/ AOF = /BOF,••• / ABC=/ABG=90 ;/ AOF = /ABG,FO // BG,••• AO=BO,FO是^ABG的中位线,FO =—BG ;2(2)解:在AFOE 和^CBE 中,^ZF0E=ZCBE,EO=BE ,b Z0EF=ZCEBAFOE^ACBE (ASA),BC=FO=—AB=2,2A M A B2+BC~2后连接DB,.「AB为.O直径,ZADB=90 ;ZADB=ZABC,••• /BCD = /ACB,ABCD^AACB,解得:DC=织S【点评】此题主要考查了相似三角形的判定与性质以及全等三角形的判定与性质等知识,正确得出△ BCD^AACB是解题关键.21 . 〔2021泡州〕如图,在△ ABC中,点D, E分别在边AB, AC上,ZAED=ZB,射线AG分别交线段DE, BC于点F, G,且&-KZ. AC-CG(1)求证:△ADFs^ACG;〔2〕假设理〕求迎的值.AC 2 FG A【分析】〔1〕欲证实△ADFs^ACG,由理旦可知,只要证实/ADF = /C即可.AC CG〔2〕利用相似三角形的性质得到过」,由此即可证实.AG 2【解答】(1)证实:ZAED = ZB, /DAE = /DAE,/ADF = /C,..幽迹AC CGAADF^AACG.(2)解:••• AADF ^AACG,也幽AC AG'又•••迪」,AC 2.』二, 二'【点评】此题考查相似三角形的性质和判定、三角形内角和定理等知识,记住相似三角形的判定方法是解决问题的关键,属于根底题中考常考题型.22. (2021?南京)如图,在?ABCD中,E是AD上一点,延长CE到点F,使/FBC=/DCE.(1)求证:ZD = ZF;(2)用直尺和圆规在AD上作出一点P,使△BPC S^CDP (保存作图的痕迹,不写作法)【分析】〔1〕BE 交AD 于G,先利用AD // BC 得到/FBC=/FGE ,力口上/FBC=/DCE ,所以/FGE =/DCE , 然后根据三角形内角和定理易得ZD = ZF;(2)分另1J作BC和BF的垂直平分线,它们相交于点O,然后以.为圆心,OC为半径作4BCF的外接圆.0,..交AD于P,连ZBP、CP,那么根据圆周角定理得到/F=/BPC,而/F=/D,所以/D=/BPC,接着可证实/PCD=/APB=/PBC,于是可判断△BPC S^CDP.【解答】(1)证实:BE交AD于G,如图,•••四边形ABCD为平行四边形,• . AD // BC,ZFBC=ZFGE,而/FBC=/DCE,ZFGE=ZDCE,••• ZGEF = ZDEC,/D = /F;(2)解:如图,点P为所作.【点评】此题考查了作图-相似变换:两个图形相似,其中一个图形可以看作由另一个图形放大或缩小得到.也考查了平行四边形的性质.解决〔2〕小题的关键是利用圆周角定理作/BPC = /F.czsx。
第四章 图形的相似一、选择题(本大题共7小题,共28分)1.已知x y =32,那么下列等式中,不一定正确的是( )A .x +2y +2=32B .2x =3yC .x +y y =52 D .x x +y =352.如图4-Z -1,l 1∥l 2∥l 3,已知AB =6 cm ,BC =3 cm ,A 1B 1=4 cm ,则线段B 1C 1的长为( )A .6 cmB .4 cmC .3 cmD .2 cm图4-Z -1图4-Z -23.如图4-Z -2所示,在△ABC 中,D ,E 分别为AC ,BC 边上的点,AB ∥DE ,CF 为AB 边上的中线.若AD =5,CD =3,DE =4,则BF 的长为( )A .323B .163C .103D .83图4-Z -34.如图4-Z -3,在△ABC 中,中线BE ,CD 相交于点O ,连接DE ,下列结论:①DE BC =12;②S △DOE S △COB =12;③AD AB =OE OB ;④S △ODB S △BDC =13.其中正确的个数为( ) A .1 B .2 C .3 D .45.在Rt △ABC 和Rt △DEF 中,∠C =∠F =90°,下列条件中不能判定这两个三角形相似的是( )A .∠A =55°,∠D =35°B .AC =9,BC =12,DF =6,EF =8 C .AC =3,BC =4,DF =6,DE =8D .AB =10,AC =8,DE =15,EF =96.在中华经典美文阅读中,小明同学发现自己的一本书的宽与长之比为黄金比.已知这本书的长为20 cm ,则它的宽约为( )A .12.36 cmB .13.64 cmC .32.36 cmD .7.64 cm7.如图4-Z -4,在Rt △ABC 中,∠C =90°,AC =BC =6 cm ,点P 从点A 出发,沿AB 方向以每秒 2 cm 的速度向终点B 运动;同时,动点Q 从点B 出发沿BC 方向以每秒1 cm 的速度向终点C 运动,将△PQC 沿BC 翻折,点P 的对应点为点P ′.设点Q 运动的时间为t s ,若四边形QPCP ′为菱形,则t 的值为( )图4-Z -4A . 2B .2C .2 2D .3二、填空题(本大题共6小题,共24分)8.有一块三角形的草地,它的一条边长为25 m .在图纸上,这条边的长为5 cm ,其他两条边的长都为4 cm ,则其他两边的实际长度都是________ m .9.若a 5=b 7=c8,且3a -2b +c =3,则2a +4b -3c =________.10.已知甲、乙两个相似三角形对应中线之比为1∶2,甲三角形的面积为5 cm 2,则乙三角形的面积为__________.11.如图4-Z -5,在两个直角三角形中,∠ACB =∠ADC =90°,AC =6,AD =2.当AB =________时,△ABC ∽△ACD.4-Z-54-Z-612.如图4-Z-6,数学兴趣小组想测量电线杆AB的高度,他们发现电线杆的影子恰好落在土坡的坡面CD和地面BC上,量得CD=4 m,BC=10 m,CD与地面成30°角,且此时测得高1 m的标杆的影长为2 m,则电线杆的高度为________m(结果保留根号).图4-Z-713.如图4-Z-7,将边长为6 cm的正方形ABCD折叠,使点D落在AB边的中点E处,折痕为FH,点C 落在点Q处,EQ与BC相交于点G,则△EBG的周长是________ cm.三、解答题(共48分)14.(10分)如图4-Z-8,矩形ABCD是台球桌面,AD=260 cm,AB=130 cm,球目前在E的位置,AE =60 cm,如果小宝瞄准BC边上的点F将球打过去,经过反弹后,球刚好弹到点D的位置.(1)求证:△BEF∽△CDF;(2)求CF的长.图4-Z-815.(12分)如图4-Z-9,△ABC三个顶点的坐标分别为A(1,2),B(3,1),C(2,3),以原点O为位似中心,将△ABC放大为原来的2倍得到△A′B′C′.(1)在图中的第一象限内画出符合要求的△A′B′C′(不要求写画法);(2)求△A′B′C′的面积.图4-Z-916.(12分)如图4-Z-10,一块材料的形状是锐角三角形ABC,边BC=12 cm,高AD=8 cm.把它加工成正方形零件,使正方形的一边在BC上,其余两个顶点分别在AB,AC上,这个正方形零件的边长是多少?图4-Z-1017.(14分)如图4-Z-11,在▱ABCD中,对角线AC,BD相交于点O,M为AD的中点,连接CM交BD于点N,且ON=1.(1)求BD的长;(2)若△CND的面积为2,求四边形ABNM的面积.图4-Z-11详解1.A2.D [解析] ∵l 1∥l 2∥l 3,∴A 1B 1B 1C 1=AB BC. ∵AB =6 cm ,BC =3 cm ,A 1B 1=4 cm , ∴4B 1C 1=63,∴B 1C 1=2(cm).故选D. 3.B 4.C5.C [解析] A 项,∵∠A =55°,∴∠B =90°-55°=35°.∵∠D =35°,∴∠B =∠D .又∵∠C =∠F ,∴△ABC ∽△EDF ;B 项,∵AC =9,BC =12,DF =6,EF =8,∴AC DF =BC EF =32.又∵∠C =∠F ,∴△ABC ∽△DEF ;C 项,有一组角相等、两边对应成比例,但该组角不是这两边的夹角,故不相似;D 项,易得AB =10,AC =8,BC =6,DE =15,DF =12,EF =9,∴AC DF =BC EF =23.又∵∠C =∠F ,∴△ABC ∽△DEF .故选C.6.A7.B [解析] 连接PP ′交BC 于点O ,∵四边形QPCP ′为菱形,∴PP ′⊥QC ,∴∠POQ =90°.∵∠ACB =90°,∴PO ∥AC ,∴AP AB =CO CB .∵点Q 运动的时间为t s ,∴AP =2t ,QB =t ,∴QC =6-t ,∴CO =3-t2.∵AC =CB =6,∠ACB =90°,∴AB =6 2,∴2t6 2=3-t26,解得t =2.8.20 [解析] 设其他两边的实际长度都是x m ,由题意,得x 4=255,解得x =20.即其他两边的实际长度都是20 m.9.143 [解析] 设a 5=b 7=c8=x ,则a =5x ,b =7x ,c =8x .因为3a -2b +c =3,所以15x -14x +8x =3,解得x =13,所以2a +4b -3c =10x +28x -24x =14x =143.10.20 cm 211.312.(7+3)[解析] 如图,过点D 作DE ⊥BC 交其延长线于点E ,连接AD 并延长交BC 的延长线于点F ,∵CD =4 m ,CD 与地面成30°角,∴DE =12CD =12×4=2(m),CE =CD 2-DE 2=2 3 m .∵高1 m 的标杆的影长为2 m ,∴DE EF =12,AB BF =12,∴EF =2DE =2×2=4(m),∴BF =BC +CE +EF =10+2 3+4=(14+2 3)m ,∴AB =12×(14+2 3)=(7+3)m.13.[全品导学号:52652189]12 [解析] 根据折叠的性质可得∠FEG =90°,设AF =x cm ,则EF =(6-x )cm.在Rt △AEF 中,AF 2+AE 2=EF 2,即x 2+32=(6-x )2,解得x =94,所以AF =94 cm ,EF =154 cm ,根据△AFE ∽△BEG ,可得AF BE =AE BG =EF EG ,即943=3BG =154EG,所以BG =4 cm ,EG =5 cm ,所以△EBG 的周长为3+4+5=12(cm).14.解:(1)证明:由题意,得∠EFG =∠DFG .∵∠EFG +∠BFE =90°,∠DFG +∠CFD =90°,∴∠BFE =∠CFD . 又∵∠B =∠C =90°, ∴△BEF ∽△CDF . (2)∵△BEF ∽△CDF ,∴BE CD =BF CF ,即70130=260-CF CF, ∴CF =169(cm).15.解:(1)△A ′B ′C ′如图所示.(2)图中每个小正方形的边长为1个单位长度,由勾股定理可得AC =2,AB =CB =5,AC 边上的高=(5)2-⎝ ⎛⎭⎪⎫222=322,所以△ABC 的面积S =12×2×32 2=32.设△A ′B ′C ′的面积为S ′,因为△ABC ∽△A ′B ′C ′,所以S S ′=⎝ ⎛⎭⎪⎫122,得S ′=4S =4×32=6,即△A ′B ′C ′的面积为6.16.解:如图,∵四边形EFHG 是正方形, ∴EF ∥BC ,∴△AEF ∽△ABC ,而AD ⊥BC , ∴EF BC =AK AD.设正方形EFHG 的边长为x cm ,则AK =(8-x )cm ,∴x 12=8-x 8,解得x =4.8. 答:这个正方形零件的边长为4.8 cm.17.解:(1)∵在▱ABCD 中,AD ∥BC ,AD =BC ,OB =OD , ∴∠DMN =∠BCN ,∠MDN =∠NBC , ∴△MND ∽△CNB , ∴MD CB =DN BN. ∵M 为AD 的中点,∴MD =12AD =12BC ,即MD CB =12,∴DN BN =12,即BN =2DN . 设OB =OD =x ,则BD =2x ,BN =OB +ON =x +1,DN =OD -ON =x -1,∴x +1=2(x -1),解得x =3, ∴BD =2x =6.(2)∵△MND ∽△CNB ,且相似比为1∶2, ∴MN ∶CN =DN ∶BN =1∶2,∴S △MND =12S △CND =1,S △CNB =2S △CND =4,∴S △ABD =S △BCD =S △CNB +S △CND =4+2=6, ∴S 四边形ABNM =S △ABD -S △MND =6-1=5.。
第四章图形的相似数学九年级上册-单元测试卷-北师大版(含答案)一、单选题(共15题,共计45分)1、如图,在Rt△ABC中,∠BAC=90°,AD⊥BC,若AB=2,BC=4.则DC的长度为()A.1B.C.3D.22、如图,矩形AEHC是由三个全等矩形拼成的,AH与BE、BF、DF、DG、CG分别交于点P、Q、K、M、N,设△BPQ, △DKM, △CNH 的面积依次为S1, S2, S3。
