石墨烯磺酸功能化实验方案
- 格式:pdf
- 大小:166.69 KB
- 文档页数:3
生物医学工程前沿结题报告-修改石墨烯的功能化及其在生物医学中应用摘要: 石墨烯是2004 年才被发现的一种新型二维平面纳米材料, 其特殊的单原子层结构决定了它具有丰富而新奇的物理性质。
过去几年中, 石墨烯已经成为了备受瞩目的国际前沿和热点。
在石墨烯的研究和应用中, 为了充分发挥其优良性质, 并改善其成型加工性(如分散性和溶解性等), 必须对石墨烯进行功能化, 研究人员也在这方面开展了积极而有效的工作。
但是, 关于石墨烯的功能化方面的研究还处在探索阶段对各种功能化的方法和效果还缺乏系统的认识。
如何根据实际需求对石墨烯进行预期和可控的功能化是我们所面临的机遇和挑战。
本文重点阐述了石墨烯的共价和非共价功能化领域的最新进展, 并对功能化石墨烯的应用作了介绍, 最后对相关领域的发展趋势作了展望。
关键字: 石墨烯功能化生物医学应用1. 生物医学工程概述生物医学工程( BiomedicalEngineering, 简称BME )是一门由理、工、医相结合的边缘学科,是多种工程学科向生物医学渗透的产物。
它是运用现代自然科学和工程技术的原理和方法,从工程学的角度,在多层次上研究人体的结构、功能及其相互关系,揭示其生命现象,为防病、治病提供新的技术手段的一门综合性、高技术的学科。
有识之士认为,在新世纪随着自然科学的不断发展,生物医学工程的发展前景不可估量。
生物医学工程学科是一门高度综合的交叉学科,这是它最大的特点。
生物医学工程( Biomedical-Engineering )是一门新兴的边缘学科,它综合工程学、生物学和医学的理论和方法,在各层次上研究人体系统的状态变化,并运用工程技术手段去控制这类变化,其目的是解决医学中的有关问题,保障人类健康,为疾病的预防、诊断、治疗和康复服务。
它有一个分支是生物信息、化学生物学等方面,主要攻读生物、计算机信息技术和仪器分析化学等,微流控芯片技术的发展,为医疗诊断和药物筛选,以及个性化、转化医学提供了生物医学工程新的技术前景,化学生物学、计算生物学和微流控技术生物芯片是系统生物技术,从而与系统生物工程将走向统一的未来。
石墨烯量子磺酸化-概述说明以及解释1.引言1.1 概述石墨烯是一种由碳原子组成的单层平面晶格结构材料,具有独特的物理和化学性质。
它具有极高的导电性、热导性和机械强度,同时还具有优异的光学特性和化学稳定性。
这些独特的性质使得石墨烯在各个领域的应用潜力巨大。
量子磺酸化是一种在石墨烯材料上引入磺酸基团的化学修饰方法。
通过磺酸化处理,可以改变石墨烯的表面性质和化学反应活性,进而拓宽其应用领域。
石墨烯量子磺酸化使得石墨烯具有更好的溶解性和可加工性,同时在能源储存、催化剂、光电器件等方面展现出了巨大的潜力。
本文的目的是对石墨烯量子磺酸化的方法和应用进行综述和探讨。
通过对相关文献和实验结果的分析,我们将介绍石墨烯的基本特性和结构,解释量子磺酸化的概念和原理,并详细介绍石墨烯量子磺酸化的方法和技术。
同时,我们还将总结石墨烯量子磺酸化的重要性及其在各个领域中的应用,并展望未来的研究方向。
通过对石墨烯量子磺酸化的深入了解,我们可以更好地认识到这一领域的重要性和潜力。
未来的研究和开发工作将进一步推动石墨烯量子磺酸化的应用和技术的发展,为材料科学和纳米技术领域的发展做出更大的贡献。
本文的研究对于促进石墨烯量子磺酸化的研究和应用具有重要的参考价值,并将为相关科研人员提供思路和启示。
1.2文章结构文章结构的目的是为了给读者提供一个清晰的内容框架,使他们在阅读过程中能够更好地理解文章的主题和内容。
本文的结构分为引言、正文和结论三个部分。
在引言部分,我们会对石墨烯量子磺酸化进行一个整体概述,介绍石墨烯和量子磺酸化的基本概念,并明确文章的目的和意义。
接下来,在正文部分,将会分为三个小节展开讲述。
