kV线路保护配置及运行方式
- 格式:doc
- 大小:460.50 KB
- 文档页数:9
110kV线路保护配置摘要本文从距离保护,零序方向电流保护,重合闸,低频保护和过负荷告警4个方面对110kV线路保护配置进行了论述。
关键词110kV线路;保护配置;继电保护0 引言对于110kV及以下电网,应当尽可能以辐射状网络方式运行,地区电源也应当以辐射线路接入联络变电所实行环状或双回线布置,但应当遵循以开环或线路变压器组方式运行的原则。
根据规程要求,110kV线路保护包括完整的三段相间距离保护、三段接地距离保护、三段零序方向过流保护和低频率保护,并配有三相一次重合闸功能、过负荷告警功能,跳合闸操作回路。
众所周知,输电线的故障有单相短路接地故障、两相短路接地故障、两相短路不接地故障及三相短路故障10种。
我国110kV及以上电压等级电网中单相短路故障的几率最多,其次是两相接地短路,两者合计约占输电线路故障总数的90%。
接地故障用零序电流保护、接地距离保护可以满足要求。
两相短路不接地故障的几率很小,约占2%~3%,其原因多半是由于两导线受风吹而摆动的频率不等造成的,三相短路基本都是不接地的,相间距离保护可以有效切除故障。
输电线路故障不外是绝缘下降、雷害和外力破坏造成的。
在我国110kV线路上通常有避雷线,所以故障时接地电阻一般小于5Ω,单相经高电阻接地往往发生在树枝生长导致导线经树枝对地放电时,接地电阻往往很大,这时由零序过流后备保护切除故障。
远后备保护的关键在于避开负荷状态。
对于接地故障用零序电流保护可以取得满意的结果,对于相间故障都用阻抗继电器实现。
1 距离保护距离保护根据测量阻抗的大小,反应故障点的远近,故称距离保护。
同时,由于它是反应阻抗参数而工作的,又称为阻抗保护。
距离保护在任何复杂形式的电网中都可有选择性的切除故障,而且具有足够的灵敏性和快速性,因此在高压及超高压线路中获得了最广泛的应用。
该装置设置了完整的三段相间距离保护和三段接地距离保护。
距离继电器是距离保护的主要测量元件,应满足以下要求:1)在被保护线路上发生直接短路时继电器的测量阻抗应正比于母线与短路点间的距离;2)在正方向区外故障时不应超越动作。
110kV变电站电气主接线及运行方式变电站电气主接线是指高压电气设备通过连线组成的接受或者分配电能的电路。
其形式与电力系统整体及变电所的运行可靠性、灵活性和经济性密切相关,并且对电气设备选择、配电装置的布置、继电保护和控制方式的拟定有较大影响。
所以,主接线设计是一个综合性问题,应根据电力系统发展要求,着重分析变电所在系统中所处的地位、性质、规模及电气设备特点等,做出符合实际需要的经济合理的电气主接线。
一变电所主接线基本要求1.1 保证必要的供电可靠性和电能质量。
保证供电可靠性和电能质量是对主接线设计的最基本要求,当系统发生故障时,要求停电范围小,恢复供电快,电压、频率和供电连续可靠是表征电能质量的基本指标,主接线应在各种运行方式下都能满足这方面的要求。
1. 2 具有一定的灵活性和方便性。
主接线应能适应各种运行状态,灵活地进行运行方式切换,能适应一定时期内没有预计到的负荷水平变化,在改变运行方式时操作方便,便于变电所的扩建。
1. 3 具有经济性。
在确保供电可靠、满足电能质量的前提下,应尽量节省建设投资和运行费用,减少用地面积。
1. 4 简化主接线。
配网自动化、变电所无人化是现代电网发展的必然趋势,简化主接线为这一技术的全面实施创造了更为有利的条件。
1. 5 设计标准化。
同类型变电所采用相同的主接线形式,可使主接线规范化、标准化,有利于系统运行和设备检修。
