第四讲 微波混频器技术指标
- 格式:ppt
- 大小:1.19 MB
- 文档页数:56
微波混频器技术指标与特性分析一、噪声系数和等效噪声温度比噪声系数的基本定义已在第四章低噪声放大器中有过介绍。
但是混频器中存在多个频率,是多频率多端口网络。
为适应多频多端口网络噪声分析,噪声系数定义改为式(9-1),其理论基础仍是式(6-1)的原始定义,但此处的表示方式不仅适用于单频线性网络,也可适用于多频响应的外差电路系统,即(9-1)式中 Pno ——-当系统输入端噪声温度在所有频率上都是标准温度T0 = 290K 时,系统传输到输出端的总噪声资用功率;Pns ——仅由有用信号输入所产生的那一部分输出的噪声资用功率。
根据混频器具体用途不同,噪声系数有两种。
一、噪声系数和等效噪声温度比1、单边带噪声系数在混频器输出端的中频噪声功率主要包括三部分:(1)信号频率f s 端口的信源热噪声是kT 0∆f ,它经过混频器变换成中频噪声由中频端口输出。
这部分输出噪声功率是 m fkT α∆0式中 ∆f ——中频放大器频带宽度;αm ——混频器变频损耗;T 0——环境温度,T 0 = 293K 。
(2)由于热噪声是均匀白色频谱,因此在镜频f i 附近∆f 内的热噪声与本振频率f p 之差为中频,也将变换成中频噪声输出,如图9-1所示。
这部分噪声功率也是kT 0∆f /αm 。
(3)混频器内部损耗电阻热噪声以及混频器电流的散弹噪声,还有本机振荡器所携带相位噪声都将变换成输出噪声。
这部分噪声可用P nd 表示。
这三部分噪声功率在混频器输出端相互叠加构成混频器输出端总噪声功率P nond m m no P f kT f kT P +∆+∆=αα//00 把P no 等效为混频器输出电阻在温度为T m 时产生的热噪声功率,即P no = kT m ∆f ,T m 称混频器等效噪声温度。
kT m ∆f 和理想电阻热噪声功率之比定义为混频器噪声温度比,即 00T T f kT P t m no m =∆= 按照定义公式(9-1)规定,可得混频器单边带工作时的噪声系数为 ns m ns no SSB P f kT P P F ∆==在混频器技术手册中常用F SSB 表示单边带噪声系数,其中SSB 是Singal Side Band 的缩写。
微波电路的技术研究与应用一、微波电路的概述微波电路是一种特殊的高频电路,在通信、雷达、无线电等领域中有着广泛的应用。
微波电路的频率范围一般在300MHz到300GHz之间,其特点是具有高速、大容量等优点,因此在现代通信系统中扮演着重要的角色。
二、微波电路的种类1. 微带线微带线是一种常用的微波传输线路,是用于制作微波集成电路的主要元件。
它由一层金属覆盖在介质基板上构成,嵌入在基板的内部,具有低成本、低损耗、小体积等优点。
2. 高频放大器高频放大器是一种用于放大微波信号的电路,它的主要作用是将输入信号放大到所需的输出幅度。
高频放大器的主要性能指标包括放大增益、频带宽度、可靠性等。
3. 微波滤波器微波滤波器是一种用于滤波微波信号的电路,它的主要作用是将输入信号中某个频率范围内的信号滤去或保留,以实现信号的分离或合并。
微波滤波器分为有源滤波器和无源滤波器两种类型。
4. 微波混频器微波混频器是一种用于将不同频率的信号混合产生中频信号的电路,它的主要作用是将输入信号的频率转换到新的频率范围内,以实现多路信号的混合和解调。
三、微波电路的应用1. 通信领域微波电路在通信领域中应用广泛,主要包括无线电通信、卫星通信、移动通信等。
无线电通信中,微波电路主要用于收发机、反射器、放大器等电路中,以实现协议通信和广播。
2. 雷达领域雷达是一种用于探测目标位置和速度的设备,微波电路在雷达领域中具有重要作用。
微波电路主要用于雷达天线、放大器和混频器等电路中,以实现雷达信号的发射、接收和处理。
3. 无线通信领域微波电路在无线通信领域中应用广泛,主要包括无线网络、卫星通信、移动通信等。
微波电路主要用于天线、放大器、滤波器等电路中,以实现无线信号的传输和处理。
四、微波电路的制作工艺微波电路制作工艺相对复杂,要求制作精度高,材料的选择和工艺控制也很关键。