若S1+ S3=20,则S2的值为 ( )A.8B.10C.12D.3、如图,对折矩形纸片ABCD,使AD与BC重合,得到折痕EF,把纸片展平后再次折叠,使点A落在EF上的点A' 处,得到折痕BM,且BM与EF相交于点N,若直线BA'交直线CD 于点O,BC =,EN =,则OD的长为()A. B.1 C. D.4、如图,,∠1=∠2,则对于结论:①△ABE∽△ACF;②△ABC∽△AEF ③④,其中正确的结论的个数是()A.1B.2C.3D.45、若△ABC∽△DEF,△ABC与△DEF的相似比为1:2,则△ABC与△DEF的周长比为()A.1:4B.1:2C.2:1D.1:6、如图,正方形ABCD的边长为25,内部有6个全等的正方形,小正方形的顶点E、F、G、H分别落在边AD、AB、BC、CD上,则每个小正方形的边长为()A.6B.5C.2D.7、若△ABC∽△DEF,且面积比为1 :9,则△ABC与△DEF的周长比为()A.1 :3B.1 :9C.3 :1D.1 :818、如图,在▱ABCD中,点E、F分别为边AD、BD上的点,EF∥AB.若DE= EA,EF=4,则CD的长为()A.6B.8C.12D.169、如图,▱ABCD中,点E是边AD的中点,EC交对角线BD于点F,则EF:FC等于()A.1:1B.1:2C.1:3D.2:310、下列命题是真命题的是()A.相等的角是对顶角B.两直线被第三条直线所截,内错角相等 C.若m 2=n 2,则m=n D.所有的等边三角形都相似11、如图,在矩形ABCD中,AD=AB.将矩形ABCD对折,得到折痕MN;沿着CM折叠,点D的对应点为E,ME与BC的交点为F;再沿着MP折叠,使得AM与EM重合,折痕为MP,此时点B的对应点为G.下列结论:①△CMP是直角三角形;②点C、E、G不在同一条直线上;③PC=MP;④BP=AB;⑤点F是△CMP外接圆的圆心.其中正确的个数为()A.2个B.3个C.4个D.5个12、如图1,在等边三角形和矩形中,,点,,都在直线上,且于点,于点,且,,三点共线,将矩形以每秒1个单位长度的速度从左向右匀速运动,直至矩形和:无重叠部分;设矩形运动的时间为秒,矩形和重叠部分的面积为;图2为随的变化而变化的函数图象,则函数图象中点的纵坐标是()A. B. C. D.13、在△ABC中,点D、E在AB,AC上,给出下列四组条件:①∠ADE=∠C②AD•AB=AE•AC③AD=4,AB=6,DE=2,BC=3④AD:AB=1:3,AE:EC=1:2从其中任选一组条件,能判定△ABC和△ADE相似的有()A.1个B.2个C.3个D.4个14、下列说法中正确的是()A.所有的等腰三角形都相似B.所有的矩形都相似C.所有的等腰直角三角形都相似D.所有的菱形都相似15、如图所示,某校宣传栏后面2米处种了一排树,每隔2米一棵,共种了6棵,小勇站在距宣传栏中间位置的垂直距离3米处,正好看到两端的树干,其余的4棵均被挡住,那么宣传栏的长为()米.(不计宣传栏的厚度)A.4B.5C.6D.8二、填空题(共10题,共计30分)16、如图,在△ABC中,∠C=90°,D是BC边上一点,DE⊥AB于E,∠ADC=45°,若DE:AE=1:5,BE=3,则△ABD的面积为________ . 17、如图所示,在平面直角坐标系xOy中,Rt△ABC的直角顶点C在第一象限,CB⊥x轴于点B,点A在第二象限,AB与y轴交于点G,且满足AG=OG=BG,反比例函数y=的图象分别交BC,AC于点E,F,CF=k.以EF为边作等边△DEF,若点D恰好落在AB 上时,则k的值为________18、如图,已知A(-4,0)、B(0,3),一次函数与坐标轴分别交于C、D 两点,G为CD上一点,且DG:CG=1:2,连接BG,当BG平分∠ABO时,则b的值为________.19、若,则________.20、如图,扇形中,. 为弧上的一点,过点作,垂足为,与交于点,若,则该扇形的半径长为________21、如图,Rt△ABC中,∠C=90°,AC=12,点D在边BC上,CD=5,BD=13.点P是线段AD 上一动点,当半径为6的OP与△ABC的一边相切时,AP的长为________.22、如图,放映幻灯片时,通过光源把幻灯片上的图形放大到屏幕上.若光源到幻灯片的距离为20cm,到屏幕的距离为30cm,且幻灯片中的图形的高度为6cm,则屏幕上图形的高度为________.23、如图,在正方形ABCD中,△BPC是等边三角形,BP、CP的延长线分别交AD于点E、F,连结BD、DP,BD与CF相交于点H.给出下列结论:①△ABE≌△DCF;②;③DP2=PH•PB;④.其中正确的是________ .(写出所有正确结论的序号)24、如图,在△ABC中,E为AB边上的一点,要使△ABC∽△ADE成立,还需要添加一个条件为________25、如图,点P为∠MON平分线OC上一点,以点P为顶点的∠APB两边分别与射线OM、ON 相交于点A、B,如果∠APB在绕点P旋转时始终满足,我们就把∠APB叫做∠MON的关联角.如果∠MON=50°,∠APB是∠MON的关联角,那么∠APB的度数为________.三、解答题(共5题,共计25分)26、已知=,求的值.27、如图,在四边形ABCD中,AD∥BC,BA和CD的延长线交于P,AC和BD交于点O,连接PO并延长分别交AD、BC于M、N.求证:AM=DM.28、如图,放大镜中的三角形与原三角形具有怎样的关系?29、如图,▱ABCD的对角线AC、BD相交于点O,点E、F、G、H分别是线段OA、OB、OC、OD的中点,那么▱ABCD与四边形EFGH是否是位似图形?为什么?30、已知:如图,△ABC中,AD=DB,∠1=∠2.求证:△ABC∽△EAD.参考答案一、单选题(共15题,共计45分)1、C2、A3、B4、B5、B6、D7、A8、C9、B10、D11、B12、D13、C14、C15、C二、填空题(共10题,共计30分)16、17、18、19、20、21、22、23、24、25、三、解答题(共5题,共计25分)26、28、30、。
第四章 图形的相似第Ⅰ卷 (选择题 共30分)一、选择题(每小题3分,共30分)1.下列各组中的四条线段是成比例线段的是( )A .1 cm ,2 cm ,20 cm ,40 cmB .1 cm ,2 cm ,3 cm ,4 cmC .6 cm ,4 cm ,1 cm ,3 cmD .5 cm ,10 cm ,15 cm ,20 cm2.如图1,两条直线分别被三条平行直线l 1,l 2,l 3所截,若AB =3,BC =6,DE =2,则DF 的长为( )图1A .4B .5C .6D .73.若a b =35,则a +b b的值是( )A.58B.35C.85D.324.如图2,△ABC 中,AC =BC ,在边AB 上截取AD =AC ,连接CD ,若点D 恰好是线段AB 的一个黄金分割点,则∠A 的度数是( )图2A.22.5° B.30° C.36° D.45°5.如图3所示,将△ABO的三边分别扩大为原来的2倍得到△A1B1C1(顶点均在格点上),它们是以点P为位似中心的位似图形,则点P的坐标是( )A.(-4,-3) B.(-3,-3) C.(-4,-4) D.(-3,-4)图36.如图4,已知矩形ABCD,AB=2,在BC上取一点E,沿AE将△ABE向上折叠,使点B落在AD上的点F处,若四边形EFDC与矩形ABCD相似,则AD的长为( )图4A. 5B.5+1 C.4 D.2 37.在小孔成像问题中,光线穿过小孔,在屏幕上形成倒立的实像,如图5所示,若点O到AB的距离是18 cm,点O到CD的距离是6 cm,则像CD的长是AB长的( )图5A .3倍 B.12C.13D .不知AB 的长度,故无法判断8.为了测量校园水平地面上一棵不可攀的树的高度,学校数学兴趣小组做了如下的探索:根据光的反射定律,利用一面镜子和一根皮尺,设计如图6所示的测量方案,把一面很小的镜子水平放置在离树底(B )8.4米的点E 处,然后沿着直线BE 后退到点D ,这时恰好在镜子里看到树梢顶点A ,再用皮尺量得DE =3.2米,观察者目高CD =1.6米,则树(AB )的高度为( )图6A .4.2米B .4.8米C .6.4米D .16.8米9.如图7,将矩形纸片ABCD 沿EF 折叠,使点B 与CD 边的中点B ′重合,若AB =2,BC =3,则△FCB ′与△B ′DG 的面积之比为( )A.9∶4 B.3∶2 C.4∶3 D.16∶9图710.如图8,在△ABC中,AB=6 cm,AC=12 cm,动点D从点A出发到点B停止,动点E从点C出发到点A停止.点D的运动速度为1 cm/s,点E的运动速度为2 cm/s.如果两点同时运动,那么当以点A,D,E为顶点的三角形与△ABC相似时,运动的时间是( )图8A.3 s或4.8 s B.3 sC.4.5 s D.4.5 s或4.8 s请将选择题答案填入下表:题号12345678910总分答案第Ⅱ卷(非选择题共90分)二、填空题(每小题3分,共18分)11.如图9,D 是等边三角形ABC 中边AB 上的点,AD =2,DB =4.现将△ABC 折叠,使得点C 与点D 重合,折痕为EF ,且点E ,F 分别在边AC 和BC 上,则CFCE=________.图912.如图10,△ABC 中,AB =6,DE ∥AC ,将△BDE 绕点B 顺时针旋转得到△BD ′E ′,点D 的对应点D ′落在边BC 上.已知BE ′=5,D ′C =4,则BC 的长为________.图1013.若a b =c d =e f =12,则3a -2c +e 3b -2d +f(3b -2d +f ≠0)=________.14.如图11所示,Rt △DEF 是由Rt △ABC 沿BC 方向平移得到的,若AB =8,BE =4,DH =3,则△HEC 的面积为________.图1115.如图12,在△ABC 中,AC =6,AB =4,点D ,A 在直线BC 的同侧,且∠ACD =∠B ,CD =2,E 是线段BC 延长线上的动点,当△DCE 和△ABC 相似时,线段CE 的长为________.图1216.如图13,直线y =12x +1与x 轴交于点A ,与y 轴交于点B ,△BOC 与△B ′O ′C ′是以点A 为位似中心的位似图形,且相似比为1∶3,则点B 的对应点B ′的坐标为________.图13三、解答题(共72分)17.(6分)已知a ,b ,c 是△ABC 的三边长,且满足a +43=b +32=c +84,a +b +c =12,试求a ,b ,c 的值,并判断△ABC 的形状.18.(6分)如图14,在平面直角坐标系中,四边形OABC的顶点分别是O(0,0),A(6,0),B(3,6),C(-3,3).(1)以原点O为位似中心,在点O的异侧画出四边形OABC的位似图形四边形OA1B1C1,使它与四边形OABC的相似比是2∶3;(2)写出点A1,B1,C1的坐标;(3)求四边形OA1B1C1的面积.图1419.(8分)已知:在△ABC中,∠ABC=90°,AB=3,BC=4,Q是线段AC上的一个动点,过点Q作AC的垂线交线段AB(如图15①)或线段AB的延长线(如图15②)于点P.(1)当点P 在线段AB 上时,求证:△AQP ∽△ABC ;(2)当△PQB 为等腰三角形时,求AP 的长.图1520.(8分)如图16①,点D ,E 分别在AB ,AC 上,且AD AB =AEAC .(1)求证:DE ∥BC ;(2)如图②,在△ABC 中,D 为边AC 上任意一点,连接BD ,取BD 的中点E ,连接CE 并延长CE 交边AB 于点F ,求证:BF AF =CDAC;(3)在(2)的条件下,若AB =AC ,AF =CD ,求BFAF的值.图1621.(10分)如图17是位于陕西省西安市荐福寺内的小雁塔,是中国早期方形密檐式砖塔的典型作品,并作为丝绸之路的一处重要遗址点,被列入《世界遗产名录》.小铭、小希等几位同学想利用一些测量工具和所学的几何知识测量小雁塔的高度,由于观测点与小雁塔底部间的距离不易测量,因此经过研究需要进行两次测量,于是在阳光下,他们首先利用影长进行测量,方法如下:小铭在小雁塔的影子顶端D 处竖直立一根木棒CD ,并测得此时木棒的影长DE =2.4米;然后,小希在BD 的延长线上找出一点F ,使得A ,C ,F 三点在同一直线上,并测得DF=2.5米.已知图中所有点均在同一平面内,木棒高CD=1.72米,AB⊥BF,CD⊥BF,试根据以上测量数据,求小雁塔的高度AB.图1722.(10分)如图18,在平面直角坐标系中,已知OA=12厘米,OB=6厘米,点P从点O开始沿OA边向点A以1厘米/秒的速度移动,点Q从点B开始沿BO边向点O以1厘米/秒的速度移动.如果点P,Q同时出发,用t(秒)表示移动的时间(0≤t≤6).(1)设△POQ的面积为y,求y关于t的函数表达式;(2)当t为何值时,△POQ与△AOB相似?图1823.(12分)如图19,在等腰三角形ABC中,∠BAC=120°,AB=AC=2,D是BC边上的一个动点(不与点B,C重合),在AC上取一点E,使∠ADE=30°.(1)求证:△ABD∽△DCE;(2)设BD=x,AE=y,求y关于x的函数关系式并写出自变量x的取值范围;(3)当△ADE是等腰三角形时,求AE的长.图1924.(12分)如图20①,点C 将线段AB 分成两部分,如果AC AB =BCAC ,那么称点C 为线段AB 的黄金分割点.某数学兴趣小组在进行研究时,由“黄金分割点”联想到“黄金分割线”,类似给出“黄金分割线”的定义:一条直线将一个面积为S 的图形分成两部分,这两部分的面积分别为S 1,S 2,如果S 1S =S 2S 1,那么称这条直线为该图形的黄金分割线.(1)如图②,在△ABC 中,∠A =36°,AB =AC ,∠ACB 的平分线交AB 于点D ,请问直线CD 是不是△ABC 的黄金分割线?并证明你的结论;(2)如图③,在边长为1的正方形ABCD 中,E 是边BC 上一点,若直线AE 是正方形ABCD 的黄金分割线,求BE 的长.图20详解详析1.A2.C [解析] ∵两条直线分别被三条平行直线l 1,l 2,l 3所截,∴AB BC =DE EF.∵AB =3,BC =6,DE =2,∴EF =4,∴DF =DE +EF =2+4=6.故选C.3.C4.C [解析] ∵点D 是线段AB 的一个黄金分割点,∴AD 2=BD ·AB . ∵AD =AC =BC ,∴BC 2=BD ·AB , 即BC ∶BD =AB ∶BC .而∠ABC =∠CBD ,∴△BCD ∽△BAC , ∴∠A =∠BCD .设∠A =x °,则∠B =x °,∠BCD =x °, ∴∠ADC =∠BCD +∠B =2x °. 而AC =AD ,∴∠ACD =∠ADC =2x °, ∴x +2x +2x =180,解得x =36, 即∠A =36°.故选C.5.A6.B [解析] 由折叠知AF =AB =2,设AD =x ,则FD =x -2,EF =2,∵四边形EFDC 与矩形ABCD 相似,∴EF FD =AD AB ,即2x -2=x 2,解得x 1=1+5,x 2=1-5(不合题意,舍去),即AD 的长为5+1.故选B.7.C [解析] 过点O 作OM ⊥AB 于点M ,交CD 于点N ,如图,则OM =18 cm ,ON =6 cm.∵AB ∥CD ,∴△ODC ∽△OAB ,∴CD AB =ON OM =618=13,即CD 的长是AB 长的13.故选C.8.A [解析] 如图,过点E 作EF ⊥BD 于点E ,则∠1=∠2.∵∠DEF =∠BEF =90°,∴∠DEC =∠AEB .∵CD ⊥BD ,AB ⊥BD ,∴∠CDE =∠ABE =90°,∴△CDE ∽△ABE ,∴DE BE =CDAB.∵DE =3.2米,CD =1.6米,BE =8.4米,∴3.28.4=1.6AB,解得AB =4.2米. 9.D [解析] 本题运用方程思想,设CF =x , 则BF =3-x ,易得CF 2+CB ′2=FB ′2,即x 2+12=(3-x )2,解得x =43.由已知可证得Rt △FCB ′∽Rt△B ′DG ,所以S △FCB ′S △B ′DG =⎝ ⎛⎭⎪⎫CF DB ′2=169.10.A [解析] 本题运用分类讨论的思想,分△ADE ∽△ABC 和△ADE ∽△ACB 两种情况分别求解.11.54 [解析] ∵△ABC 是等边三角形,∴∠A =∠B =∠C =60°,AC =BC =AB =AD +DB =6.由折叠的性质可知∠EDF =∠C =60°,EC =ED ,FC =FD ,∴∠AED =∠BDF , ∴△AED ∽△BDF ,∴DF DE =BD +DF +BF AE +AD +DE =108=54,∴CF CE =DF DE =54. 12.2+34 [解析] 由旋转可得BE =BE ′=5,BD =BD ′. ∵D ′C =4,∴BD ′=BC -4,即BD =BC -4.∵DE ∥AC ,∴BD BA =BE BC ,即BC -46=5BC,解得BC =2+34(负值已舍),即BC 的长为2+34.13.12 [解析] 由a b =c d =e f =12,得a =12b ,c =12d ,e =12f ,所以3a -2c +e 3b -2d +f =1.5b -d +0.5f3b -2d +f =12. 