首先,我们会对石墨烯进行详细的介绍,包括其结构、性质及应用领域等方面的内容。
其次,我们会解释量子磺酸化的概念,并探讨其在材料科学中的重要性和实际应用。
最后,我们会详细介绍石墨烯量子磺酸化的方法,包括化学合成、物理改性等方面的内容。
最后,在结论部分,我们将对石墨烯量子磺酸化的重要性进行总结,并展望未来的研究方向。
石墨烯的制备、功能化及在化学中的应用石墨烯为当前已知最薄且最坚硬的碳质材料,几乎为全透明物质,仅吸收2.3%的光,属于透明良好导体,故极具应用前景。
目前,该材料在制备及应用方面已日渐多元化与功能化,因此,对石墨烯的制备、功能化与化学应用加以探讨极为必要。
标签:石墨烯;制备;功能化;化学应用0 引言石墨烯属单层片状二维材料,由碳原子构成、以SP2杂化轨道所构成的呈蜂巢晶格六角型的平面薄膜[1]。
石墨烯由英国曼彻斯特大学物理学家安德烈·海姆与康斯坦丁·诺沃消格夫于2004年从试验中首次成功分离,至此该材料的单独存在得以证实。
二维石墨烯、一维碳纳米管、零维富勒烯三者共同构成碳纳米材料的家族骨干,且三者之间形式上可进行转化。
石墨烯其独特结构与优异性能使其应用前景极为广阔。
因此,对其制备方法、功能化技术及其在化学应用加以分析意义重大。
1 石墨烯的制备分析目前石墨烯制备方法主要包括化学气相沉积法、溶剂剥离法、氧化还原法、微机械剥离法、外延生长法、电弧法、有机合成法、电化学法等,具体如下所述。
1.1 化学气相沉积法(CVD)所谓CVD法,指的是反应物质于气态条件下产生化学反应,进而在加热固态基体表生成固态物质,从而实现固体材料的制成的工艺技术[2]。
目前,以CVD 法进行石墨烯制备时通过将碳氢化合物等含碳气体通入以镍为基片、管状的简易沉积炉中,通过高温将含碳气体分解为碳原子使其沉积于镍的表面,进而形成石墨烯,再通过轻微化学刻蚀来使镍片与石墨烯薄膜分离,从而获得石墨烯薄膜。
该薄膜处于透光率为80%的状态下时其导电率便高达1.1×106S/m。
通过CVD法可制备出大面积高质量石墨烯,但单晶镍价格则过于昂贵,该方法可满足高质量、规模化石墨烯的制备要求,但工艺复杂,成本高,使得该方法的广泛应用受到限制。
1.2 溶剂剥离法该方法通过将少量石墨散于溶剂中,配制成低浓度分散液,而后使用超声波破坏石墨层间存在的范德华力,经过上述操作溶剂便可成功插入石墨层并进行逐层剥离,至此石墨烯制备完成。
功能化石墨烯的制备及应用石墨烯是一种由碳原子组成的一层厚的二维结构材料,具有高导电性、高导热性、超高比表面积、良好的机械性能和化学稳定性等优异特性,因而成为材料领域研究的热点和前沿。
为了实现石墨烯的工业化应用,需要针对其性质进行各种功能化修饰。
因此,本文将着重讨论以石墨烯为原材料的功能化修饰技术和应用。
一、石墨烯的制备技术石墨烯的制备技术可以分为机械剥离法、化学气相沉积法、化学还原法、物理气相沉积法和氧化石墨烯还原法等多种方法,其中机械剥离法和化学气相沉积法的应用最为广泛。
机械剥离法是将石墨材料通过力学剥离的方式制备石墨烯。
这种方法成本低廉,制备出的石墨烯品质较好,但是缺点也很明显,即杂质杂质多,生产成本高。
化学气相沉积法是利用金属或者金属化合物的催化作用,在高温的条件下将碳源分子分解产生石墨烯。
这种方法制备的石墨烯质量较好,生产效率也比较高,但是都要在特定高温高压及真空的条件下进行,对设备和技术要求较高。
二、石墨烯的功能化修饰技术石墨烯的功能化修饰主要是指针对石墨烯表面进行不同的化学修饰,以改变石墨烯的物理、化学性质。
主要包括氧化、还原、功能化、掺杂等多种方法。
1. 氧化石墨烯:将石墨烯表面的碳与氧作用结合,形成氧化石墨烯。
石墨烯的氧化可以在其表面形成和羟基、羧基、酮基等官能团,可以提高石墨烯与其他化学物质的响应性,也降低了其电导率。
氧化石墨烯的制备简单,但是对于石墨烯的电导性能和结构有一定的影响。
2. 还原石墨烯:将氧化石墨烯进行还原,可以恢复石墨烯的电学性质。