1. 6 具有发展和扩建的可能性。
变电站电气主接线应根据发展的需要具有一定的扩展性。
二变电所主接线基本形式的变化随着电力系统的发展,调度自动化水平的提高及新设备新技术的广泛应用,变电所电气主接线形式亦有了很大变化。
目前常用的主接线形式有:单母线、单母线带旁路母线、单母线分段、单母线分段带旁路、双母线、双母线分段带旁路、一个半断路器接线、桥形接线及线路变压器组接线等。
从形式上看,主接线的发展过程是由简单到复杂,再由复杂到简单的过程。
在当今的技术环境中, 随着新技术、高质量电气产品广泛应用,在某些条件下采用简单主接线方式比复杂主接线方式更可靠、更安全,变电所主接线日趋简化。
500KV线路保护概述500KV线路保护的检修范围包括500KV线路保护装置、光纤通道、光电接口装置以及相关的PT、CT二次回路、开关控制回路。
线路保护的组成500KV线路第一套保护是由P456(单模)光纤差动保护、PSL602GA微机距离保护、SSR530就地判别装置共同组成;第二套保护是由RCS-931AM分相电流保护、RCS-925AM 就地判别保护装置组成。
1.1 P456光纤差动保护检修规程1.设备概况及参数1.1.保护装置概况500KV 霍州电厂至霍变线路为AREV A纵联差动保护装置型号为P456。
1.1.1.装置主要性能✧设有分相电流差动、失步检测和距离保护;✧设有电压互感器监视和电流互感器监视;✧自动检测振荡,自动闭锁并实现复归功能。
1.1.2.装置主要参数额定电气参数1)额定直流电压: 220V,允许工作范围:80%-110%。
交流电流: 1A (额定电流In)2)测距误差(不包括因装置外部原因造成的误差)金属性故障时,不大于±2.5%。
2.操作步骤2.1.装置面板在上部的盖子下有保护装置序列号和电流及电压额定值显示;在下部的盖子下有1/2AA 型电池室,用做实时时钟、事件、故障和录波记录的存储后备电池、一个9针的D型凹进式的RS232数据通讯接口,用于和当地的PC进行通讯(连接电缆限定15米之内)、一个25针的凹进式D型并行数据通讯接口,它通过并行的数据连接和支持软件,来实现内部信息的监控,并可迅速下载软件和语言文本。
面板左侧的固定功能LED用于显示以下内容:a) 跳闸(红色)LED表示出保护装置已经发出一个跳闸信号。
相应的故障记录从前面的显示屏上清除以后,跳闸信号就会复归(跳闸LED也可以设定为自动复归)。
b) 报警(黄色)LED的闪烁表示保护装置已经产生了一个报警信号。
这些报警信号可以由故障、事件或维修记录触发。
报警信息被确认之前,报警LED将一直在闪烁。
报警信息被确认后,报警LED 就会变成稳定的亮度。
纵联保护原理一、纵联保护:高频保护是利用某种通信设备将输电线路两端或各端的保护装置纵向连接起来,将各端的电气量(电流、功率方向等)传送到对端,将各端的电气量进行比较,以判断故障在本线路范围内还是范围外,从而决定是否切除被保护线路。
二、相差高频保护原理:(已经退出主流,不做解释)相差高频保护作为过去四统一保护来说,占据了很长一段时间的主导地位,随着微机保护的发展,相差高频保护已经退出实际运行。
相差高频保护是直接比较被保护线路两侧电流的相位的一种保护。
如果规定每一侧电流的正方向都是从母线流向线路,则在正常和外部短路故障时,两侧电流的相位差为180°。
在内部故障时,如果忽略两端电动势相量之间的相位差,则两端电流的相位差为零,所以应用高频信号将工频电流的相位关系传送到对侧,装在线路两侧的保护装置,根据所接收到的代表两侧电流相位的高频信号,当相位角为零时,保护装置动作,使两侧断路器同时跳闸,从而达到快速切除故障的目的。