14.503 [解析] 设CE =x ,由△CEH ∽△CBA ,得EH AB =CE CB ,即8-38=x x +4,∴x =203,∴S△HEC=12×203×5=503.15.43或3 [解析] ∵∠ACD +∠DCE =∠B +∠A ,∠ACD =∠B ,∴∠DCE =∠A ,∴∠A 与∠DCE 是对应角,∴△DCE 和△ABC 相似有两种情况:(1)当△BAC ∽△ECD 时,AB CE =AC CD ,∴4CE =62,∴CE =43; (2)当△BAC ∽△DCE 时,AB CD =ACCE, ∴42=6CE,∴CE =3. 综上所述,CE 的长为43或3.故答案为:43或3.易错警示△DCE 和△ABC 相似有两种情况,注意不要漏解.16.(4,3)或(-8,-3) [解析] 由直线y =12x +1与x 轴交于点A ,与y 轴交于点B ,得点A (-2,0),点B (0,1).画△BOC 的位似图形△B ′O ′C ′如图所示.∵△BOC 与△B ′O ′C ′的相似比为1∶3,∴点B ′(x ,3)或(x ,-3).∵点B ′(x ,3)或(x ,-3)在直线y=12x +1上,∴点B ′的坐标为(4,3)或(-8,-3). 故答案为(4,3)或(-8,-3).17.解:设a +43=b +32=c +84=k (k ≠0),∴a =3k -4,b =2k -3,c =4k -8. ∵a +b +c =12,将a =3k -4,b =2k -3,c =4k -8代入上式, 得3k -4+2k -3+4k -8=12, ∴9k =27,即k =3. ∴a =5,b =3,c =4.∵b 2+c 2=9+16=25,a 2=52=25, ∴b 2+c 2=a 2,∴△ABC 是直角三角形.18.解:(1)如图所示,四边形OA 1B 1C 1即为所求.(2)由图形可得A 1(-4,0),B 1(-2,-4),C 1(2,-2).(3)四边形OA 1B 1C 1的面积为12×2×4+12×(3+4)×2+12×3×2=14.19.解:(1)证明:∵∠A +∠APQ =90°,∠A +∠C =90°, ∴∠APQ =∠C . 在△AQP 和△ABC 中, ∵∠APQ =∠C ,∠A =∠A , ∴△AQP ∽△ABC .(2)在Rt △ABC 中,AB =3,BC =4,由勾股定理,得AC =5. ①当点P 在线段AB 上时. ∵△PQB 为等腰三角形,∴PB =PQ . 由(1)可知,△AQP ∽△ABC ,∴PA AC =PQBC,即3-PB 5=PB 4,解得PB =43, ∴AP =AB -PB =3-43=53;②当点P 在线段AB 的延长线上时. ∵△PQB 为等腰三角形, ∴PB =BQ ,∴∠BQP =∠P .∵∠BQP +∠AQB =90°,∠A +∠P =90°,∴∠AQB =∠A ,∴BQ =AB , ∴AB =BP ,即B 为线段AP 的中点, ∴AP =2AB =2×3=6.综上所述,当△PQB 为等腰三角形时,AP 的长为53或6.20.解:(1)证明:∵∠A =∠A ,AD AB =AEAC, ∴△ADE ∽△ABC ,∴∠ADE =∠B , ∴DE ∥BC .(2)证明:如图,过点D 作DG ∥AB 交CF 于点G ,则△CDG ∽△CAF ,∴DG AF =CD AC.∵E 是BD 的中点,∴BE =ED . ∵DG ∥AB ,∴∠FBE =∠EDG .在△BEF 和△DEG 中,∠FBE =∠EDG ,∠FEB =∠GED ,BE =ED ,∴△BEF ≌△DEG (ASA),∴BF =DG ,∴BF AF =CDAC.(3)由(2)可得BF AF =CDAC.∵AB =AC ,AF =CD ,∴BF AF =AFAF +BF,∴BF 2+BF ·AF -AF 2=0,∴(BF AF)2+BF AF -1=0,解得BF AF =-1±52,而BE AF >0,∴BF AF =5-12.21.解:由题意得∠ABD =∠CDE =90°, ∠ADB =∠CED ,∴△CDE ∽△ABD ,∴CD AB =DE BD.∵由题意得∠CDF =∠ABF =90°,∠CFD =∠AFB ,∴△CDF ∽△ABF ,∴CD AB =DF BF,∴DE BD =DF BF,即2.4BD = 2.5BD +2.5,∴BD =60, ∴1.72AB =2.460,∴AB =43. 答:小雁塔的高度AB 是43米.22.解:(1)由题意,得BQ =t 厘米,OP =t 厘米. 因为OB =6厘米, 所以OQ =(6-t )厘米.所以y =12OP ·OQ =12t ·(6-t )=-12t 2+3t (0≤t ≤6). (2)当△POQ 与△AOB 相似时,①若OQ OB =OP OA ,即6-t 6=t 12,解得t =4; ②若OQ OA =OP OB ,即6-t 12=t 6,解得t =2. 所以当t =4或t =2时,△POQ 与△AOB 相似.23.解:(1)证明:∵△ABC 是等腰三角形,且∠BAC =120°,∴∠B =∠C =30°. 又∵∠ADE =30°,∴∠B =∠ADE .又∵∠ADC =∠ADE +∠EDC =∠B +∠DAB ,∴∠EDC =∠DAB ,∴△ABD ∽△DCE .(2)如图①,过点A 作AF ⊥BC 于点F ,∵AB =AC =2,∠BAC =120°,∴∠AFB =90°.∵AB =2,∠ABF =30°,∴AF =12AB =1, ∴BF =3,∴BC =2BF =23,则CD =23-x ,CE =2-y .∵△ABD ∽△DCE ,∴AB BD =CD CE ,∴2x =23-x 2-y ,化简得y =12x 2-3x +2(0<x <23).(3)当AD =DE 时,如图②,由(1)可知:此时△ABD ∽△DCE ,则AB =CD ,即2=23-x ,x =23-2,将其代入y =12x 2-3x +2,解得y =4-23, 即AE =4-23;当AE =ED 时,如图③,∠EAD =∠EDA =30°,∠AED =120°,∴∠DEC =60°,∠EDC =90°,则DE =12CE ,即y =12(2-y ),解得y =23,即AE =23;当AD =AE 时,∠AED =∠ADE =30°,∠EAD =120°,此时点D 与点B 重合,不符合题意,故此种情况不存在.综上,当△ADE 是等腰三角形时,AE 的长为4-23或23. 24.解:(1)直线CD 是△ABC 的黄金分割线.证明:∵AB =AC ,∠A =36°,∴∠ABC =∠ACB =72°.∵CD 平分∠ACB ,∴∠ACD =∠BCD =12∠ACB =36°, ∴∠BDC =72°=∠B ,∠A =∠ACD ,∴BC =CD ,AD =CD ,∴BC =AD .∵∠B =∠B ,∠BCD =∠A ,∴△BCD ∽△BAC ,∴BD BC =BC AB ,∴BD AD =AD AB. 又∵S △BCD S △ADC =BD AD ,S △ADC S △ABC =AD AB, ∴S △BCD S △ADC =S △ADC S △ABC, ∴直线CD 是△ABC 的黄金分割线.(2)设BE =x ,∵正方形ABCD 的边长为1,∴S △ABE =12AB ·BE =12x ,S 正方形ABCD =12=1, ∴S 四边形ADCE =1-12x . ∵直线AE 是正方形ABCD 的黄金分割线, ∴S △ABES 四边形ADCE =S 四边形ADCE S 正方形ABCD, ∴S 四边形ADCE 2=S △ABE ·S 正方形ABCD , 即(1-12x )2=12x ·1, 整理,得x 2-6x +4=0,解得x 1=3+5,x 2=3- 5.∵E 是边BC 上一点,∴x <1,∴x=3-5,∴BE的长为3- 5.。
图形的相似单元同步练习(典型题汇总)一、选择题1.如图,Rt△ABC中,∠C=90°,D是AC边上一点,AB=5,AC=4,若△ABC∽△BDC,则CD=()A.2 B.C.D.2.(易错题)已知:如图,∠ADE=∠ACD=∠ABC,图中相似三角形共有()A.1对B.2对C.3对D.4对3.如图,线段AB两个端点的坐标分别是A(6,4),B(8,2),以原点O为位似中心,在第一象限内将线段AB缩小为原来的后得到线段CD,则端点C的坐标为()A.(3,2)B.(4,1)C.(3,1)D.(4,2)4.已知△ABC中,DE∥BC,AD=4,DB=6,AE=3,则AC的值是()A.4.5 B.5.5 C.6.5 D.7.55.若两个相似三角形的相似比是1:4,则它们的周长比是()A.1:2 B.1:4 C.1:16 D.1:56.如图,P是Rt△ABC斜边AB上任意一点(A,B两点除外),过P点作一直线,使截得的三角形与Rt△ABC相似,这样的直线可以作()A.1条B.2条C.3条D.4条7.若△ABC∽△A′B′C′,∠A=40°,∠B=60°,则∠C′等于()A.20°B.40°C.60°D.80°8.如图,在梯形ABCD中,AD∥BC,对角线AC,BD相交于点O,若AD=1,BC=3,则的值为()A.B.C.D.9.如图,小明作出了边长为1的第1个正△A1B1C1,算出了正△A1B1C1的面积.然后分别取△A1B1C1三边的中点A2、B2、C2,作出了第2个正△A2B2C2,算出了正△A2B2C2的面积.用同样的方法,作出了第3个正△A3B3C3,算出了正△A3B3C3的面积…,由此可得,第10个正△A10B10C10的面积是()A. B.C.D.10.关于相似的下列说法正确的是()A.所有直角三角形相似B.所有等腰三角形相似C.有一角是80°的等腰三角形相似D.所有等腰直角三角形相似11.在小孔成像问题中,根据如图所示,若O到AB的距离是18cm,O到CD的距离是6cm,则像CD的长是物体AB长的()A.3倍B.C.D.2倍12.如图,P是△ABC的边AC上一点,连接BP,以下条件中不能判定△ABP∽△ACB的是()A.B.C.∠ABP=∠C D.∠APB=∠ABC 二.填空题13.如图,要得到△ABC∽△ADE,只需要再添加一个条件是______.14.若x:y=2:3,那么x:(x+y)=______.15.如图,AD为△ABC的中线,G为△ABC的重心,若S△BGC =2,则S△ABD=______.16.已知,则=______.17.如图,DE∥BC,AD:DB=3:5,则△ADE与△ABC的面积之比为______.18.为了测量校园水平地面上一棵不可攀的树的高度,学校数学兴趣小组做了如下的探索:根据光的反射定律,利用一面镜子和一根皮尺,设计如图所示的测量方案:把一面很小的镜子放在离树底(B)8.4米的点E处,然后沿着直线BE后退到点D,这时恰好在镜子里看到树梢顶点A,再用皮尺量得DE=2.4米,观察者目高CD=1.6米,则树(AB)的高度为______米.19.如图,在梯形ABCD中,AD∥BC,BE平分∠ABC交CD于E,且BE⊥CD,CE:ED=2:1.如果△BEC的面积为2,那么四边形ABED的面积是______.20.阳光通过窗口照射到室内,在地面上留下2.7m宽的亮区(如图所示),已知亮区到窗口下的墙脚距离EC=8.7m,窗口高AB=1.8m,则窗口底边离地面的高BC=______m.三.解答题21.(2015秋•滕州市校级期末)如图,Rt△ABC中,∠C=90°,AC=6cm,BC=8cm,一动点P从点A出发沿边AC向点C以1cm/s的速度运动,另一动点Q同时从点C出发沿CB 边向点B以2cm/s的速度运动.问:(1)运动几秒时,△CPQ的面积是8cm2?(2)运动几秒时,△CPQ与△ABC相似?22.(2016•颍泉区一模)如图,在由边长为1的单位正方形组成的网格中,按要求画出坐标系及△A1B1C1及△A2B2C2;(1)若点A、C的坐标分别为(﹣3,0)、(﹣2,3),请画出平面直角坐标系并指出点B的坐标;(2)画出△ABC关于y轴对称再向上平移1个单位后的图形△A1B1C1;(3)以图中的点D为位似中心,将△A1B1C1作位似变换且把边长放大到原来的两倍,得到△A2B2C2.23.(2013•泰安)如图,四边形ABCD中,AC平分∠DAB,∠ADC=∠ACB=90°,E为AB 的中点,(1)求证:AC2=AB•AD;(2)求证:CE∥AD;(3)若AD=4,AB=6,求的值.24.(2011•武汉)(1)如图1,在△ABC中,点D、E、Q分别在AB、AC、BC上,且DE∥BC,AQ交DE于点P,求证:=;(2)如图,△ABC中,∠BAC=90°,正方形DEFG的四个顶点在△ABC的边上,连接AG,AF分别交DE于M,N两点.①如图2,若AB=AC=1,直接写出MN的长;②如图3,求证:MN2=DM•EN.25.(2006•山西)某中学初三(2)班数学活动小组利用周日开展课外实践活动,他们要在湖面上测量建在地面上某塔AB的高度.如图,在湖面上点C测得塔顶A的仰角为45°,沿直线CD向塔AB方向前进18米到达点D,测得塔顶A的仰角为60度.已知湖面低于地平面1米,请你帮他们计算出塔AB的高度.(结果保留根号)参考答案与试题解析一、选择题1.如图,Rt△ABC中,∠C=90°,D是AC边上一点,AB=5,AC=4,若△ABC∽△BDC,则CD=()A.2 B.C.D.【考点】相似三角形的性质.【分析】根据△ABC∽△BDC,利用相似三角形对应边成比例解答即可.【解答】解:∵∠C=90°,AB=5,AC=4∴BC=3∵△ABC∽△BDC∴∴∴CD=.故选D.【点评】此题考查了相似三角形的性质,相似三角形的对应角相等,对应边的比相等,还考查了勾股定理.2.(易错题)已知:如图,∠ADE=∠ACD=∠ABC,图中相似三角形共有()A.1对B.2对C.3对D.4对【考点】相似三角形的判定;平行线的判定.【分析】根据已知先判定线段DE∥BC,再根据相似三角形的判定方法进行分析,从而得到答案.【解答】解:∵∠ADE=∠ACD=∠ABC∴DE∥BC∴△ADE∽△ABC,∵DE∥BC∴∠EDC=∠DCB,∵∠ACD=∠ABC,∴△EDC∽△DCB,同理:∠ACD=∠ABC,∠A=∠A,∴△ABC∽△ACD,∵△ADE∽△ABC,△ABC∽△ACD,∴△ADE∽△ACD∴共4对故选D.【点评】考查了平行线的判定;相似三角形的判定:(1)两角对应相等的两个三角形相似;(2)两边对应成比例且夹角相等的两个三角形相似;(3)三边对应成比例的两个三角形相似;(4)如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角边对应成比例,那么这两个直角三角形相似.3.如图,线段AB两个端点的坐标分别是A(6,4),B(8,2),以原点O为位似中心,在第一象限内将线段AB缩小为原来的后得到线段CD,则端点C的坐标为()A.(3,2) B.(4,1) C.(3,1) D.(4,2)【考点】位似变换;坐标与图形性质.【分析】利用位似图形的性质结合两图形的位似比进而得出C点坐标.【解答】解:∵线段AB的两个端点坐标分别为A(6,4),B(8,2),以原点O为位似中心,在第一象限内将线段AB缩小为原来的后得到线段CD,∴端点C的横坐标和纵坐标都变为A点的一半,∴端点C的坐标为:(3,2).