还原石墨烯还可以在石墨烯表面引入被还原的杂原子,进而实现对石墨烯各种性质的修饰。
3. 功能化石墨烯:通过引入不同的官能团和分子可以实现石墨烯的功能化。
功能化的目的是在石墨烯的表表面引入各种化学结构,改变石墨烯的性质,如增强机械性能、改变热学性质等。
常用官能团有COOH、OH、NH2等。
4. 掺杂石墨烯:通过引入异型原子或者化合物到石墨烯中实现对石墨烯的掺杂修饰,进而改变其电学性质、光学性质、磁学性质等。
石墨烯的功能化研究进展石墨烯自2004年被英国曼彻斯特大学的教授安德烈•海姆等报道后,以其独特的性能引起了科学家的广泛关注,被预测在许多领域引起革命性变化。
但石墨烯在应用方面,还面临着一个重要的挑战,就是如何实现其可控功能化。
为了充分发挥其优良性质,必须对石墨烯进行有效的功能化。
功能化是实现石墨烯分散、溶解和成型加工的最重要手段。
因此本文将重点介绍石墨烯非共价键、共价键、及掺杂功能化领域的最新进展,并对今后石墨烯功能化的研究方向进行了展望。
一、石墨烯非共价键功能化1.一相互作用石墨烯中的碳原子通过sp杂化形成高度离域的n电子,这些n 电子与其它具有大n共轭结构物质可通过一相互作用相结合,使石墨烯实现良好的分散,此方法在石墨烯的非共价键功能化中应用最为普遍。
She 等研究了石墨烯与聚苯乙烯基体在熔融状态下的相互作用,研究发现这两种物质的相互作用明显增强,其归因于在熔融状态下石墨烯与聚苯乙烯强的相互作用,从而为大量制备这种复合物提供了条件。
进一步研究发现,这种复合物在一些溶剂中表现出良好的溶解性,并且复合物中的苯乙烯链可以有效防止石墨烯薄片聚集,表现出均匀的分散性和优异的电性能。
Zhang 等通过—作用制备了多壁碳纳米管与氧化石墨烯的复合物。
他们将碳纳米管与氧化石墨烯超声混合后,离心去除少量不溶物就得到稳定存在的复合物溶液。
2.亲分子与石墨烯之间的相互作用双亲分子在溶液表面能定向排列,它的分子结构中一端为亲水基团,一端为憎水基团。
表面活性剂与石墨烯结合时,它的憎水基团与石墨烯会通过疏水作用相结合,另一端暴露在外面与水亲和,因此石墨烯就会通过与表面活性剂的结合而溶于水中。
魏伟等, 通过测试石墨烯分散液的吸光度,比较了几种表面活性剂分散石墨烯的能力。
经研究发现聚乙烯吡咯烷酮这种“色” 、低成本的表面活性剂,具有很好的分散能力。
通过提高聚乙烯毗咯烷溶液浓度,可以得到浓度高达1.3mg /mL 的石墨烯分散液,这种高浓度石墨烯分散液可以在气液界面自组装得到石墨烯膜,这种无支撑石墨烯膜具有平整的表面和规则的结构,在很多领域都有良好的潜在应用价值。
第26卷 第6期 无 机 材 料 学 报Vol. 26No. 62011年6月Journal of Inorganic Materials Jun., 2011收稿日期: 2010-09-27; 收到修改稿日期: 2010-12-02基金项目: 重庆市教委科技基金(KJ070402); 重庆市科委基金(2007BB4442); 重庆交通大学山区道路建设与技术维护重点实验室开放基金(CQMRCM-10-5)Municipal Science Foundation Project of CQ CSTC (2007BB4442) and of CQEC (KJ070402); Open-ended Fund ofHi-tech Lab for Mountain Road Construction and Maintenance, CQTJU (CQMRCM-10-5)作者简介: 袁小亚(1979−), 男, 博士, 副教授. E-mail: yuanxy@文章编号: 1000-324X(2011)06-0561-10 DOI: 10.3724/SP.J.1077.2011.00561石墨烯的制备研究进展袁小亚(重庆交通大学 理学院, 重庆 400074)摘 要: 近年来, 石墨烯以其独特的结构和优异的性能, 在化学、物理和材料学界引起了广泛的研究兴趣. 