侧电流侧电流侧电流侧电流启动元件:判断系统是否发生故障,发生故障才启动发信并开放比相。
操作元件:将被保护线路工频三相电流变换为单相操作电压,控制收发信机正半波发信,负半波停信。
作为相差高频保护,其启动定值有两个,一个低定值启动发信,另一个高定值启动比相,采取两次比相,延长了保护动作时间。
对高频收发信机调制的操作方波要求较高,区外故障时怕出现比相缺口引起误跳闸,因此被现有的方向高频所取代。
二、闭锁式高频保护原理方向纵联保护是由线路两侧的方向元件分别对故障的方向作出判断,然后通过高频信号作出综合的判断,即对两侧的故障方向进行比较以决定是否跳闸。
一般规定从母线指向线路的方向为正方向,从线路指向母线的方向为反方向。
闭锁式方向纵联保护的工作方式是当任一侧正方向元件判断为反方向时,不仅本侧保护不跳闸,而且由发信机发出高频信号,对侧收信机接收后就输出脉冲闭锁该侧保护。
在外部故障时是近故障侧的正方向元件判断为反方向故障,所以是近故障侧闭锁远离故障侧;在内部故障时两侧正方向元件都判断为正方向,都不发送高频信号,两侧收信机接收不到高频信号,也就没有输出脉冲去闭锁保护,于是两侧方向元件均作用于跳闸。
110kV线路保护配置0 引言对于110kV及以下电网,应当尽可能以辐射状网络方式运行,地区电源也应当以辐射线路接入联络变电所实行环状或双回线布置,但应当遵循以开环或线路变压器组方式运行的原则。
根据规程要求,110kV线路保护包括完整的三段相间距离保护、三段接地距离保护、三段零序方向过流保护和低频率保护,并配有三相一次重合闸功能、过负荷告警功能,跳合闸操作回路。
众所周知,输电线的故障有单相短路接地故障、两相短路接地故障、两相短路不接地故障及三相短路故障10种。
我国110kV及以上电压等级电网中单相短路故障的几率最多,其次是两相接地短路,两者合计约占输电线路故障总数的90%。
接地故障用零序电流保护、接地距离保护可以满足要求。
两相短路不接地故障的几率很小,约占2%~3%,其原因多半是由于两导线受风吹而摆动的频率不等造成的,三相短路基本都是不接地的,相间距离保护可以有效切除故障。
输电线路故障不外是绝缘下降、雷害和外力破坏造成的。
在我国110kV 线路上通常有避雷线,所以故障时接地电阻一般小于5Ω,单相经高电阻接地往往发生在树枝生长导致导线经树枝对地放电时,接地电阻往往很大,这时由零序过流后备保护切除故障。
远后备保护的关键在于避开负荷状态。
对于接地故障用零序电流保护可以取得满意的结果,对于相间故障都用阻抗继电器实现。
1 距离保护距离保护根据测量阻抗的大小,反应故障点的远近,故称距离保护。
同时,由于它是反应阻抗参数而工作的,又称为阻抗保护。
距离保护在任何复杂形式的电网中都可有选择性的切除故障,而且具有足够的灵敏性和快速性,因此在高压及超高压线路中获得了最广泛的应用。
该装置设置了完整的三段相间距离保护和三段接地距离保护。
距离继电器是距离保护的主要测量元件,应满足以下要求:1)在被保护线路上发生直接短路时继电器的测量阻抗应正比于母线与短路点间的距离;2)在正方向区外故障时不应超越动作。
超越有暂态超越和稳态超越两种。
第3节110KV线路保护的保护配置我国110KV的电力网,都是直接接地的系统。
所谓直接接地系统,是指在该电网中任一点的综合零序阻抗小于或者等于同一点综合正序阻抗的三倍。
在直接接地网中,当发生接地故障时,会产生很大的接地故障电流,因此,需要配置作用于跳闸的、切除相间短路故障和接地故障的继电保护装置。