故选:A.【点评】此题主要考查了位似图形的性质,利用两图形的位似比得出对应点横纵坐标关系是解题关键.4.已知△ABC中,DE∥BC,AD=4,DB=6,AE=3,则AC的值是()A.4.5 B.5.5 C.6.5 D.7.5【考点】平行线分线段成比例.【分析】利用平行线分线段成比例的性质得出=,进而求出EC即可得出答案.【解答】解:∵DE∥BC,∴=,∴=,解得:EC=4.5,故AC=AE+EC=4.5+3=7.5.故选:D.【点评】此题主要考查了平行线分线段成比例定理,得出=是解题关键.5.若两个相似三角形的相似比是1:4,则它们的周长比是()A.1:2 B.1:4 C.1:16 D.1:5【考点】相似三角形的性质.【分析】根据相似三角形周长的比等于相似比进行解答即可.【解答】解:∵两个相似三角形的相似比为1:4,∴它们对应周长的比为1:4.故选B.【点评】本题考查的是相似三角形的性质,即相似三角形周长的比等于相似比.6.如图,P是Rt△ABC斜边AB上任意一点(A,B两点除外),过P点作一直线,使截得的三角形与Rt△ABC相似,这样的直线可以作()A.1条B.2条C.3条D.4条【考点】相似三角形的判定.【分析】本题要根据相似三角形的判定方法进行求解.【解答】解:过点P可作PE∥BC或PE∥AC,可得相似三角形;过点P还可作PE⊥AB,可得:∠EPA=∠C=90°,∠A=∠A,∴△APE∽△ACB;所以共有3条.故选:C.【点评】此题考查了相似三角形的判定:①有两个对应角相等的三角形相似;②有两个对应边的比相等,且其夹角相等,则两个三角形相似;③三组对应边的比相等,则两个三角形相似.7.若△ABC∽△A′B′C′,∠A=40°,∠B=60°,则∠C′等于()A.20°B.40°C.60°D.80°【考点】相似三角形的性质.【分析】根据三角形的内角和定理求出∠C,再根据相似三角形对应角相等可得∠C′=∠C.【解答】解:∵∠A=40°,∠B=60°,∴∠C=180°﹣∠A﹣∠B=180°﹣40°﹣60°=80°,∵△ABC∽△A′B′C′,∴∠C′=∠C=80°.故选D.【点评】本题考查了相似三角形对应角相等的性质,三角形的内角和定理,是基础题,熟记性质是解题的关键.8.如图,在梯形ABCD中,AD∥BC,对角线AC,BD相交于点O,若AD=1,BC=3,则的值为()A.B.C.D.【考点】相似三角形的判定与性质;梯形.【分析】根据梯形的性质容易证明△AOD∽△COB,然后利用相似三角形的性质即可得到AO:CO的值.【解答】解:∵四边形ABCD是梯形,∴AD∥CB,∴△AOD∽△COB,∴,∵AD=1,BC=3.∴=.故选B.【点评】此题主要考查了梯形的性质,利用梯形的上下底平行得到三角形相似,然后用相似三角形的性质解决问题.9.如图,小明作出了边长为1的第1个正△A1B1C1,算出了正△A1B1C1的面积.然后分别取△A1B1C1三边的中点A2、B2、C2,作出了第2个正△A2B2C2,算出了正△A2B2C2的面积.用同样的方法,作出了第3个正△A3B3C3,算出了正△A3B3C3的面积…,由此可得,第10个正△A10B10C10的面积是()A. B.C.D.【考点】相似三角形的性质;等边三角形的性质;三角形中位线定理.【分析】根据相似三角形的性质,先求出正△A2B2C2,正△A3B3C3的面积,依此类推△A n B n C n 的面积是()n﹣1,从而求出第10个正△A10B10C10的面积.【解答】解:正△A1B1C1的面积是,而△A2B2C2与△A1B1C1相似,并且相似比是1:2,则面积的比是,则正△A2B2C2的面积是×;因而正△A3B3C3与正△A2B2C2的面积的比也是,面积是()2;依此类推△A n B n C n与△A n﹣1B n﹣1C n﹣1的面积的比是,第n个三角形的面积是()n﹣1.所以第10个正△A10B10C10的面积是,故选A.【点评】本题考查了相似三角形的性质及应用,相似三角形面积的比等于相似比的平方,找出规律是关键.10.关于相似的下列说法正确的是()A.所有直角三角形相似B.所有等腰三角形相似C.有一角是80°的等腰三角形相似D.所有等腰直角三角形相似【考点】相似三角形的判定.【分析】根据有两组角对应相等的两个三角形相似,可知所有直角三角形不一定相似;所有等腰三角形不一定相似;有一角是80°的等腰三角形也比一定相似;只有所有等腰直角三角形相似.【解答】解:A、所有直角三角形不一定相似;故本选项错误;B、所有等腰三角形不一定相似;故本选项错误;C、∵有一角是80°的等腰三角形可能是:80°、80°、20°或80°、50°、50°,∴不一定相似;故本选项错误;D、所有等腰直角三角形相似;故本选项正确.故选D.【点评】此题考查了相似三角形的判定.注意有两组角对应相等的两个三角形相似.11.在小孔成像问题中,根据如图所示,若O到AB的距离是18cm,O到CD的距离是6cm,则像CD的长是物体AB长的()A.3倍B.C.D.2倍【考点】相似三角形的应用.【分析】作OE⊥AB于E,OF⊥CD于F,根据题意得到△AOB∽△COD,根据相似三角形的对应高的比等于相似比计算即可.【解答】解:作OE⊥AB于E,OF⊥CD于F,由题意得,AB∥CD,∴△AOB∽△COD,∴==,∴像CD的长是物体AB长的,故选:C.【点评】本题考查的是相似三角形的应用,掌握相似三角形的对应高的比等于相似比是解题的关键.12.如图,P是△ABC的边AC上一点,连接BP,以下条件中不能判定△ABP∽△ACB的是()A.B.C.∠ABP=∠C D.∠APB=∠ABC【考点】相似三角形的判定.【分析】根据已知及相似三角形的判定方法对各个选项进行分析从而得到最后的答案.【解答】解:A正确,符合两组对应边的比相等且相应的夹角相等的两个三角形相似;B不正确,不符合两组对应边的比相等且相应的夹角相等的两个三角形相似;C正确,符合有两组角对应相等的两个三角形相似;D正确,符合有两组角对应相等的两个三角形相似.故选B.【点评】考查相似三角形的判定定理:(1)两角对应相等的两个三角形相似;(2)两边对应成比例且夹角相等的两个三角形相似;(3)三边对应成比例的两个三角形相似;(4)如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角边对应成比例,那么这两个直角三角形相似.二.填空题13.如图,要得到△ABC∽△ADE,只需要再添加一个条件是DE∥BC(答案不唯一).【考点】相似三角形的判定.【分析】由图可得,两三角形已有一组角对应相等,再加一组角对应相等即可.【解答】解:由图可得,∠BAC=∠DAE,根据三角形的判定:两角对应相等,两三角形相似.可添加条件:DE∥BC,则∠ABC=∠ADE,则△ADE∽△ABC,故答案为:DE∥BC(答案不唯一).【点评】本题考查了相似三角形的判定,此题为开放性试题,首先要找出已经满足的条件,然后再进一步分析需要添加的条件,熟记相似三角形的各种判定方法是解题关键.14.若x:y=2:3,那么x:(x+y)=2:5.【考点】比例的性质.【分析】利用合比性质计算.【解答】解:∵=,∴==.故答案为2:5.【点评】本题考查了比例的性质:常用的性质有:内项之积等于外项之积;合比性质;分比性质;合分比性质;等比性质.15.如图,AD为△ABC的中线,G为△ABC的重心,若S△BGC =2,则S△ABD=3.【考点】三角形的重心.【分析】根据重心到顶点的距离是它到对边中点的距离的2倍和已知求出△ABC的面积,根据三角形的中心把三角形分成面积相等的两部分解答即可.【解答】解:∵G为△ABC的重心,∴AD=2GD,=2,∵S△BGC=6,∴S△ABC∵AD为△ABC的中线,=3,∴S△ABD故答案为:3.【点评】本题考查的是三角形的重心的知识,掌握重心到顶点的距离是它到对边中点的距离的2倍是解题的关键.16.已知,则=.【考点】比例的性质.【分析】先由已知条件可得a=b,e=f,再把它们代入,计算即可.【解答】解:∵,∴a=b,e=f,∴===.故答案为.【点评】本题考查了比例的计算及性质,比较简单.本题还可以根据等比性质直接求解.17.如图,DE∥BC,AD:DB=3:5,则△ADE与△ABC的面积之比为9:64.【考点】相似三角形的判定与性质.【分析】先证明△ADE与△ABC相似并求出相似比,再根据相似三角形面积的比等于相似比的平方即可求出.【解答】解:∵DE∥BC,∴△ADE∽△ABC,∵AD:BD=3:5,∴AD:AB=3:8,∴△ADE与△ABC面积之比=9:64,故答案为9:64.【点评】本题主要考查相似三角形面积的比等于相似比的平方的性质,根据平行得到三角形相似是解题的关键.18.为了测量校园水平地面上一棵不可攀的树的高度,学校数学兴趣小组做了如下的探索:根据光的反射定律,利用一面镜子和一根皮尺,设计如图所示的测量方案:把一面很小的镜子放在离树底(B)8.4米的点E处,然后沿着直线BE后退到点D,这时恰好在镜子里看到树梢顶点A,再用皮尺量得DE=2.4米,观察者目高CD=1.6米,则树(AB)的高度为 5.6米.【考点】相似三角形的应用.【分析】根据镜面反射的性质求出△ABE∽△CDE,再根据其相似比解答.【解答】解:根据题意,易得∠CDE=∠ABE=90°,∠CED=∠AEB,则△ABE∽△CDE,则,即,解得:AB=5.6米.故答案为:5.6.【点评】应用反射的基本性质,得出三角形相似,运用相似比即可解答.19.如图,在梯形ABCD 中,AD ∥BC ,BE 平分∠ABC 交CD 于E ,且BE ⊥CD ,CE :ED =2:1.如果△BEC 的面积为2,那么四边形ABED 的面积是 .【考点】相似三角形的判定与性质;等腰三角形的判定与性质;梯形.【分析】首先延长BA ,CD 交于点F ,易证得△BEF ≌△BEC ,则可得DF :FC =1:4,又由△ADF ∽△BCF ,根据相似三角形的面积比等于相似比的平方,可求得△ADF 的面积,根据S 四边形ABED =S △BEF ﹣S △ADF 继而求得答案.【解答】解:延长BA ,CD 交于点F ,∵BE 平分∠ABC ,∴∠EBF =∠EBC ,∵BE ⊥CD ,∴∠BEF =∠BEC =90°,在△BEF 和△BEC 中,,∴△BEF ≌△BEC (ASA ),∴EC =EF ,S △BEF =S △BEC =2,∴S △BCF =S △BEF +S △BEC =4,∵CE :ED =2:1∴DF :FC =1:4,∵AD ∥BC ,∴△ADF ∽△BCF ,∴=()2=,∴S △ADF =×S △BCF =,∴S 四边形ABED =S △BEF ﹣S △ADF =2﹣=.故答案为:.【点评】此题考查了相似三角形的判定与性质、全等三角形的判定与性质以及梯形的性质.此题难度适中,注意掌握辅助线的作法,注意掌握数形结合思想的应用.20.阳光通过窗口照射到室内,在地面上留下2.7m宽的亮区(如图所示),已知亮区到窗口下的墙脚距离EC=8.7m,窗口高AB=1.8m,则窗口底边离地面的高BC=4m.【考点】相似三角形的应用.【分析】根据题意易证△BCD∽△ACE,利用相似三角形的性质,对应线段成比例求解即可.【解答】解:∵光线是平行的,即BD∥AE则有∵△BCD∽△ACE∴∴∴BC=4【点评】主要考查了相似的三角形在实际生活中的应用,利用相似对角线的性质,对应线段成比例解题.三.解答题21.(2015秋•滕州市校级期末)如图,Rt△ABC中,∠C=90°,AC=6cm,BC=8cm,一动点P从点A出发沿边AC向点C以1cm/s的速度运动,另一动点Q同时从点C出发沿CB 边向点B以2cm/s的速度运动.问:(1)运动几秒时,△CPQ的面积是8cm2?(2)运动几秒时,△CPQ与△ABC相似?【考点】一元二次方程的应用;相似三角形的判定.【分析】(1)设P、Q同时出发,x秒钟后,AP=xcm,PC=(6﹣x)cm,CQ=2xcm,此时△PCQ的面积为:×2x(6﹣x),令该式=8,由此等量关系列出方程求出符合题意的值;(2)设运动y秒时,△CPQ与△ABC相似,分两种情况讨论:若△CPQ∽△CAB和△CPQ ∽△CBA,根据相似三角形的性质即可得出答案.【解答】解:(1)设x秒后,可使△CPQ的面积为8cm2.由题意得,AP=xcm,PC=(6﹣x)cm,CQ=2xcm,则(6﹣x)•2x=8,整理,得x2﹣6x+8=0,解得x1=2,x2=4.则P、Q同时出发,2秒或4秒后可使△CPQ的面积为8cm2(2)设运动y秒时,△CPQ与△ABC相似.若△CPQ∽△CAB,则=,即=,解得y=2.4秒;若△CPQ∽△CBA,则=,即=,解得y=秒.综上所述,运动2.4秒或秒时,△CPQ与△ABC相似.【点评】本题考查一元二次方程的应用,三角形的面积公式的求法和一元二次方程的解的情况,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程,再求解.22.(2016•颍泉区一模)如图,在由边长为1的单位正方形组成的网格中,按要求画出坐标系及△A1B1C1及△A2B2C2;(1)若点A、C的坐标分别为(﹣3,0)、(﹣2,3),请画出平面直角坐标系并指出点B的坐标;(2)画出△ABC关于y轴对称再向上平移1个单位后的图形△A1B1C1;(3)以图中的点D为位似中心,将△A1B1C1作位似变换且把边长放大到原来的两倍,得到△A2B2C2.【考点】作图-位似变换;作图-平移变换.【分析】(1)根据A,C点坐标作出直角坐标系,进而求出B点坐标;(2)根据轴对称的性质结合平移的性质得出答案;(3)利用位似图形的性质得出对应点位置进而得出答案.【解答】解:(1)如图所示,B(﹣4,2);(2)如图所示:△A1B1C1即为所求;(3)如图所示:△A2B2C2即为所求.【点评】此题主要考查了位似变换、轴对称变换和平移变换,根据题意建立正确的坐标系是解题关键.23.(2013•泰安)如图,四边形ABCD中,AC平分∠DAB,∠ADC=∠ACB=90°,E为AB 的中点,(1)求证:AC2=AB•AD;(2)求证:CE∥AD;(3)若AD=4,AB=6,求的值.【考点】相似三角形的判定与性质;直角三角形斜边上的中线.【分析】(1)由AC平分∠DAB,∠ADC=∠ACB=90°,可证得△ADC∽△ACB,然后由相似三角形的对应边成比例,证得AC2=AB•AD;(2)由E为AB的中点,根据在直角三角形中,斜边上的中线等于斜边的一半,即可证得CE=AB=AE,继而可证得∠DAC=∠ECA,得到CE∥AD;(3)易证得△AFD∽△CFE,然后由相似三角形的对应边成比例,求得的值.【解答】(1)证明:∵AC平分∠DAB,∴∠DAC=∠CAB,∵∠ADC=∠ACB=90°,∴△ADC∽△ACB,∴AD:AC=AC:AB,∴AC2=AB•AD;(2)证明:∵E为AB的中点,∴CE=AB=AE,∴∠EAC=∠ECA,∵∠DAC=∠CAB,∴∠DAC=∠ECA,∴CE∥AD;(3)解:∵CE∥AD,∴△AFD∽△CFE,∴AD:CE=AF:CF,∵CE=AB,∴CE=×6=3,∵AD=4,∴,∴.【点评】此题考查了相似三角形的判定与性质、等腰三角形的性质以及直角三角形的性质.此题难度适中,注意掌握数形结合思想的应用.24.