人们已经在石墨烯的制备方面取得了积极的进展, 为石墨烯的基础研究和应用开发提供了原料保障. 本文大量引用近三年最新参考文献, 综述了石墨烯的制备方法: 物理方法(微机械剥离法、液相或气相直接剥离法)与化学法(化学气相沉积法、晶体外延生长法、氧化−还原法), 并详细介绍了石墨烯的各种修饰方法. 分析比较了各种方法的优缺点, 指出了石墨烯制备方法的发展趋势.关 键 词: 石墨烯; 石墨烯氧化物; 制备; 功能化石墨烯; 综述中图分类号: O613; TB332 文献标识码: AProgress in Preparation of GrapheneYUAN Xiao-Ya(College of Science, Chongqing Jiaotong University, Chongqing 400074, China)Abstract: Graphene has attracted much interest in recent years due to its unique and outstanding properties. Dif-ferent routes to prepare graphene have been developed and achieved. Preparation methods of graphene used in re-cent years are intensively introduced, including micromechanical cleavage, chemical vapor deposition, liquid/gas- phase-based exfoliation of graphite, epitaxial growth on an insulator, chemical reduction of exfoliated graphene oxide, etc. And their advantages and shortcomings are further discussed in detail. The preparations of graphene are also prospected.Key words: graphene; graphene oxide; preparation; functional graphene; review2004年, 英国曼彻斯特大学的Geim 研究小组首次制备出稳定的石墨烯, 推翻了经典的“热力学涨落不允许二维晶体在有限温度下自由存在”的理论, 震撼了整个物理界[1], 引发了石墨烯的研究热潮[2]. 理想的石墨烯结构可以看作被剥离的单原子层石墨, 基本结构为sp 2杂化碳原子形成的类六元环苯单元并无限扩展的二维晶体材料, 这是目前世界上最薄的材料—单原子厚度的材料. 这种特殊结构蕴含了丰富而新奇的物理现象, 使石墨烯表现出许多优异性质[3-6], 石墨烯不仅有优异的电学性能(室温下电子迁移率可达2×105cm 2/(V·s))[7-8], 突出的导热性能(5000 W/(m·K))[9-10], 超常的比表面积(2630 m 2/g)[11], 其杨氏模量(1100 GPa)和断裂强度(125 GPa)[12-13]也可与碳纳米管媲美, 而且还具有一些独特的性能, 如完美的量子隧道效应、半整数量子霍尔效应、永不消失的电导率等一系列性质[14]等. 与碳纳米管相比, 石墨烯的主要性能均与之相当, 甚至更好, 避免了碳纳米管研究和应用中难以逾越的手性控制、金属型和半导体型分离以及催化剂杂质等难题, 而且制备石墨烯的原料价格便宜. 