朱慈勉结构力学第三章静定结构
- 格式:ppt
- 大小:5.34 MB
- 文档页数:75
[例题3-2-1]作简支梁的剪力图与弯矩图。
解:求支座反力荷载叠加法平衡方程[例题3-2-2]作外伸梁的剪力图与弯矩图。
解:求支座反力荷载叠加法平衡方程[例题3-2-3]作外伸梁的剪力图与弯矩图。
解:求支座反力荷载叠加法平衡方程[例题3-3-1]作多跨静定梁的内力图。
解:求支座反力荷载叠加法[例题3-3-2]作三跨静定梁的内力图。
解:求支座反力[例题3-3-3]作多跨静定梁的内力图。
解:求支座反力[例题3-4-1]作静定刚架的内力图解:求支座反力[例题3-4-2]作静定刚架的内力图解:求支座反力[例题3-4-3]作静定刚架的内力图解:求支座反力[例题3-4-4]作静定刚架的内力图解:求支座反力[例题3-4-5]作三铰刚架的内力图解:求支座反力[例题3-4-6]作三铰刚架的内力图解:求支座反力??[例题3-4-7]作静定刚架的内力图解:求支座反力[例题3-4-8]作静定刚架的图解:[例题3-4-9]作静定刚架的图解:[例题3-4-10]作静定刚架的图解:[例题3-4-11]作静定刚架的图解:[例题3-4-12]作静定刚架的图解:[例题3-4-13]作静定刚架的图解:[例题3-4-14]作静定刚架的图解:求支座反力?[例题3-4-15]作静定刚架的图解:[例题3-5-1]试绘制三铰拱的内力图。
拱轴方程为解:相应简支梁的反力和内力求支座反力拱轴方程当时?? ? 00053.1301050-3.00-133.5 1 1.5 1.7545157.510513.115.9-132.6 23333.6931510567.541.6-127.0 23333.69315567.5-41.6-71.4 3 4.53,7518.43322.5513.1-21.4-79.9 4640330505-82.5 57.5 3.75-18.43315-25 5.6 2.4-86.2 693-33.69255-557.50-99.1 710.5 1.75-45135-85 5.6-1.8-118.4 8120-53.130-1150-2.9-141.5[例3-5-2]试求对称三铰拱在竖向均布荷载作用下的合理轴线。
第三章 静定结构的位移计算一、判断题:1、虚位移原理等价于变形谐调条件,可用于求体系的位移。
2、按虚力原理所建立的虚功方程等价于几何方程。
3、在非荷载因素(支座移动、温度变化、材料收缩等)作用下,静定结构不产生内力,但会有位移且位移只与杆件相对刚度有关。
4、求图示梁铰C 左侧截面的转角时,其虚拟状态应取:A.;; B.D.C.=1=15、功的互等、位移互等、反力互等和位移反力互等的四个定理仅适用于线性变形体系。
6、已知M p 、M k 图,用图乘法求位移的结果为:()/()ωω1122y y EI +。
M k M p 21y 1y 2**ωω( a )M =17、图a 、b 两种状态中,粱的转角ϕ与竖向位移δ间的关系为:δ=ϕ 。
8、图示桁架各杆E A 相同,结点A 和结点B 的竖向位移均为零。
a a9、图示桁架各杆EA =常数,由于荷载P 是反对称性质的,故结点B 的竖向位移等于零。
二、计算题:10、求图示结构铰A 两侧截面的相对转角ϕA ,EI = 常数。
q l l l /211、求图示静定梁D 端的竖向位移 ∆DV 。
EI = 常数 ,a = 2m 。
a a a 10kN/m12、求图示结构E 点的竖向位移。
EI = 常数 。
l l l /3 2 /3/3q13、图示结构,EI=常数 ,M =⋅90kN m , P = 30kN 。
求D 点的竖向位移。
P 3m 3m 3m14、求图示刚架B 端的竖向位移。
ql15、求图示刚架结点C 的转角和水平位移,EI = 常数 。
q16、求图示刚架中D点的竖向位移。
EI =常数。
l/217、求图示刚架横梁中D点的竖向位移。
EI=常数。
18、求图示刚架中D点的竖向位移。
E I = 常数。
qll l/219、求图示结构A、B两截面的相对转角,EI=常数。
l/23l/320、求图示结构A、B两点的相对水平位移,E I = 常数。
ll21、求图示结构B点的竖向位移,EI = 常数。