(2011•武汉)(1)如图1,在△ABC中,点D、E、Q分别在AB、AC、BC上,且DE∥BC,AQ交DE于点P,求证:=;(2)如图,△ABC中,∠BAC=90°,正方形DEFG的四个顶点在△ABC的边上,连接AG,AF分别交DE于M,N两点.①如图2,若AB=AC=1,直接写出MN的长;②如图3,求证:MN2=DM•EN.【考点】相似三角形的判定与性质;正方形的性质.【分析】(1)可证明△ADP∽△ABQ,△ACQ∽△ADP,从而得出=;(2)①根据三角形的面积公式求出BC边上的高,根据△ADE∽△ABC,求出正方形DEFG的边长,根据等于高之比即可求出MN;②可得出△BGD∽△EFC,则DG•EF=CF•BG;又由DG=GF=EF,得GF2=CF•BG,再根据(1)==,从而得出答案.【解答】(1)证明:在△ABQ和△ADP中,∵DP∥BQ,∴△ADP∽△ABQ,∴=,同理在△ACQ和△APE中,=,∴=.(2)①作AQ⊥BC于点Q.∵BC边上的高AQ=,∵DE=DG=GF=EF=BG=CF∴DE:BC=1:3又∵DE∥BC,∴AD:AB=1:3,∴AD=,DE=,∵DE边上的高为,MN:GF=:,∴MN:=:,∴MN=.故答案为:.②证明:∵∠B+∠C=90°∠CEF+∠C=90°,∴∠B=∠CEF,又∵∠BGD=∠EFC,∴△BGD∽△EFC,∴=,∴DG•EF=CF•BG,又∵DG=GF=EF,∴GF2=CF•BG,由(1)得==,∴×=•,∴()2=•,∵GF2=CF•BG,∴MN2=DM•EN.【点评】本题考查了相似三角形的判定和性质以及正方形的性质,是一道综合题目,难度较大.25.(2006•山西)某中学初三(2)班数学活动小组利用周日开展课外实践活动,他们要在湖面上测量建在地面上某塔AB的高度.如图,在湖面上点C测得塔顶A的仰角为45°,沿直线CD向塔AB方向前进18米到达点D,测得塔顶A的仰角为60度.已知湖面低于地平面1米,请你帮他们计算出塔AB的高度.(结果保留根号)【考点】解直角三角形的应用-仰角俯角问题.【分析】首先分析图形:根据题意构造直角三角形;本题涉及到两个直角三角形△ACE、△ADE,应利用其公共边AE构造等量关系,借助AB=AE﹣BE构造方程关系式,进而可求出答案.【解答】解:如图,延长CD,交AB的延长线于点E,则∠AEC=90°,∠ACE=45°,∠ADE=60°,CD=18,设线段AE的长为x米,在Rt△ACE中,∵∠ACE=45°,∴CE=x,在Rt△ADE中,∵tan∠ADE=tan60°=,∴DE=x,∵CD=18,且CE﹣DE=CD,∴x﹣x=18,解得:x=27+9,∵BE=1米,∴AB=AE﹣BE=(26+9)(米).答:塔AB的高度是(26+9)米.【点评】本题要求学生借助仰角关系构造直角三角形,并结合图形利用三角函数解直角三角形.图形的相似单元同步练习(典型题汇总)(时间:100分钟满分:120分)一、选择题(每小题3分,共30分)1.观察下列每组图形,相似图形是()2.(2020·玉林)△ABC与△A′B′C′是位似图形,且△ABC与△A′B′C′的位似比是1∶2,已知△ABC的面积是3,则△A′B′C′的面积是()A.3 B.6 C.9 D.123.下列四组条件中,能判定△ABC与△DEF相似的是()A.∠A=45°,∠B=55°;∠D=45°,∠F=75°B.AB=5,BC=4,∠A=45°;DE=5,EF=4,∠D=45°C.AB=6,BC=5,∠B=40°;DE=12,EF=10,∠E=40°D.AB=BC,∠A=50°;DE=EF,∠E=50°4.已知点C是线段AB的黄金分割点,且AC>BC,若AB=8,则线段AC的长为() A.4(5-1) B.45-1 C.12-4 5 D.8-4 5 5.如图,BE,CD相交于O,且∠1=∠2,图中的相似三角形有() A.2组B.3组C.5组D.6组第5题图 第6题图 第7题图 第9题图6.小明在一次军事夏令营活动中,进行打靶训练,在用枪瞄准目标点B 时,要使眼睛O ,准星A ,目标B 在同一条直线上.如图所示,在射击时,小明有轻微的抖动,致使准星A 偏离到A ′,若OA =0.2米,OB =40米,AA ′=0.0015米,则小明射击到的点B ′偏离目标点B 的长度BB ′为( )A .3米B .0.3米C .0.03米D .0.2米 7.如图,△ABC 中,∠C =90°,四边形DEFC 是内接正方形,AC =4 cm ,BC =3 cm ,则正方形的面积为( )A.127 cm 2 B .3 cm 2 C .4 cm 2 D.14449 cm 2 8.下列四条线段成比例的是( )A .a =4,b =6,c =5,d =10B .a =2,b =3,c =2,d = 3C .a =2,b =5,c =15,d =2 3D .a =12,b =8,c =15,d =11 9.如图,E (-4,2),F (-1,-1),以O 为位似中心,按比例尺1∶2把△EFO 缩小,则点E 的对应点E ′的坐标为( )A .(2,-1)或(-2,1)B .(8,-4)或(-8,4)C .(2,-1)D .(8,-4)10.将边长分别为2,3,5的三个正方形按如图方式排列,则图中阴影部分的面积为( )A.214B.154C.72D .3 ,第10题图 第13题图 第14题图 第15题图)二、填空题(每小题3分,共24分)11.如果x 2=y 3=z4≠0,那么x +2y +3z 3x +2y -2z的值是____.12.两个相似三角形的面积比为9∶25,其中一个三角形的周长为36,则另一个三角形的周长为_____________________.13.如图,在△ABC 中,点D ,E 分别是边AB ,AC 的中点,则△ADE 与△ABC 的周长之比等于____.14.如图,正方形OABC与正方形ODEF是位似图形,O为位似中心,相似比为1∶2,点A的坐标为(1,0),则E点的坐标为__________________.15.如图,▱ABCD中,F是BC上一点,直线DF与AB的延长线相交于E,BP∥DF,且与AD相交于点P,请从图中找出一组相似的三角形:_________________.16.如图,D,E是AB的三等分点,DF∥EG∥BC,则图中三部分面积S1∶S2∶S3=_______________.第16题图第17题图第18题图17.如图,在边长为3的菱形ABCD中,点E在边CD上,点F为BE延长线与AD延长线的交点,若DE=1,则DF的长为____.18.如图,正方形ABCD和正方形OEFG中,点A和点F的坐标分别为(3,2),(-1,-1),则两个正方形的位似中心的坐标是_____________________________.三、解答题(共66分)19.(6分)一般在室外放映的电影胶片中图片的规格是3.5 cm×3.5 cm,放映的银屏规格为2 m×2 m.若放映机的光源距胶片20 cm,问:银屏拉在距离光源多远的地方时,放映的图象刚好布满整个银屏?20.(7分)如图,在矩形ABCD中,点E,F分别在边AD,DC上,△ABE∽△DEF,AB=6,AE=9,DE=2,求EF的长.21.(8分)图中的两个多边形ABCDEF 和A 1B 1C 1D 1E 1F 1相似(各字母已按对应关系排列),∠A =∠D 1=135°,∠B =∠E 1=120°,∠C 1=95°.(1)求∠F 的度数;(2)如果多边形ABCDEF 和A 1B 1C 1D 1E 1F 1的相似比是1∶1.5,且CD =15 cm ,求C 1D 1的长度.22.(8分)在平面直角坐标系内有两点A (-2,0),B (12,0),CB 所在的直线为y =2x +b ,连接AC ,求证:△AOC ∽△COB .23.(8分)(2020·汕尾)如图,在▱ABCD中,E是AD边上的中点,连接BE,并延长BE交CD的延长线于点F.(1)证明:FD=AB;(2)当▱ABCD的面积为8时,求△FED的面积.24.(8分)如图,△ABC中,D是BC的中点,且AD=AC,DE⊥BC与AB相交于点E,EC 与AD相交于点F.(1)△ABC与△FCD相似吗?请说明理由;(2)点F是线段AD的中点吗?为什么?25.(10分)如图,△ABC是等边三角形,CE是外角平分线,点D在AC上,连接BD延长交CE于点E.(1)求证:△ABD∽△CED;(2)若AB=6,AD=2CD,求BE的长.26.(11分)如图①所示,在等边三角形ABC中,线段AD为其角平分线,过D的直线B1C1⊥AC 于C1,交AB的延长线于B1.(1)请你探究:AC AB =CD DB ,AC 1AB 1=C 1DDB 1是否成立?(2)如图②所示,在Rt △ABC 中,∠ACB =90°,AC =8,AB =403,E 为AB 上一点,且AE =5,CE 交△ABC 的角平分线AD 于F ,试求DFFA的值.参考答案一、选择题(每小题3分,共30分) 1.观察下列每组图形,相似图形是( D )2.△ABC 与△A ′B ′C ′是位似图形,且△ABC 与△A ′B ′C ′的位似比是1∶2,已知△ABC 的面积是3,则△A ′B ′C ′的面积是( D )A .3B .6C .9D .12 3.下列四组条件中,能判定△ABC 与△DEF 相似的是( C )A .∠A =45°,∠B =55°;∠D =45°,∠F =75°B .AB =5,BC =4,∠A =45°;DE =5,EF =4,∠D =45° C .AB =6,BC =5,∠B =40°;DE =12,EF =10,∠E =40° D .AB =BC ,∠A =50°;DE =EF ,∠E =50°4.已知点C 是线段AB 的黄金分割点,且AC >BC ,若AB =8,则线段AC 的长为( A )A .4(5-1)B .45-1C .12-4 5D .8-4 5 5.如图,BE ,CD 相交于O ,且∠1=∠2,图中的相似三角形有( A )A .2组B .3组C .5组D .6组第5题图 第6题图 第7题图 第9题图6.小明在一次军事夏令营活动中,进行打靶训练,在用枪瞄准目标点B 时,要使眼睛O ,准星A ,目标B 在同一条直线上.如图所示,在射击时,小明有轻微的抖动,致使准星A 偏离到A ′,若OA =0.2米,OB =40米,AA ′=0.0015米,则小明射击到的点B ′偏离目标点B 的长度BB ′为( B )A .3米B .0.3米C .0.03米D .0.2米 7.如图,△ABC 中,∠C =90°,四边形DEFC 是内接正方形,AC =4 cm ,BC =3 cm ,则正方形的面积为( D )A .127 cm 2B .3 cm 2C .4 cm 2D .14449 cm 2 8.下列四条线段成比例的是( C )A .a =4,b =6,c =5,d =10B .a =2,b =3,c =2,d = 3C .a =2,b =5,c =15,d =2 3D .a =12,b =8,c =15,d =11 9.如图,E (-4,2),F (-1,-1),以O 为位似中心,按比例尺1∶2把△EFO 缩小,则点E 的对应点E ′的坐标为( A )A .(2,-1)或(-2,1)B .(8,-4)或(-8,4)C .(2,-1)D .(8,-4)10.将边长分别为2,3,5的三个正方形按如图方式排列,则图中阴影部分的面积为( B )A.214B.154C.72D .3 ,第10题图 第13题图 第14题图 第15题图)二、填空题(每小题3分,共24分)11.如果x 2=y 3=z4≠0,那么x +2y +3z 3x +2y -2z的值是__5__.12.两个相似三角形的面积比为9∶25,其中一个三角形的周长为36,则另一个三角形的周长为__1085或60__.。
九年级数学上册新版北师大版:检测内容:第四章 图形的相似得分________ 卷后分________ 评价________一、选择题(每小题3分,共30分)1.下列结论不正确的是( C )A .所有的等腰直角三角形都相似B .所有的正方形都相似C .所有的矩形都相似D .所有的正八边形都相似2.若X 3 =Y 4 =Z 5 ,则4X +3Y -2Z X +Y +Z =( B ) A .-76 B .76 C .-67 D .673.如图,已知AD ∥BE ∥CF ,那么下列结论正确的是( B )A .BE CF =DE DFB .DE EF =AB BC C .BE CF =AB ACD .EF DE =AB BC第3题图 第5题图 第6题图4.已知△ABC ∽△A ′B ′C ′ ,AD 和A ′D ′是它们的对应中线,若AD =10,A ′D ′=6,则△ABC 与△A ′B ′C ′的周长比是( C )A .3∶5B .9∶25C .5∶3D .25∶95.如图,在△ABC 中,DE ∥BC ,AD AB =35 ,则S △ADE S 梯形DBCE的值是( B ) A .35 B .916 C .53 D .16256.为了估算河的宽度,我们可以在河对岸的岸边选定一个目标记为点A ,再在河的这一边选点B 和点C ,使得AB ⊥BC ,然后再在河岸上选点E ,使得EC ⊥BC ,设BC 与AE 交于点D ,如图所示,测得BD =120 m ,DC =60 m ,EC =50 m ,那么这条河的大致宽度是( C )A .25 mB .75 mC .100 mD .120 m7.如图,在平面直角坐标系中,四边形ABCD 与四边形A ′B ′C ′D ′是位似图形.位似中心是( C )A .(8,0)B .(8,1)C .(10,0)D .(10,1)第7题图 第8题图 第9题图第10题图8.(邓州期中)如图,在△ABC 中,AB =AC =10,BC =12,正方形DEFG 的顶点E ,F 在△ABC 内,顶点D ,G 分别在AB ,AC 上,AD =AG ,DG =3,则点F 到BC 的距离为( A )A .3B .2C .53D .52 9.如图,点E ,F 分别在菱形ABCD 的边AB ,AD 上,且AE =DF ,BF 交DE 于点G ,延长BF 交CD 的延长线于点H ,若AF DF =2,则HF BG的值为( B ) A .23 B .712 C .12 D .51210.如图,在正方形ABCD 中,△BPC 是等边三角形,BP ,CP 的延长线分别交AD 于点E ,F ,连接BD ,DP ,BD 与CF 相交于点H ,给出下列结论:①BE =2AE ;②△DFP ∽△BPH ;③△PFD ∽△PDB ;④DP 2=PH ·PC .其中正确的是( C )A .①②③④B .②③C .①②④D .①③④二、填空题(每小题3分,共15分)11.在△ABC 中,AB =8,AC =6,在△DEF 中,DE =4,DF =3,要使△ABC 与△DEF 相似,则需要添加一个条件是__∠A =∠D (答案不唯一)__.(写出一种情况即可)12.如图,AB ∥CD ,AD 与BC 相交于点O ,OA =4,OD =6,则△AOB 与△DOC 的周长比是__2∶3__.第12题图 第13题图 第14题图 第15题图13.如图,在平面直角坐标系中,△ABC 和△A ′B ′C ′是以坐标原点O 为位似中心的位似图形,且点B (3,1),B ′(6,2),若点A ′(5,6),则A 的坐标为__(2.5,3)__.14.