正是由于石墨烯材料具有如此众多奇特的性质, 引起了物理、化学、材料等不同领域科学家的极大研究兴562 无机材料学报第26卷趣, 也使得石墨烯在电子、信息、能源、材料和生物医药等领域具有重大的应用前景[3-6, 15].1石墨烯的制备方法概述目前有关石墨烯的制备方法, 国内外有较多的文献综述[4-6, 16-19], 石墨烯的制备主要有物理方法和化学方法. 物理方法通常是以廉价的石墨或膨胀石墨为原料, 通过微机械剥离法、液相或气相直接剥离法来制备单层或多层石墨烯, 此法原料易得, 操作相对简单, 合成的石墨烯的纯度高、缺陷较少, 但费时、产率低下, 不适于大规模生产. 目前实验室用石墨烯主要多用化学方法来制备, 该法最早以苯环或其它芳香体系为核, 通过多步偶联反应取代苯环或大芳香环上6个, 循环往复, 使芳香体系变大, 得到一定尺寸的平面结构的石墨烯(化学合成法)[20]. 2006年Stankovich等[21]首次用肼还原脱除石墨烯氧化物(graphene oxide, 以下简称GO)的含氧基团从而恢复单层石墨的有序结构(氧化−还原法), 在此基础上人们不断加以改进, 使得氧化−还原法(含氧化−修饰−还原法)成为最具有潜力和发展前途的合成石墨烯及其材料的方法[16]. 除此之外, 晶体外延生长、化学气相沉积也可用于大规模制备高纯度的石墨烯. 本文重点总结近三年化学法, 尤其是氧化−还原法制备石墨烯的研究进展, 并对制备石墨烯的各种途径的优缺点加以评述.2 物理法制备石墨烯2.1微机械剥离法微机械剥离法是最早用于制备石墨烯的物理方法. Geim等[1]在1mm厚的高定向热解石墨表面进行干法氧等离子刻蚀, 然后将其粘到玻璃衬底上, 接着在上面贴上1μm 厚湿的光刻胶, 经烘焙、反复粘撕, 撕下来粘在光刻胶上的石墨片放入丙酮溶液中洗去, 最后将剩余在玻璃衬底上的石墨放入丙醇中进行超声处理, 从而得到单层石墨烯. 虽然微机械剥离是一种简单的制备高质量石墨烯的方法, 但是它费时费力, 难以精确控制, 重复性较差, 也难以大规模制备.2.2液相或气相直接剥离法通常直接把石墨或膨胀石墨(EG)(一般通过快速升温至1000℃以上把表面含氧基团除去来获取)加在某种有机溶剂或水中, 借助超声波、加热或气流的作用制备一定浓度的单层或多层石墨烯溶液. Coleman等参照液相剥离碳纳米管的方式将石墨分散在N-甲基-吡咯烷酮 (NMP) 中, 超声1h后单层石墨烯的产率为1%[22], 而长时间的超声(462h)可使石墨烯浓度高达 1.2mg/mL, 单层石墨烯的产率也提高到4%[23]. 他们的研究表明[22], 当溶剂的表面能与石墨烯相匹配时, 溶剂与石墨烯之间的相互作用可以平衡剥离石墨烯所需的能量, 而能够较好地剥离石墨烯的溶剂表面张力范围为40~50mJ/m2; Hamilton等[24]把石墨直接分散在邻二氯苯(表面张力: 36.6mJ/m2)中, 超声、离心后制备了大块状(100~500nm)的单层石墨烯; Drzal等[25]利用液−液界面自组装在三氯甲烷中制备了表面高度疏水、高电导率和透明度较好的单层石墨烯. 为提高石墨烯的产率, 最近Hou等[26]发展了一种称为溶剂热插层(solvothermal-asssisted exfoliation)制备石墨烯的新方法(图1), 该法是以EG为原料, 利用强极性有机溶剂乙腈与石墨烯片的双偶极诱导作用(dipole- induced dipole interaction)来剥离、分散石墨, 使石墨烯的总产率提高到10%~12%. 同时, 为增加石墨烯溶液的稳定性, 人们往往在液相剥离石墨片层过程中加入一些稳定剂以防止石墨烯因片层间的范德华力而重新聚集. Coleman 研究小组在水/十二烷基苯磺酸钠( SDBS) 中超声处理石墨30min, 详细研究了石墨初始浓度以及SDBS浓度对石墨烯产率的影响, 发现所得的石墨烯多数在5层以下, 并且具有较高的导电率(~104 S/m)[27], 后来发现柠檬酸钠作为稳定剂也具有较好的剥离分散效果[28]. Englert 等[29]合成一种新型的水溶性含大芳香环的两亲性物质并作为片层石墨的稳定剂(图2), 利用该物质与石墨片层的π−π堆积与疏水作用来制备稳定的石墨烯水溶液. 