一般来说,微波电路的制作工艺包括以下几个方面:1. 材料选择微波电路材料的选择非常重要,主要包括基板材料、电极材料和封装材料等。
第六章 微波/毫米波二极管混频器混频器是微波集成电路接收系统中必不可少的部件。
不论是微波通信、雷达、遥控、遥感,还是侦察与电子对抗,以及许多微波测量系统,都必须把微波信号用混频器降到中低频来进行处理。
微波集成混频器有二极管混频器和场效应晶体管混频器以及双栅场效应管混频器。
二极管混频器基本上采用肖特基势垒二极管作变频元件。
优点是:结构简单、工作频带宽、噪声较低、动态范围大、工作稳定等。
FET 混频器的特点:变频增益、电路较复杂、需直流供电。
从电路结构上看,分为单管式混频、双管平衡式混频和多管式混频。
单管混频器只采用一只二极管,结构简单、成本低,但噪声高、抑制干扰能力差,在要求不高时采用,它是理论分析的基础。
平衡式混频器借助平衡电桥可使本振的噪声抵消,因而噪声的性能得到改善,电桥又使信号与本振之间达到良好隔离,因而平衡混频器是最普遍采用的形式。
另外还有管堆式多双衡混频器、镜频抑制混频器等等,可根据特殊要求而设计。
5.1 微波/毫米波混频器技术指标与特性分析 一、 噪声系数和等效噪声温度比。
outout inin f N S N S N //=f N (dB)=10f N lg(5.1)也可采用以下定义:PnsPnoF =(5.2) 式中P n s — 当系统输入端噪声温度在所有频率上都是标准温度k To 290=时,系统传输到输出端的总噪声资用功率。
Pns — 仅由有用信号输入所产生的那一部分输出的噪声资用功率。
1、单边带噪声系数 SSB Singad Side BandLctm KToDfKTmDfF SSB ==(5.3)Tm :等效噪声温度 tm :等效噪声温度比 2、双边带噪声系数 DSB Double Side Band在遥感探测、射电天线等领域,接收信号是均匀谱辐射信号,存在于两个边带,这种应用时的噪声系数称为双边带噪声系数。
m m f DSB t L Lc KToD Pm F 21/2==(5.4)由(5.3)和(5.4)可知,由于镜像噪声的影响,SSB F 比DSB F 大一倍,即高出3dB 。
混频器一.混频器的工作原理混频器在发射机和接收机系统中主要负责频率的搬移功能,在频域上起加法器或减法器的作用,频域上的加减法通过时域上的乘积获得。
混频器通常可以表示为如图1所示的三端口系统,应至少包含三个信号:两个输入信号和一个输出信号。
根据图1可以表示混频器最常见的数学模型:(A1cosω1t)(A2cosω2t)=A1A22[cos(ω1−ω2)t+cos(ω1+ω2)t]式中A1表征输入信号的振幅,A2表征本振信号的振幅。
图1.混频器原理框图对于混频器而言,混频器的输入信号分别定义为射频信号RF(Radio Frequency),频率记为ωRF,和本振信号LO(Local Oscillator),频率记为ωLO。
混频器的输出信号定义为中频信号IF(Intermediate Frequency),频率记为ωIF。
根据混频器的应用领域不同,中频输出选择的频率分量也不同。
当ωIF<ωRF时,混频器称为下变频器,输出低中频信号,多用于接收机系统;当ωIF>ωRF时,混频器称为上变频器,输出高中频信号,多用于发射机系统。
常用的混频器实现方法主要有三种:第一种是用现有的非线性器件或电路,比如利用二极管电压电流的指数关系实现的二极管微波混频器;第二种是采用开关调制技术实现信号在频域上的加减运算,进而实现频率变换的功能,比如基于吉尔伯特单元的混频器;第三种是利用已有的电子元件实现混频电路的乘法模块。
二.混频器性能指标(一)转换增益转换增益(或者转换损耗),其定义是需要的IF输出与RF输入的比值。
混频器的电压转换增益可表示为:G V=20log V IF V RF混频器的功率转换增益可表示为:G P=10log P IFP RF=10log[(V IFV RF)2R SR L]其中V IF和V RF分别为中频输出电压和射频输入电压的有效值.R L是负载电阻,R S是源电阻。
当输入电阻和负载电阻相等时,两种增益的dB形式相等。