线路继电保护的配置原则,在原水利部颁发的《继电保护和安全自动装置技术规程SD6—83》中已有明确规定。
以下就各类保护装置的特点分别予以论述。
1、光纤保护光纤作为继电保护的通道介质,具有不怕超高温与雷电电磁干扰、对电场绝缘、频带宽和衰耗底等优点。
而电流差动保护原理简单,不受系统振荡、线路串补电容、平行互感、系统非全相运行、单侧电源运行方式的影响,差动保护本身具有选相能力,保护动作速动快,最适合作为主保护。
近年来,光纤技术、DSP技术、通信技术、继电保护技术的迅速发展为光纤电流差动保护的应用提供了机遇。
1 光纤保护的基本方式及其特点光纤保护目前已在国内部分地区得到较为广泛的使用,对已投入运行的光纤保护,按原理划分,主要有光纤电流差动保护和光纤闭锁式、允许式纵联保护两种。
1.1光纤电流差动保光纤电流差动保护是在电流差动保护的基础上演化而来的,基本保护原理也是基于基本电流定律,它能够理想地使保护实现单元化,原理简单,不受运行方式变化的影响,而且由于两侧的保护装置没有电联系,提高了运行的可靠性。
目前电流差动保护在电力系统的主变压器、线路和母线上大量使用,其灵敏度高、动作简单可靠快速、能适应电力系统震荡、非全相运行等优点,是其他保护形式所无法比拟的。
光纤电流差动保护在继承了电流差动保护优点的同时,以其可靠稳定的光纤传输通道,保证了传送电流的幅值和相位正确可靠地传送到对侧。
时间同步和误码校验问题,是光纤电流差动保护面临的主要技术问题。
在复用通道的光纤保护上,保护与复用装置时间同步的问题,对于光纤电流差动保护的正确运行起到关键的作用,因此目前光纤差动电流保护都采用主从方式,以保证时钟的同步;由于目前光纤均采用64Kbit/s数字通道,电流差动保护通道中既要传送电流的幅值,又要传送时间同步信号,通道资源紧张,要求数据的误码校验位不能过长,这样就影响了误码校验的精度。
220kV 线路保护配置及运转方式大要220kV 踏九线线路保护装置由两套独立的、配置相同保护功能的保护装置构成。
两套装置配置了光纤差动保护、零序保护、距离保护。
两套装置都带有重合闸功能,此中 2 号保护装置单相重合闸启用。
光纤差动保护输电线路保护采纳光纤通道后因为通讯容量很大所过去往做成分相式的电流纵差保护。
输电线路分相电流纵差保护自己有选相功能,哪一相纵差保护动作那一相就是故障相。
输电线路双侧的电流信号经过编码成码流形式而后变换成光的信号经光纤输出。
传递的信号可以是包含了幅值和相位信息在内的该侧电流的刹时价,保护装置收到输入的光信号后先变换成电信号再与本侧的电流信号构成纵差保护。
纵联电流差动继电器的原理I CD31 2I 0dzI dzI许继差动特征四方差动特性本装置差动保护由故障重量差动、稳态量差动及零序差动保护构成。
差动保护采纳每周波 96 点采样,因为高采样率,差动保护可以进行短窗相量算法实现迅速动作,使典型动作时间小于 20ms。
故障重量差动保护敏捷度高,不受负荷电流的影响,拥有很强的耐过渡电阻能力,对于大多数故障都能迅速出口;稳态量差动及零序差动则作为故障重量差动保护的增补。
比率制动特征动作方程以下:..I M I N I CDset....I M I N KI M I N (3)(4)************************************************************** ***************讲解例子I dMI M I N NE S E RTA TA K r(a)系统图IqdI r(b) 动作特征E S MI M I NNE R E SMI M I N NTA TA TA I K TAI K(c) 内部短路(d) 外面短路图2-29 纵联电流差动保护原理设流过双侧保护的电流I M、I N以母线流向被保护的线路方向规定为其正方向,如图中箭头方向所示。