如图是一山谷的横断面的示意图,宽AA ′为15 m ,用曲尺(两直尺相交成直角)从山谷两侧测量出OA =5 m ,OB =10 m ,O ′A ′=3 m ,O ′B ′=12 m(A ,O ,O ′,A ′在同一条水平线上),则该山谷的深度h 为__20_m__.15.如图,在Rt △ABC 中,BC =3,AC =4,点D ,E 分别是线段AB ,AC 上的两个动点(不与点A ,B ,C 重合).沿DE 翻折△ADE ,使得点A 的对应点F 恰好落在直线BC 上,当DF 与Rt △ABC 的一条边垂直时,线段AD 的长为__209 或_207__. 三、解答题(共75分)16.(6分)已知△ABC ∽△DEF ,△ABC 和△DEF 的周长分别为20 cm 和25 cm ,且BC =5 cm ,DF =4 cm ,求EF 和AC 的长.解:∵△ABC ∽△DEF ,∴AC DF =BC EF =C △ABC C △DEF,∴AC 4 =5EF =2025 ,∴AC =165 cm ,EF =254cm17.(8分)如图,已知点O 是坐标原点,B ,C 两点的坐标分别为(3,-1),(2,1).(1)以点O 为位似中心在y 轴的左侧将△OBC 放大到原图的2倍(即新图与原图的相似比为2),画出对应的△OB ′C ′;(2)若△OBC 内部一点M 的坐标为(a ,b ),则点M 对应点M ′的坐标是__(-2a ,-2b )__;(3)求出变化后△OB ′C ′的面积.解:(1)如图,△OB ′C ′为所作(2)点M 对应点M ′的坐标为(-2a ,-2b )(3)△OB ′C ′的面积=4S △OCB =4×(2×3-12 ×2×1-12 ×2×1-12×3×1)=1018.(8分)如图,矩形ABCD 为台球桌面,AD =260 cm ,AB =130 cm ,球目前在E 点位置,AE =60 cm ,如果小丁瞄准BC 边上的点F 将球打过去,经过反弹后,球刚好弹到D 点位置.(1)求证:△BEF ∽△CDF ;(2)求CF 的长.解:(1)证明:由对称性可知∠EFG =∠DFG ,又∵GF ⊥BC ,∴∠EFB =∠DFC .又∵在矩形ABCD 中,∠B =∠C =90°,∴△BEF ∽△CDF(2)由(1)可知△BEF ∽△CDF ,∴BE CD =BF CF ,∴70130 =260-CF CF,∴CF =169 cm19.(10分)(桐柏县月考)如图,E 为▱ABCD 的边CD 延长线上的一点,连接BE 交AC 于点O ,交AD 于点F .(1)求证:△AOB ∽△COE ;(2)求证:BO 2=EO ·FO . 证明:(1)∵四边形ABCD 是平行四边形,∴AB ∥CD ,∴△AOB ∽△COE(2)∵△AOB ∽△COE ,∴OE OB =OC OA .∵AD ∥BC ,∴△AOF ∽△COB ,∴OB OF =OC OA,∴OB OF =OE OB,即OB 2=OF ·OE20.(10分)如图,在△ABC 中,点D ,E 分别在边BC 和AC 上,点G 是BE 上的一点,连接AD ,AG ,DG ,且∠BAD =∠BGD =∠C ,求证:(1)BD ·BC =BG ·BE ;(2)∠BGA =∠BAC .证明:(1)∵∠BGD =∠C ,∠GBD =∠CBE ,∴△BDG ∽△BEC ,∴BD BE =BG BC,∴BD ·BC =BG ·BE(2)∵∠BAD =∠C ,∠ABD =∠CBA ,∴△ABD ∽△CBA ,∴BD AB =AB BC,∴AB 2=BD ·BC .又由(1)知BD ·BC =BG ·BE ,∴AB 2=BG ·BE ,∴BG AB =AB BE.又∵∠GBA =∠ABE ,∴△GBA ∽△ABE ,∴∠BGA =∠BAC21.(10分)如图,为测量山峰AB 的高度,在相距50 m 的D 处和F 处竖立高均为2 m 的标杆DC 和FE ,且AB ,CD 和EF 在同一平面内,从标杆DC 退后2 m 到G 处可以看到山峰A 和标杆顶点C 在同一直线上,从标杆FE 退后4 m 到H 处可以看到山峰A 和标杆顶点E 在同一直线上,求山峰AB 的高度及山峰与标杆CD 的水平距离BD 的长.解:∵AB ⊥BH ,CD ⊥BH ,EF ⊥BH ,∴AB ∥CD ∥EF ,∴△CDG ∽△ABG ,△EFH ∽△ABH ,∴CD AB =DG DG +BD ,EF AB =FH FH +DF +BD.又∵CD =DG =EF =2 m ,DF =50 m ,FH = 4 m ,∴2AB =22+BD ,2AB =450+4+BD ,∴22+BD =44+50+BD,解得BD =50 m ,∴2AB =22+50,解得AB =52 m22.(10分)从三角形(不是等腰三角形)一个顶点引出一条射线与对边相交,顶点与交点之间的线段把这个三角形分割成两个小三角形,如果分得的两个小三角形中一个为等腰三角形,另一个与原三角形相似,我们把这条线段叫做这个三角形的“完美分割线”.(1)如图①,在△ABC 中,∠A =48°,CD 是△ABC 的“完美分割线”,且△ACD 为等腰三角形,求∠ACB 的度数;(2)如图②,在△ABC 中,AC =2,BC =2 ,CD 是△ABC 的“完美分割线”,且△ACD 是以CD 为底边的等腰三角形,求“完美分割线”CD 的长.解:(1)由题意得△BDC ∽△BCA ,∴∠BCD =∠A =48°.①当AD =CD 时,∠ACD =∠A =48°,∴∠ACB =∠ACD +∠BCD =96°;②当AD =AC 时,∠ACD =∠ADC =180°-∠A 2 =180°-48°2=66°,∴∠ACB =∠ACD +∠BCD =114°;③当AC =CD 时,∠ADC =∠A =48°=∠BCD ,这与∠ADC =∠BCD +∠B 相矛盾,舍弃,∴∠ACB =96°或114°(2)由已知可知AC =AD =2,∵△BCD ∽△BAC ,∴BC BA =BD BC =CD AC.设BD =x ,则BA =x +2,由BC 2=BD ·BA 得(2 )2=x (x +2),解得x =3 -1或x =-3 -1(舍去),∴CD =BD BC ×AC =3-12×2=6 -223.(13分)如图,在△ABC 和△ADE 中,BA =BC ,DA =DE ,且∠ABC =∠ADE =α,点E 在△ABC 的内部,连接EC ,EB 和BD ,并且∠ACE +∠ABE =90°.(1)如图①,当α=60°时,线段BD 与CE 的数量关系为__BD =CE __,线段EA ,EB ,EC 的数量关系为__EA 2=BE 2+EC 2__;(2)如图②,当α=90°时,请写出线段EA ,EB ,EC 的数量关系,并说明理由;(3)在(2)的条件下,当点E 在线段CD 上时,若BC =25 ,请直接写出△BDE 的面积.图① 图② 备用图 答图解:(1)点拨:∵BA =BC ,DA =DE ,∠ABC =∠ADE =60°,∴△ABC ,△ADE 都是等边三角形,∴AD =AE ,AB =AC ,∠DAE =∠BAC =60°,∴∠DAB =∠EAC ,∴△DAB ≌△EAC (SAS),∴BD =EC ,∠ABD =∠ACE .又∵∠ACE +∠ABE =90°,∴∠ABD +∠ABE =90°,∴∠DBE =90°,∴DE 2=BD 2+BE 2.又∵EA =DE ,BD =EC ,∴EA 2=BE 2+EC 2(2)EA 2=EC 2+2BE 2,理由如下:∵BA =BC ,DA =DE ,∠ABC =∠ADE =90°,∴△ABC ,△ADE 都是等腰直角三角形,∴∠DAE =∠BAC =45°,AD AE =22 ,AB AC =22,∴∠DAB =∠EAC ,AD AE =AB AC ,∴△DAB ∽△EAC ,∴DB EC =AB AC =22,∠ACE =∠ABD .∵∠ACE +∠ABE =90°,∴∠ABD +∠ABE =90°,∴∠DBE =90°,∴DE 2=BD 2+BE 2.又∵EA=2 DE ,BD =22 EC ,∴12 EA 2=12EC 2+BE 2,∴EA 2=EC 2+2BE 2 (3)如答图,∵∠AED =45°,∴∠AEC =135°.又∵△ADB ∽△AEC ,∴∠ADB =∠AEC =135°.又∵∠ADE =∠DBE =90°,∴∠BDE =∠BED =45°,∴BD =BE ,∴DE =2 BD .∵EC =2 BD ,∴AD =DE =EC .设AD =DE =EC =x ,∵AB =BC =25 ,∴AC =210 .∵AD 2+DC 2=AC 2,∴x 2+4x 2=40,∴x =22 (负根已经舍弃),∴AD =DE =22 ,∴BD=BE =2,∴S △BDE =12×2×2=2。
相似三角形单元检测一、单选题1.选项图形与如图所示图形相似的是( )A.B.C.D.【答案】D【分析】根据相似图形的性质,根据形状相同排除A、B、C,可得出答案.【详解】因为相似图形的形状相同,A、B、C三个选项中的图形形状与题干所给图形形状不同,均不符合题意;D选项中的图形形状与题干所给图形形状相同,符合题意;故选:D.【点睛】本题考查相似图形的概念理解,准确把握图形相似的概念是本题的解题关键.2.下列说法正确的是()A.所有的菱形都是相似形B.对应边成比例的两个多边形相似C.对应角相等的两个多边形相似D.所有的正方形都是相似形【答案】D【分析】此题主要考查了相似图形的判定,熟练应用判定方法是解题关键.利用相似图形的判定方法分别判断得出即可.【详解】解:A、所有的菱形不一定是相似形,对应角不一定相等,故此选项错误;B、对应边成比例的两个多边形不一定相似,对应角不一定相等,故此选项错误;C、对应角相等的两个多边形不一定相似,对应边的比值不一定相等,故此选项错误;D、所有的正方形都是相似形,对应边成比例且对应角相等,故此选项正确;故选:D3.如图,D是△ABC边AB上一点,连接CD,则添加下列条件后,仍不能判定△ACD∽△ABC的是()A.∠ACD=∠B B.∠ADC=∠ACBC.ADAC =CDBCD.AC2=AD⋅AB【答案】C【分析】本题考查添加条件证明三角形相似.根据相似三角形的判定方法(两边对应成比例且夹角相等、三边对应成比例或两角对应相等的两个三角形相似),逐一进行判断是解题的关键.【详解】A.当∠ACD=∠B时,再由∠A=∠A,可得出△ACD∽△ABC,故此选项不符合题意;B.当∠ADC=∠ACB时,再由∠A=∠A,可得出△ACD∽△ABC,故此选项不符合题意;C.当ADAC =CDBC时,再由∠A=∠A,无法判定△ACD∽△ABC,故此选项符合题意;D.当AC2=AD⋅AB,即ACAB =ADAC时,再由∠A=∠A,可得出△ACD∽△ABC,故此选项不符合题意.故选C.4.如图,在平行四边形ABCD中,点E是CD边上一点,连接AE并延长交BC的延长线于点F,DE=1,AB=4,则下列结论正确的是()A.EF=4AE B.CF=4AD C.AF=4AE D.CF=4BC【答案】C【分析】本题主要考查了平行四边形的性质,平行线分线段成比例定理,先由平行四边形的性质得到AD∥BC,AD=BC,AB=CD=4,根据DE=1,得出CE=CD−DE=3,根据平行线分线段成比例定理得出AE EF =ADCF=DECE=13,然后逐项进行判断即可.【详解】解:∵在平行四边形ABCD中,∴AD∥BC,AD=BC,AB=CD=4,∵DE=1,∴CE=CD−DE=3,∵AD∥BC,∴AE EF =ADCF=DECE=13,∴EF=3AE,CF=3AD,故A、D不符合题意;∴AF=AE+EF=4AE,故C符合题意;∵CF=3AD,BC=AD,∴CF=3BC,故D不符合题意.故选:C.5.已知:a−ba+b =12,则ab的值为()A.13B.12C.1D.3【答案】D【分析】本题考查的是已知条件式,求解分式的值,掌握“用含有一个未知数的代数式表示另外一个未知数”是解本题的关键.由a−ba+b =12可得a=3b,再代入要求值的分式ab中,再计算即可.【详解】解:∵a−ba+b =12,∴2(a−b)=a+b,∴a=3b,∴a b =3bb=3,故选:D.6.0.618是黄金分割率的比值,它被认为是最美的数值.研究发现,当成人的体重(kg)与身高(cm)的比达到(1−0.618):1时,那么这个成人的体重就比较理想.若王老师的身高是165cm,下列选项中,最接近她的理想体重的是()A.65kg B.63kg C.60kg D.55kg【答案】B【分析】本题考查黄金分割的应用,解题的关键是读懂黄金分割.根据黄金分割直接列式求解即可得到答案.【详解】解:∵王老师的身高是165cm,∴根据题意得,体重=165×(1−0.618)=63.03(kg).∴最接近她的理想体重的是63kg.故选:B.7.如图,在平面直角坐标系中,△ABC与△DEC是以点C为位似中心的位似图形,若点A坐标为(5,4),点C的坐标为(3,0),且AB=2DE,则点D的坐标为()A.(2,2)B.(2,−2)C.(1,2)D.(1,−2)【答案】B【分析】本题考查位似变换,坐标与图形.正确作出辅助线,构造相似三角形是解题的关键.过点A 作AM ⊥x 轴于点M ,过点D 作DN ⊥x 轴于点N .利用相似三角形的性质求出DN ,ON 即可解答.【详解】解:过点A 作AM ⊥x 轴于点M ,过点D 作DN ⊥x 轴于点N .∵△ABC 与△DEC 是以点C 为位似中心的位似图形,∴△ABC ∽△DEC ,∴AC DC =AB DE =2,∵A(5,4),C(3,0),∴OM =5,OC =3,AM =4,∴CM =OM−OC =5−3=2,∵AM ⊥x 轴, DN ⊥x 轴,∴AM ∥DN ,∴△AMC ∽△DNC ,∴AM DN =MC NC =AC DC =2,∴CN =1,DN =2,∴ON =OC−ON =3−1=2,∴D(2,−2).故选:B .8.如图,点P 是△ABC 的重心,点D 是边AC 的中点,PE ∥AC 交BC 于点E ,DF ∥BC 交EP 于点F .若四边形CDFE 的面积为6,则△ABC 的面积为( )A .12B .18C .20D .24【答案】B 【分析】本题考查了三角形重心的性质,相似三角形的判定与性质,难度适中.准确作出辅助线是解题的关键.连接BD ,根据三角形重心的性质可知:P 在BD 上,由三角形中线平分三角形的面积可知:S △ABC =2S △BDC ,证明△DFP ∽△BEP 和△BEP ∽△BCD ,根据相似三角形面积的比等于相似比的平方可解答.【详解】解:如图,连接BD .∵点P 是△ABC 的重心,点D 是边AC 的中点,∴P 在BD 上,S △ABC =2S △BDC ,∴BP:PD =2:1,∵DF ∥BC ,∴△DFP ∽△BEP ,∴ S △DFP S △BEP =14,∵EF ∥AC ,∴△BEP ∽△BCD ,∴ S △BEPS △BCD =(BP BD )2=(23)2=49,设△DFP 的面积为m ,则△BEP 的面积为4m ,△BCD 的面积为9m ,∵四边形CDFE 的面积为6,∴m +9m−4m =6,∴m =1,∴△BCD 的面积为9,∴△ABC 的面积是18.故选:B .9.手影游戏利用的物理原理是:光是沿直线传播的,图1中小狗手影就是我们小时候常玩的游戏.