500kV线路保护配置本期工程将对南方电网某500kV变电站的500kV某线甲、乙两回线路的保护进行改造,包括保护装置的通信通道。
该500kV 甲、乙线对侧应配置与本侧相同的线路保护装置,已由其他项目立项改造。
500kV线路每回线的两套独立的保护装置均应独立组屏,每面屏均有1套独立的辅助保护装置。
本期在主控室拆除原500kV 某线甲、乙保护屏4面屏,并拆除其与其他屏柜之间的连接电缆,而后在原屏位安装4面新保护屏。
1. 500kV线路主接线该500kV变电站500kV配电装置采用3/2接线,甲、乙两线分别位于第二串,第三串靠近2M位置出线。
图1主接线图500kV线路保护按双重化配置,具体实施为配置2套互相独立保护装置,每套保护装置包括主保护,后备保护与辅助保护,每套保护装置的二次回路独立且没有直接的电气联系。
当出线设置有出线或进线隔离开关时候,应按双重化配置两套短引线保护装置;当间隔保护使用串外电流互感器时,应按双重化配置两套T区保护。
2.保护配置现况现运行的保护装置投产于2006年,为南京南瑞继保电气XX公司的微机型保护装置。
具体配置如下:其中保护通信用的载波机置于通信机房。
500kV线路的主一保护装置采用主、后备分开配置;主二保护仅有主保护,没有配置后备保护。
两套辅助保护保护均配置了相互独立的过电压远跳保护装置。
图2主一保护屏(旧屏)图3 主二保护屏(旧屏)500kV甲、乙线保护通道及远跳通道均采用2路复用载波通道,相应配置ABB的ETL41复用载波机和NSD550保护接口,线路过电压保护集合在 RCS-925A内。
3.保护配置改造后改造后,该500kV甲、乙线主一、主二保护均更换为长园深瑞的PRS-753BMY型集成双光口方式过电压及远方跳闸功能的光纤电流差动保护,且具备后备保护功能。
PRS-753BMY光纤分相纵差成套保护装置保护和告警功能见下表所示:图4主一,主二保护屏(新屏)图5保护通信接口屏(新屏)主一和主二保护均采用1路直达复用2M光纤通道和1路迂回复用2M光纤通道。
110kV电网运行方式及断路器失灵保护配置分析摘要:随着国内经济的飞速发展,电网发展的速度也与日俱增。
电网的复杂系数越来越高,难度系数越来越大,其安全稳定运行的问题就显得尤为重要。
本文旨在通过介绍电网运行方式以及断路器失灵保护的工作原理和配置原则,对断路器失灵保护配置进行分析,探讨出解决问题的措施,为我国电网的发展提供一些可行性的思路。
关键词:运行方式;断路器;保护配置断路器失灵保护,即预定在相应的断路器跳闸失败的情况下,通过启动其他断路器跳闸来切除系统故障的一种保护。
断路器失灵保护是指故障电气设备的继电保护动作发出跳闸命令而断路器拒动时,利用故障设备的保护动作信息与拒动断路器的电流信息构成对断路器失灵的判别,切除同一厂站内其他有关的断路器,使停电范围限制在最小,从而保证整个电网的稳定运行。
一、110kV电网运行方式电网中110kV变电站的高压侧母线的主接线方式为单母分段接线,其运行方式分为并列运行和分段运行。
分段运行是指各段进线带各自的负荷,各段互为备用,采用进线备自投;并列运行是指把母联合上,两进线共同带两段负荷。
这种运行方式的优点在于:当双回出线的一条母线失压,110kV变电站不受影响,母联开关流过的电流较小。
但是,当发生110kV线路断路器拒动时,有可能造成全站停电的事故,扩大事故范围。
二、断路器失灵保护的必要性断路器失灵保护在发生故障时断路器拒绝跳闸或者故障发生在断路器和电流互感器之间时能迅速跳开其他相关的断路器来切除短路故障,防止故障进一步扩大和减少故障时间。
为了充分发挥110kV电网常规运行方式的优势,保证受电端的供电可靠性,考虑在220kV变电站配置110kV断路器失灵保护,以解决110kV线路开关拒动导致大范围停电的问题。
《继电保护和安全自动装置技术规程》规定:在220kV及以上电压等级的电网,以及110kV电网的重要部分均应装设断路器失灵保护。
下面由图1来说明装设断路器失灵保护的必要性。
220k V 线路保护配置及运行方式概况 220kV 踏九线线路保护装置由两套独立的、配置相同保护功能的保护装置组成。
两套装置配置了光纤差动保护、零序保护、距离保护。
两套装置都带有重合闸功能,其中2号保护装置单相重合闸启用。
光纤差动保护输电线路保护采用光纤通道后由于通信容量很大所以往往做成分相式的电流纵差保护。
输电线路分相电流纵差保护本身有选相功能,哪一相纵差保护动作那一相就是故障相。
输电线路两侧的电流信号通过编码成码流形式然后转换成光的信号经光纤输出。
传送的信号可以是包含了幅值和相位信息在内的该侧电流的瞬时值,保护装置收到输入的光信号后先转换成电信号再与本侧的电流信号构成纵差保护。
纵联电流差动继电器的原理许继差动特性四方差动特性本装置差动保护由故障分量差动、稳态量差动及零序差动保护组成。
差动保护采用每周波96点采样,由于高采样率,差动保护可以进行短窗相量算法实现快速动作,使典型动作时间小于20ms 。
故障分量差动保护灵敏度高,不受负荷电流的影响,具有很强的耐过渡电阻能力,对于大多数故障都能快速出口;稳态量差动及零序差动则作为故障分量差动保护的补充。
比例制动特性动作方程如下:CDset N M I I I 〉+..(3) N M N M I I K I I ....-〉+ (4)*****************************************************************************讲解例子设流过两侧保护的电流M I &、NI &以母线流向被保护的线路方向规定为其正方向,如图中箭头方向所示。
&&(a)系统图I rI图2-29 纵联电流差动保护原理&&(c)内部短路&&(d) 外部短路以两侧电流的相量和作为继电器的动作电流d I ,NM d I I I &&+=。
该电流有时也称做差动电流。
另以两侧电流的相量差作为继电器的制动电流r I ,NM r I I I &&-=。
纵联电流差动继电器的动作特性一般如图(b )所示,阴影区为动作区,非阴影区为不动作区。
这种动作特性称做比率制动特性,是差动继电器(线路、变压器、发电机、母线差动保护中用的差动继电器)常用的动作特性。
图中qd I 为起动电流,r K 是制动系数。
当差动继电器的动作电流d I 和制动电流r I 满足两个动作方程时,它们对应的工作点位于阴影区,继电器动作。
当线路内部短路时,如图(c)所示,两侧电流的方向与规定的正方向相同。
此时KN M d I I I I =+=&&,动作电流等于短路点的电流K I ,动作电流很大。
而制动电流r I 较小,NK N N M N M r I I I I I I I I &&&&&&&22-=-+=-=,小于短路点的电流K I 。
如果两侧电流幅值相等的话,制动电流甚至就为零。
因此工作点落在动作特性的动作区,差动继电器动作。
当正常运行或线路外部短路时,如图(d)所示,线路上流的是穿越性电流,N 侧流的电流与规定的正方向相反。