在一次游戏中,小明距离墙壁2米,爸爸拿着的光源与小明的距离为4米,如图2所示,若在光源不动的情况下,要使小狗手影的高度增加一倍,则光源与小明的距离应( )A .增加1米B .减少1米C .增加2米D .减少2米【答案】D 【分析】此题考查了中心投影,相似三角形的判定与性质,解题时关键是找出相似的三角形,然后根据对应边成比例列出方程,建立适当的数学模型来解答问题.根据题意作出图形,然后利用相似三角形的性质构建方程求解即可.【详解】解:如图,点O 为光源,AB 表示小明的手,CD 表示小狗手影,则AB ∥CD ,过点O 作OE ⊥AB ,延长OE 交CD 于F ,则OF ⊥CD ,∵AB ∥CD ,∴∠OAB =∠OCD,∠OBA =∠ODC ,∴△AOB ∽△COD ,∴AB CD =OE OF ,∵EF =2米,OE =4米,则OF =6米,∴AB CD =OE OF =23,AB =2k ,CD =3k ,∵在光源不动的情况下,要使小狗手影的高度增加一倍,如图,即AB =2k ,C ′D ′=6k ,△AO ′B ∽△C ′O ′D ′,∴AB C ′D ′=O ′E ′O ′F ′=13,则O ′E ′=2米,∴光源与小明的距离减少OE−O ′E ′=4−2=2(米),故选:D .10.如图,在正方形ABCD 中,M 为CD 上一点,连接AM 与BD 交于点N ,点F 在BC 上,点E 在AD 上,连接EF 交BD 于点G ,且AM ⊥EF ,垂足为H .若H 为AM 的中点,则下列结论:①AM =EF ;②BG GD =MD CM ;③GH=FG+HE;④△AHE∽△GHN.其中结论正确的个数有( )A.1个B.2个C.3个D.4个【答案】B【分析】本题考查正方形的性质,全等三角形的判定及性质,相似三角形的判定及性质,熟练运用相关知识,运用特殊值法与反证法是解决本题的关键.过点F作FK⊥AD于点K,证明△FKE≌△ADM(AAS)即可判断①;采用特殊值法判断②,若点M是CD的中点,则DMCM =1,又△BFG∽△DEG,得到BGGD=BFDE=13,从而BGGD≠MDCM,故②错误;过点M作MP∥AD,交FE于点P,交BD于点Q,证得△MPH≌△AEH(AAS),得到PH=EH,MP=AE,根据正方形的性质与△FKE≌△ADM(AAS)得到MQ=MD=KE,进而有PQ=AK,从而可证得△BFG≌△QPG(ASA),有FG=PG,因此FG+EH=PG+PH=HG,故③正确;利用反证法证明④,假设△AHE∽△GHN成立,则∠AEH=∠GNH,根据同角的余角相等推出∠BAN=∠BNA,即BN=BA,而AB是定值,BN随着点M的变化而变化,故BN=BA不成立,从而△BFG∽△DEG不成立,故④错误.【详解】解:如图,过点F作FK⊥AD于点K,∴∠FKA=∠FKE=90°,∵在正方形ABCD中,∠ABC=∠BAD=∠ADC=90°,∴四边形ABFK是矩形,∴FK=BA,∵在正方形ABCD中,AB=AD,∴FK=AD,∵AM⊥EF,∴∠AHE=90°,∴∠AEH+∠EAH=90°,∵∠AMD+∠MAD=180°?∠ADM=90°,∴∠FEK=∠AMD,∵∠FKE=∠ADM=90°,∴△FKE≌△ADM(AAS),∴FE=AM;故①正确;如图,若点M 是CD 的中点,则DM CM =1,设正方形ABCD 的边长为2a ,即AD =CD =2a ,∴DM =12CD =a ,在Rt △ADM 中,AM =AD 2+DM 2=5a ,∵点H 是AM 的中点,∴AH =12AM =52a ,∵△ADM≌△FKE ,∴KE =DM =a ,∵∠AHE =∠ADM =90°,∠EAH =∠MAD ,∴△AHE ∽△ADM ,∴ AH AD =AE AM ,即52a 2a =AE 5a ,∴DE =AD?AE =2a?54a =34a ,AK =AE?DM =54a?a =14a ,∴在矩形ABFK 中,BF =AK =14a ,∵在正方形ABCD 中,BC ∥AD ,∴△BFG ∽△DEG ,∴ BG GD =BF DE =14a 34a =13,∴ BG GD ≠MD CM ,故②错误;过点M 作MP ∥AD ,交FE 于点P ,交BD 于点Q ,∴∠MPH =∠AEH ,∠PMH =∠EAH ,∵点H 是AM 的中点,∴MH =AH ,∴△MPH≌△AEH(AAS),∴PH =EH ,MP =AE ,∵在正方形ABCD 中,BD 平分∠ADC ,∴∠BDC =12∠ADC =12×90°=45°,∵PM ∥AD ,∴∠QMD =180°?∠ADC =180°?90°=90°,∴∠MQD =90°?∠MDQ =90°?45°=45°,∴∠MQD =∠MDQ ,∴MQ =MD ,由①知,△FKE≌△ADM(AAS),∴KE =DM ,∴MQ =KE ,∴PM−QM =AE−KE ,即PQ =AK ,由①得,四边形ABFK 是矩形,∴BF =AK ,∴BF =PQ ,∵BC ∥AD ,MP ∥AD ,∴BC ∥PM ,∴∠GBF =∠GQP ,∠BFG =∠QPG ,∴△BFG≌△QPG(ASA),∴FG =PG ,∴FG +EH =PG +PH =HG ,故③正确;对于④,假设△AHE ∽△GHN 成立,则∠AEH =∠GNH ,∵∠AHE =90°,∴∠AEH +∠EAH =90°,∵∠BAH +∠EAH =∠BAD =90°,∴∠BAN =∠BNA ,∴BN =BA ,∵AB 是定值,BN 随着点M 的变化而变化,∴BN =BA 不成立,∴△BFG ∽△DEG 不成立.故④错误.综上所述,结论正确的有2个.故选:B二、填空题11.已知线段a ,b ,c ,d 是成比例线段,其中a =6,b =3,c =2,则d 的值是 .【答案】1【分析】本题主要考查了比例线段,熟练掌握比例线段的性质是解题的关键.根据比例线段的定义得到a:b =c:d ,即可得到答案.【详解】解:由于线段a ,b ,c ,d 是成比例线段,故a:b =c:d ,即6:3=2:d解得d =1故答案为:1.12.如图①是装了液体的高脚杯示意图,用去一部分液体后如图②所示,此时液面AB = cm .【答案】3【分析】本题考查了相似三角形的应用,根据两三角形相似列出比例式进而求解即可.【详解】依题意,两高脚杯中的液体部分两三角形相似,则AB 6=11−715−7=48=12,解得AB =3.故答案为:3.13.将三角形纸片△ABC 按如图的方式折叠,使点B 落在边AC 上,记为点B ′,折痕为EF .已知AB =AC =3,BC =4,若以点B ′,F ,C 为顶点的三角形与△ABC 相似,则BF = .【答案】2或127【分析】本题考查相似三角形的性质,解答此题时要注意进行分类讨论.由于折叠前后的图形不变,要考虑△B ′FC 与△ABC 相似时的对应情况,分两种情况讨论.【详解】解:根据△B ′FCAC 与△ABC 相似时的对应关系,有两种情况:①△B ′FC ∽△ABC 时,B ′F AB=CFBC ,又∵AB =AC =3,BC =4,B ′F =BF ,∴B ′F 3=4−BF 4解得BF =127;②△B ′CF ∽△BCA 时,B ′F BA=CFCA ,AB =AC =3,BC =4,B ′F =CF ,BF =B ′F ,而BF +FC =4,即2BF =4,解得BF =2.故BF 的长度是2或127故答案为:2或12714.如图,△ABC 是边长为1的等边三角形,取BC 的中点E ,作ED ∥AB ,EF ∥AC ,得到四边形EDAF ,它的面积记为S 1,取BE 的中点E 1,作E 1D 1∥EB ,E 1F 1∥EF ,得到四边形E 1D 1FF 1,它的面积记作S 2,照此规律,则S 2023=.【答案】324047【分析】本题考查了相似三角形的性质和判定,三角形中位线定理,等边三角形的性质和应用,找出规律,是解题的关键.首先求出DE 是三角形的中位线,得出△CDE ∽△CAB ,根据相似三角形的性质得出∴S △CDE S △CAB =(DE AB)2=(12)2=14,根据△ABC 的面积求出S △CDE =14×34,S △BEF =14×34,求出S 1=12×34,同理S 2=12S △BEF S 3=12×14×14×34,S 4=12×14×14×14×34, ⋯⋯根据规律可写出S n ,再n 将取2023,计算即可得答案.【详解】解∶∵BC 的中点E ,ED ∥AB ,∴E 为BC 中点,∴DE =12AB ,∵ED ∥AB ,∴△CDE ∽△CAB ,∴S △CDES△CAB=(DE AB)2=(12)2=14,∵△ABC 的面积是12×1×32=34∴S △CDE =14×34,推理S △BEFS △BAC =14,∴S △BEF =14×34∴S 1=34−14×34−14×34=12×34,同理S 2=12S △BEF =12×14×34, S 3=12×14×14×34,S 4=12×14×14×14×34, ⋯⋯S 2023=12×14×14×⋯×14×34(2022个14),=2342024=324047故答案为∶32404715.如图,△ABC 与△DEF 是位似图形,点O 为位似中心,OC:OF =1:2.若△ABC 的周长为4,则△DEF 的周长为 .【答案】8【分析】本题考查的是位似图形的概念、相似三角形的性质,熟记相似三角形的周长比等于相似比是解题的关键.根据位似图形的概念得到△ABC ∽△DEF ,BC ∥EF ,进而得到△OBC ∽△OEF ,则BC:EF =OC:OF =1:2,根据相似三角形的性质即可解答.【详解】解:∵△ABC 与△DEF 是位似图形,∴△ABC ∽△DEF ,BC ∥EF ,∴△OBC ∽△OEF ,∵BC:EF =OC:OF =1:2,∴△ABC 的周长:△DEF 的周长=1:2,∵△ABC 的周长为4,∴△DEF的周长为8,故答案为:8.16.如图,在矩形ABCD中,AD=4,AB=6,若E,F分别是AD,DC边上的动点,且AE:DF=3:2,AF与BE交于点P,连接DP.则DP的最小值为.【答案】2【分析】通过证明相似得出∠APB=90°,再确定点P是在以AB为直径的⊙M上,进而确定当M,P,D在同一直线上时,DP最小,再用直角三角形的性质和勾股定理求解即可.【详解】解:取AB的中点M,连结MP,MD,PD,如图所示:∵AB AD =64=32,AEDF=32,∴AB AD =AEDF,∵∠BAD=∠ADF=90°,∴△BAD∼△ADF,∴∠ABE=∠DAF,∴∠APB=∠DAF+∠AEB=∠ABE+∠AEB=90°,∵M是AB的中点,∴MP=12AB=3,在Rt△MPD中,MD=MA2+AD2=5,∵∠APB=90°,∴点P在以AB为直径的⊙M上,∴PD≤MD−MP,∴当M,P,D在同一直线上时,DP最小,DP的最小值为:MD−MP=5−3=2,故答案为:2.【点睛】本题考查了相似三角形的判定和性质,圆周角定理的推论,矩形的性质和直角三角形的性质,确定点P在以AB为直径的⊙M上是解题的关键.三、解答题17.已知:2a=3b.(a,b均不为0)(1)求a:b的值;(2)求a−ba的值.【答案】(1)3∶2;(2)13.【分析】(1)利用内项之积等于外项之积求解即可;(2)利用合比性质即可求解;本题考查了比例的性质,掌握比例的性质是解题的关键.【详解】(1)解:∵2a=3b,∴a∶b=3∶2(2)解:∵2a=3b,∴b a =23,∴b−aa =2−33,即b−aa =−13,∴a−ba =13.18.如图,AB,CD相交于点O,AC∥BD.求证∶△OAC∽△OBD【答案】见解析【分析】本题考查了平行线的性质以及相似三角形的判定,由平行线的性质,得出∠A=∠B,∠C=∠D,再结合两个对应角分别相等的三角形是相似三角形,即可作答.【详解】证明∶∵AC∥BD,∴∠A=∠B,∠C=∠D,∴△OAC∽△OBD.19.已知如图,点D是ΔABC边BC上一点,且BD:DC=2:3,过点C任作一条直线与AB、AD分别交于点F和E,求证:AEED =5AF3BF.【答案】证明见解析【分析】过点D 作DG ∥AB ,DH ∥FC 构造平行四边形DGFH ,得到DG =HF ,再根据平行线分线段成比例定理,得到DGBF =DCBC 和AEED =AFDG ,结合DG =HF 即可得证.【详解】证明:过D 点分别作DG ∥AB ,DH ∥FC ,得到四边形DGFH 是平行四边形,∴DG =HF ,∵DG ∥BF ,∴DGBF =DCBC ,∵BDCD =23,∴CDBC =35,∴DGBF =35,设DG =3a ,则FH =DG =3a ,BF =5a ,∴BH =2a ,∴FH =35BF ,∵DG ∥AF ,∴AEED =AF DG ,∵DG =FH ,∴AEED =AF FH ,∵FH =35BF ,∴AEED =AF35BF=5AF3BF,即AEED =5AF3BF.【点睛】本题考查的知识点是平行四边形性质、平行线分线段成比例定理,解题关键是熟练掌握平行线分线段成比例定理.20.如图所示的平面直角坐标系中,△ABC的三个顶点坐标分别为A(−3,2),B(−1,3),C(−2,0),△A1B1 C1与△ABC关于坐标原点O位似,且相似比为2:1.(1)在x轴下方,画出△A1B1C1:(2)直接写出OA1OA=________.(3)直接写出△A1B1C1的面积________.【答案】(1)画图见解析(2)2(3)10【分析】本题考查的是画位似图形,位似图形的性质,确定关键点的位似对应点是解题的关键.(1)分别确定A,B,C关于O的位似对应点A1,B1,C1,再顺次连接即可;(2)由位似图形的性质可得答案.(3)利用割补法求解三角形的面积即可;【详解】(1)解:如图,△A1B1C1即为所求;.(2)解:由位似图形的性质可得:OA1OA=2;(3)解:S△A1B1C1=4×6−12×2×4−12×2×4−12×2×6=24−4−4−6=10.21.如图,在锐角三角形ABC中,AC>BC.以点C为圆心BC长为半径画弧,交边AB于点D,连接CD.点E 是CB延长线上的一点,连接AE,若AB平分∠CAE.(1)求证:△ACD∽△AEB.(2)当AD=BD时,求BCEB的值.【答案】(1)见解析(2)12【分析】本题考查了角平分线的定义、等腰三角形的性质、相似三角形的判定与性质,熟练掌握以上知识点并灵活运用是解此题的关键.(1)由题意得:BC=CD,由等边对等角得出∠CBD=∠CDB,从而得出∠ADC=∠ABE,再由角平分线的定义得出∠DAC=∠EAB,即可证明△ACD∽△AEB;(2)由题意得出ADAB =12,由相似三角形的性质得出CDEB=12,从而即可得解.【详解】(1)证明:由题意得:BC=CD,∴∠CBD=∠CDB,∴∠ADC=∠ABE,∵AB平分∠CAE,∴∠DAC=∠EAB,∴△ACD ∽△AEB ;(2)解:∵AD =BD ,∴AD AB =12∵△ACD ∽△AEB ,∴ADAB =CDEB ,∴CD EB =12∵BC =CD ,∴BCEB =12.22.赵玲和张羽计划合作完成测量凤凰雕塑顶端到地面的高度PO 这一任务.如图,赵玲在点B 处竖立一根高3m 的标杆AB ,张羽测出地面上的点D 、标杆上的点C 和点P 在一条直线上,利用皮尺测出BC =2m ,BD =2.5m .张羽向后退,又测出地面上的点E 、标杆顶点A 和点P 在一条直线上,利用皮尺测出EB =3.9m .已知AB ⊥OE ,PO ⊥OE ,点E 、D 、B 、O 在同一水平线上,点C 在AB 上,图中所有点都在同一平面内,请你根据测量过程和数据,求出凤凰雕塑顶端到地面的高度PO .【答案】28米【分析】本题考查了相似三角形的应用,熟练掌握相似三角形的性质是解题的关键.根据已知条件推出△CBD ∽△POD ,△ABE ∽△POE ,得到POBC =DOBD ,POAB =EOEB ,代入已知数据计算即可求解.【详解】解:由题意可得∠ABE =∠POE =90°,∵∠CDB =∠PDO ,∠E =∠E ,∴△CBD ∽△POD ,△ABE ∽△POE ,∴POBC =DOBD ,POAB =EOEB ,∴PO 2=2.5+BO 2.5,PO 3=3.9+BO 3.9,解得PO =28.∴凤凰雕塑顶端到地面的高度PO 为28米.23.综合与实践:根据以下素材,探索完成任务问题:你了解黄金矩形吗?问题背景素材一矩形就是长方形,四个角都是90°,两组对边平行且相等素材二宽与长的比是5−12(约为0.618)的矩形叫做黄金矩形.黄金矩形给我们以协调、匀称的美感.世界各国许多著名的建筑,为取得最佳的视觉效果,都采用了黄金矩形的设计.如希腊的巴特农神庙.素材三我们在学习二次根式时.常遇到23+1这种分母含有无理式的式子,需要通过分式性质和平方差公式来进行化简.我们称之为“分母有理化”.例如:23+1=2(3−1)(3+1)(3−1)=2(3−1)(3)2−12=3−1素材四黄金矩形是可以通过折纸折叠出来的操作步骤【第一步】在一张矩形纸片的一端,利用图2所示的方法折出一个正方形,然后把纸片展平【第二步】如图3,把这个正方形折成两个相等的矩形,再把纸片展平.【第三步】折出内侧矩形的对角线AB ,并把AB 折到图4中所示的AD 处.【第四步】展平纸片,按照所得的点D 折出DE ,矩形BCDE (图5)就是黄金矩形.解决问题任务一化简:12−1任务二设MN 为x ,请用含x 的式子表示AB ,并证明矩形BCDE 是黄金矩形任务三如图5,若MN =2,连接MC ,求点E 到线段MC 的距离(提示:等面积法)【答案】任务一:2+1;任务二:AB =52x ,理由见解析;任务三:10+22【分析】本题考查了黄金分割、矩形与折叠及分母有理化问题,解决本题的关键是熟练掌握黄金分割、矩形与折叠及分母有理化.(1)对原式进行分母有理化即可;(2)设MN =x ,根据题意可得,BC =NC =MN =x ,AB =AD ,由勾股定理可得AB =52x ,从而可得CD =AD−AC =5−12x ,再求解即可;(3)由黄金矩形的性质及勾股定理求解即可.【详解】任务一:12−1=2+1(2−1)(2+1)=2+1任务二:解:设MN =x ,根据题意可得,BC =NC =MN =x ,AB =AD ,∴AC =12NC =12x ,根据勾股定理可得AB =BC 2+AC 2=52x ,∴AD =52x ,∴CD =AD−AC =5−12x ∴CD BC =5−12∴矩形BCDE 是黄金矩形.任务三:∵矩形BCDE 是黄金矩形∴BEBC =5−12,即BE 2=5−12,∴BE =5−1∴ME =MB +BE =2+5−1=5+1∵MN =MB =2∴MC =MN 2+MB 2=22∴设点E 到线段MC 的距离为ℎ,∴S △MCE =12ME ⋅BC =12MC ⋅ℎ,∴12×(5+1)×2=12×22ℎ∴ℎ=10+22.∴点E到线段MC的距离10+22.24.【问题提出】在Rt△ABC中,AC=BC=2cm,∠ACB=90°,一动点D从点A出发,沿折线A−B−C运动,连接CD,将CD绕点D顺时针旋转90°得到DE,连接BE、CE,若点D在AB上的运动速度为2cm/s,在BC上的速度为1cm/s,设运动的时间为t(s),BE、CE、BC围成的图形的面积为S(cm2),探究S与t的关系;【初步感知】某数学活动小组在研究此类动点问题时,想利用数形结合的思想,通过画图象来解决此类问题.(1)如图1,当点D在线段AB上时,经探究发现S与t的函数图象如图所示,求NP所在直线的表达式;【延伸探究】(2)若存在3个时刻t1、t2、t3(t1<t2<t3)对应的△BCE的面积均相等.①t1+t2=________;②当t1+t3=2t2时,求△BCE的面积S的值.【答案】(1)S=2t−2;(2)①2;②S=2+427【分析】本题考查相似三角形的判定与性质,等腰直角三角形的性质;(1)取AB中点F,证明△DCF∽△ECB,得到S△DCFS△ECB=(CF BC)2=12,即可得到S与t的函数关系;(2)①分别求出三种情况下的函数解析式,再根据△BCE的面积均相等可得S=−2t1+2=2t2−2=−2t3 +2+22,即可得到t1+t2的值;②由S=−2t1+2=2t2−2=−2t3+2+22可得t2=−t1+2,t3=2t1+2,代入t1+t3=2t2解方程计算即可.【详解】(1)当点D在线段AB上时,取AB中点F,连CF,则CF=AF=BF=2,BC=2CF,∠BCF=45°,∵将CD绕点D顺时针旋转90°得到DE,∴CD=DE,CE=2DC,∠DCE=45°,∴∠DCF=∠BCE=45°−∠BCF,CEDC =BCCF=2,∴CE BC =DCCF,∴△DCF∽△ECB ∴S△DCFS△ECB=(CF BC)2=12,∴S =S △ECB =2S △DCF ,当点D 在线段AF 上时,0≤t ≤1,AD =2t ,DF =AF−AD =2−2t ,∴S △DCF =12DF ⋅CF =12×2×(2−2t )=1−t ,∴S =S △ECB =2S △DCF =−2t +2(0≤t ≤1),当点D 在线段BF 上时,1≤t ≤2,AD =2t ,DF =AD−AF =2t−2,∴S △DCF =12DF ⋅CF =12×2×(2t−2)=t−1,∴S =S △ECB =2S △DCF =2t−2(1≤t ≤2),∴NP 所在直线的表达式为S =2t−2;(2)①t 1当点D 在线段BC 上时,2≤t ≤4,AB +BD =2t ,CD =BC−BD =AB +BC−(AB +BD)=2+22−2t ,由题意可得∠DCE =∠BCF =45°,CE DC =BC CF =2,∴CE BC =DC CF ,∴△DCF ∽△ECB∴S △DCF S △ECB =(CF BC )2=12,∴S =S △ECB =2S △DCF ,过D 作DG ⊥BC 于G ,则FG =12BC =1,∴S △DCF =12CD ⋅GF =12×1×(2+22−2t ),∴S=S△ECB=2S△DCF=−2t+2+22(2≤t≤4),∵存在3个时刻t1、t2、t3(t1<t2<t3)对应的△BCE的面积均相等,∴S=−2t1+2=2t2−2=−2t3+2+22,∴t1+t2=2,故答案为:2;②∵S=−2t1+2=2t2−2=−2t3+2+22,∴t2=−t1+2,t3=2t1+2∵t1+t3=2t2,∴t1+2t1+2=2(−t1+2),解得t1=6−227,∴S=−2t1+2=−2×6−227+2=2+427.。
第四章图形的相似单元测试卷及答案
一、选择题
1、【基础题】在比例尺为1:5000的地图上,量得甲,乙两地的距离为25 cm ,则甲、乙两地的实际距离是 ( )
A. 1250千米
B. 125千米
C. 12.5千米
D. 1.25千米
2、【基础题】已知135=a b ,则b a b a +-的值是( ) ★ A. 32 B. 23 C. 49 D. 94
3、【基础题】如右图,在△ABC 中,看DE ∥BC ,12
AD BD =,DE =4 cm ,则BC 的长为 ( ) A .8 cm B .12 cm
C .11 cm
D .10 cm
4、【基础题】如右图,DE 是ΔABC 的中位线,则ΔADE 与ΔABC 的面积之比是( )
A .1:1
B .1:2
C .1:3
D .1:4
5、【基础题】如下图,小正方形的边长均为1,则图中三角形(阴影部分)与△ABC 相似的是( ) ★★★
6、【基础题】下列结论不正确的是( ) ★
A. 所有的矩形都相似
B. 所有的正方形都相似
C. 所有的等腰直角三角形都相似
D. 所有的正八边形都相似
7、【基础题】下列说法中正确的是( ) ★
A. 位似图形能够通过平移而相互得到
B. 位似图形的对应边平行且相等
C. 位似图形的位似中心不只有一个
D. 位似中心到对应点的距离之比都相等
8、【综合题Ⅰ】如左下图,ABCD 是正方形,E 是CD 的中点,P 是BC 边上的一点,下列条件中,
不能推出△ABP 与△ECP 相似的是( ) ★★★
A. ∠APB =∠EPC
B. ∠APE =90°
C. P 是BC 的中点
D. BP ︰BC =2︰3
9、【综合题Ⅱ】(2008山东潍坊)如右上图,Rt △ABC 中,AB ⊥AC ,AB =3,AC =4,P 是BC 边上一点,
作PE ⊥AB 于E ,PD ⊥AC 于D ,设BP =x ,则PD+PE =( )
A. 35x
+ B. 45x
- C. 7
2 D. 2
1212525x x -
A
B C A B C
D E P
10、【综合题Ⅲ】如图,在Rt ABC △内有边长分别为a ,b ,c 的三个正方形.则a 、b 、c 满足的关系式是( )
A . b a c =+
B . b ac =
C . 222b a c =+
D . 22b a c ==
二、填空题
11、【基础题】在同一时刻,高为1.5m 的标杆的影长为2.5m ,一古塔在地面上影长为50m ,那么古塔的高为 . 12、【基础题】两个相似三角形面积比是9∶25,其中一个三角形的周长为36cm ,则另一个三角形的周长是 .
13、【综合题Ⅰ】如左下图,在△ABC 中,AB =5,D 、E 分别是边AC 和AB 上的点,且∠ADE =∠B ,DE =2,
那么AD ·BC = . ★★★
14、【基础题】如右上图,在△ABC 和△DEF 中,G 、H 分别是边BC 和EF 的中点,已知AB =2DE ,AC =2DF ,
∠BAC =∠EDF . 那么AG :DH = ,△ABC 与△DEF 的面积比是 . ★★★
15、【基础题】把一个三角形改做成和它相似的三角形,假如面积缩小到原先的2
1倍,边长应缩小到原先的____倍. 16、【综合Ⅱ】如左下图在Rt △ABC 中, ∠ACB =90°,CD ⊥AB 于D ,若AD =1,BD =4,则CD = . ★
17、【基础题】如右上图,一人拿着一支厘米小尺,站在距电线杆约30米的地点,把手臂向前伸直,小尺竖直,
看到尺上12厘米的长度恰好遮住电线杆,已知手臂长约60厘米,则电线杆的高为 . ★★★
18、【基础题】已知一本书的宽与长之比为黄金比,且这本书的长是20 cm ,则它的宽为_____cm.(结果保留根号)
19、【综合Ⅲ】顶角为36°的等腰三角形称为黄金三角形,如图,在△ABC 中,AB =AC =1,∠A =36°,
BD 是三角形ABC 的角平分线,那么AD = . ★
20、【提高题】如图,点1234A A A A ,,,在射线OA 上,点123B B B ,,在射线OB 上,且112233A B A B A B ∥∥,213243A B A B A B ∥∥.若212A B B △、323A B B △的面积分别为1、4,则图中三个阴影三角形面积之和为 .
三、解答题
21、【基础题】(2008无锡)如图,已知点E 是矩形ABCD 的边CD 上一点,BF ⊥AE 于点F ,求证△ABF ∽△EAD .
22、【综合Ⅰ】如图27-106所示,已知E 为ABCD 的边CD 延长线上的一点,连接BE 交AC 于O ,交AD 于F .
求证BO 2=OF ·OE .
23、如图,在平面直角坐标系中,已知OA=12 cm ,OB=6 cm ,点P 从O 点开始沿OA 边向点A 以1cm/s
的速
度移动,点Q 从点B 开始沿BO 边向点O 以1cm/s 的速度移动,假如P 、Q 同时动身,用t (单位:秒) 表示移动的时刻(06t ≤≤),那么:
(1)当t 为何值时, △POQ 与△AOB 相似?
(2)设△POQ 的面积为y ,求y 关于t 的函数解析式。
(第20题图)
O A A A A A B B B 2 B 3 1
4 O P A X
B Q
24、【综合Ⅱ】(2011年陕西中考第20题)
一天,数学课外活动小组的同学们,带着皮尺去测量某河道因挖沙形成的“圆锥形坑”的深度,来评估这些坑道对河道的阻碍,如图是同学们选择(确保测量过程中无安全隐患)的测量对象,测量方案如下:
①先测出沙坑坑沿的圆周长34.54米;
②甲同学直立于沙坑坑沿的圆周所在的平面上,通过适当调整自己所处的位置,当他位于B时恰好他的视线通过沙坑坑沿圆周上一点A看到坑底S(甲同学的视线起点C与点A、点S三点共线),经测量:AB=1.2米,BC=1.6米依照以上测量数据,求“圆锥形坑”的深度(圆锥的高),(π取3.14,结果精确到0.1米)
25、【综合Ⅱ】(2020宁夏中考)如图,在平面直角坐标系中,已知△ABC三个顶点的坐标分别为A(﹣1,2),
B(﹣3,4),C(﹣2,6)
(1)画出△ABC绕点A顺时针旋转90°后得到的△A1B1C1
(2)以原点O为位似中心,画出将△A1B1C1三条边放大为原先的2倍后的△A2B2C2.
九(上)第四章图形的相似 单元测试 答案
一、选择题答案
1、【答案】 选D
2、【答案】 选D
3、【答案】 选B.
4、【答案】 选D
5、【答案】 选B
6、【答案】 选A
7、【答案】 选D
8、【答案】 选C
9、【答案】 选A 10、【答案】 选A
二、填空题答案
11、【答案】 30米 12、【答案】 60或1085 13、【答案】 AD ·BC =AB ·DE =10 14、【答案】 2:1, 4:1 15、【答案】
22倍. 16、【答案】 2 17、【答案】 电线杆的高为6 米. 18、【答案】 10(15-)
19、【答案】 AD =2
15- 【提示】利用三角形相似的关系能够得到AC DC AD ⋅=2,设AD =x ,则DC =1-x ,
可列方程x x -=12,解得2
51±-=x ,∴AD =215- 20、【答案】 10.5 21、【答案】 略 22、【证明】在ABCD 中,AB ∥CE ,AD ∥BC ,∴△AOF ∽△COB ,△AOB ∽△COE ,∴
AO OF OC OB =,AO OB OC OE =, ∴OF OB OB OE
=,∴OB 2=OF ·OE . 23、【答案】
(1)△POQ ∽△AOB 时①若OQ OP OA OB =,即6612
t t -=,122t t -=,∴4t = ②若OQ OP OB OA =,即6126
t t -=,62t t -=,∴2t =∴当4t =或2t =时,△POQ 与△AOB 相似。
(2)∵OA=12,OB=6由题意,得BQ=1·t=t ,OP=1·t=t ∴OQ=6-t
∴y=21×OP ×OQ=21·t (6-t )=-2
1t 2+3t (0≤t ≤6)
24、【答案】“圆锥形坑”的深度是7.3米.
25、【答案】 如右图。