如果忽略线路上的电容电流,则K M I I &&=、KN I I &&-=。
因而动作电流0I I I I I K K N M d =-=+=&&&&,制动电流MK K N M r I 2I I I I I =+=-=&&&&,制动电流是二倍的短路电流,制动电流很大。
因此工作点落在动作特性的不动作区,差动继电器不动作。
所以这样的差动继电器可以区分内部短路和外部短路(含正常运行)。
继电器的保护范围是两侧TA 之间的范围。
从上述原理的叙述可以进一步推广得知:只要在线路内部有流出的电流,例如内部短路的短路电流、线路内部的电容电流都会形成动作电流。
只要是穿越性的电流,例如外部短路时流过线路的短路电流、负荷电流都只形成制动电流而不会产生动作电流。
TA 断线检查许继判据:由于差动保护的灵敏性,对TA 二次回路的监视应更加严格,其中TA 断线可能引起误动。
当一侧TA 断线时,本侧可能电流突变量启动,但对侧不会突变量启动,且系统电压不会发生变化,因此差动保护不会开放,不会误动作。
在两侧装置都不启动的情况下,投入以下TA 断线或异常识别判据: ①cn n m I I I I ∆+>+15.0&& n m I I 04.0<&;或nn I I 04.0<& ②.cn n m I I I I ∆+>+15.0&& 式中当电容电流补偿投入或线路参数电纳整定为零时ΔIC=0,否则ΔIC=1.5IC ,IC 为根据线路电纳参数求得的全线路电容电流,采用以上判据,既具有灵敏性,又能自适应于重负荷运行方式。
以上判据①或②满足持续1s 后,装置发生告警Ⅱ信号,呼唤值班员进行处理。
当判据①满足nm I I 04.0<&时报文为本侧A (B 、C )相TA 断线,当判据①满足nn I I 04.0<&时报文为对侧A (B 、C )相TA 断线。
判据②满足时,报文为本侧A (B 、C )相差流长期存在。
装置TA 断线后在相应控制字投入情况下,分相闭锁差动保护;当TA 断线消失后,差动保护重新投入。
差流长期存在时,装置只发告警信号,并不闭锁保护。
后备保护在判断出零序电流持续12s 大于零序辅助启动定值I04时,将驱动告警Ⅱ继电器发出本地及中央告警信号,并发出“TA 回路异常”告警报告,闭锁保护,装置继续监视零序电流,一旦零序电流消失,保护将自动解除闭锁。
四方判据:a)装置的零序电流连续12s大于I04定值,报“TA断线告警”,并闭锁零序各段保护;b)差动保护TA断线检测:断线侧的自产3I0值连续12s大于max{0.9*min(I04定值、反时限零序电流定值、零差定值),一次240A},而断线相电流小于0.06In(In为二次侧额定电流);计算出正常两侧的差电流连续12s大于0.15In而断线相电流小于0.06In报“TA断线告警”。
判出TA断线后,可通过控制字选择闭锁或不闭锁差动保护,如果选择闭锁差动保护,只闭锁断线相差动保护。
零序差动保护与分相差动保护类似零序电流方向保护零序电流方向保护及其作用在中性点直接接地的高压电网中发生接地短路时,将出现零序电流和零序电压。
利用上述的特征电气量可构成保护接地短路故障的零序电流方向保护。
统计资料表明,在中性点直接接地的电网中,接地故障点占总故障次数的90%左右,作为接地保护的零序电流方向保护又是高压线路保护中正确动作率最高的一种。
在我国中性点直接接地系统不同电压等级电力网线路上,按国家《继电保护和安全自动装置技术规程》规定,都装设了零序电流方向保护装置。
带方向性和不带方向性的零序电流保护是简单而有效的接地保护方式,它主要由零序电流滤过器、电流继电器和零序方向继电器以及与收发信机、重合闸配合使用的逻辑电路所组成。
现今,大接地电流系统中输电线路接地保护方式主要有纵联保护、零序电流方向保护和接地距离保护等。
它们都与系统中的零序电流、零序电压及零序阻抗密切相关的。
实践表明零序电流方向保护在高压电网中发挥着重要作用,成为各种电压等级高压电网接地故障的基本保护。
即使在装有接地距离保护作为接地故障主要保护的线路上,为了保护经高电阻接地的故障和对相邻线路保护有更好的后备作用,也为了保证选择性,仍然需要装设完整的成套零序电流方向保护作基本保护。
零序方向继电器CSC-103A/103B保护装置的零序后备保护配置相同。
在全相运行时配置了四段零序方向保护和零序反时限保护,零序Ⅰ段自动带方向,其他各段都可由控制字选择经方向或不经方向元件闭锁。
零序Ⅰ段由零序Ⅰ段压板控制投退,其他段由零序其他段压板控制投退,零序反时限保护由零序反时限压板控制投退。
非全相时设置了瞬时段,通常称为不灵敏Ⅰ段,固定带方向,不灵敏Ⅰ段由零序Ⅰ段压板投退;另有带延时(T04-500ms)的零序Ⅳ段(接线路TV时固定不带方向,接母线TV时经控制字控制投退)和零序反时限保护。
突变量启动元件或零序辅助启动元件动作后,转入故障处理程序,全相运行时投入零序Ⅰ、Ⅱ、Ⅲ、Ⅳ段和零序反时限保护。
零序Ⅰ、Ⅱ、Ⅲ段动作后选相跳闸(Ⅱ、Ⅲ段动作也可永跳),零序Ⅳ段动作后永跳或三跳,零序反时限动作后永跳或三跳。
非全相运行时,闭锁零序Ⅰ、Ⅱ、Ⅲ、Ⅳ段,投入零序不灵敏Ⅰ段、短时限的零序Ⅳ段和零序反时限保护,动作后永跳或三跳出口。
在持续一定的时间内,零序各段和零序辅助启动元件均不动作,保护整组复归。
零序灵敏段与不灵敏段当线路上采用单相自动重合闸时,在非全相运行状态下又发生系统振荡时,零序电流会很大,而此时保护应该不动作。
为了解决这一问题,一般零序电流保护设置灵敏段和不灵敏段。
零序电流保护灵敏段主要任务是对全相运行状态下的接地故障起保护作用,有较大的保护范围和灵敏度,当单相重合闸起动时,灵敏段零序电流保护自动退出;而零序电流保护不灵敏段主要任务是对非全相运行状态下的接地故障起保护作用。
正常情况下,全相运行状态时,不灵敏段的保护范围较小。
3U0极性问题保护采用自产3U0,即由软件将三个相电压相加而获得3U0,供方向判别用,TV断线时,带方向的零序保护退出,不带方向的零序各段保留。
TA断线的问题为防止TA断线引起灵敏的零序Ⅲ段或Ⅳ段误动作,可利用TA断线时无零序电压这一特征,使可能误动的段带方向,用零序方向元件实现闭锁。
有的情况下,如正常运行时3U0的工频不平衡分量较大,怕方向元件闭锁不可靠,装置还设置了一个3U0突变量元件,动作门槛固定为2V有效值,在控制字KG4.8相应位置“1”时,零序保护各段都经过此3U0突变量元件的闭锁。
TA断线时零序电流将长时间存在,保护在零序电流持续12s大于Ⅳ段整定值I04时报<TA断线告警>,并闭锁零序各段。
非全相零序保护逻辑利用非全相运行中的不灵敏Ⅰ段和零序Ⅳ段(动作时间为T04-500ms )切除非全相运行中的再故障。
注意,若TV 在线路侧时,非全相再故障零序电压量不是真正的故障零序电压,所以对于带延时(T04-500ms ,要大于单重时间)的零序Ⅳ段固定不带方向。
零序的方向问题对零序方向继电器的最基本要求是利用比较零序电压和零序电流的相位来区分正、反方向的接地短路。
接地故障时,相电流反应接地故障灵敏度不能满足时,用零序电路构成接地保护。
零序的正方向:电流(母线指向线路),电压(线路高于大地)。