最近, 为同时提高单层石墨烯的产率及其溶液的稳定性, Li等[30]提出“exfoliation-rein-tercalation-expansion”方法(图3), 以高温处理后图1 溶剂热剥离法制备石墨烯[26]Fig. 1 Schematic illustration of solvothermal-assisted exfo-liation and dispersion of graphene sheets in CAN[26](a) Pristine EG; (b) EG; (c) Insertion of CAN molecules into the inter-layers of EG; (d) Exfoliated graphene sheets dispersed in ACN; (e) Optical images of graphene solutions第6期袁小亚: 石墨烯的制备研究进展 563图2 合成的水溶性两亲性物质[29]Fig. 2 Soluble perylene-based bolaamphiphile detergent[29]图3 “剥离−再插层−膨胀”法制备石墨烯[30]Fig. 3 Route of “exfoliation-reintercalation-expansion” to graphene [30]的部分剥离石墨为原料, 用特丁基氢氧化铵插层后,再以DSPE-mPEG 为稳定剂, 合成的石墨烯90%为单层, 且透明度较高(83%~93%). 另外, 一些研究人员研究了利用气流的冲击作用来提高剥离石墨片层的效率, Janowska 等[31]以膨胀石墨为原料, 微波辐照下发现以氨水做溶剂能提高石墨烯的总产率(~8%), 深入研究证实高温下溶剂分解产生的氨气能渗入石墨片层中, 当气压超过一定数值足以克服石墨片层间的范德华力而使石墨剥离. Pu 等[32]将天然石墨浸入超临界CO 2中30min 以达到气体插层的目的, 经快速减压后将气体充入SDBS 的水溶液中即制得稳定的石墨烯水溶液, 该法操作简便、成本低, 但制备的石墨烯片层较多(~10层).因以廉价的石墨或膨胀石墨为原料, 制备过程不涉及化学变化, 液相或气相直接剥离法制备石墨烯具有成本低、操作简单、产品质量高等优点, 但也存在单层石墨烯产率不高、片层团聚严重、需进一步脱去稳定剂等缺陷. 为克服这种现象, 最近Knieke 等[33]发展了一种大规模制备石墨烯的方法, 即液相“机械剥离”. 该法采取了一种特殊的设备, 高速剪切含十二烷基磺酸钠的石墨水溶液, 3h 后溶液中单层和多层石墨烯的浓度高达25g/L, 而5h 后50%以上的石墨烯厚度小于3nm, 该法具有成本低、产率高、周期短等优势, 是一种极有诱惑力的大规模制备石墨烯的途径.3 化学法制备石墨烯3.1 化学气相沉积法(CVD)化学气相沉积(chemical vapor deposition, CVD) 是反应物质在相当高的温度、气态条件下发生化学反应, 生成的固态物质沉积在加热的固态基体表面, 进而制得固体材料的工艺技术. CVD 是工业上应用最广泛的一种大规模制备半导体薄膜材料的方法, 也是目前制备石墨烯的一条有效途径. Srivastava 等制备[34]采用微波增强CVD 在Ni 包裹的Si 衬底上生长出了约20nm 厚的花瓣状石墨片, 形貌并研究了微波功率对石墨片形貌的影响. 研究结果表明: 微波功率越大, 石墨片越小, 但密度更大. 此种方法制备的石墨片含有较多的Ni 元素. Zhu 等[35-36]用电感耦合射频等离子体CVD 在多种衬底上生长出纳米石墨微片. 这种纳米薄膜垂直生长在衬底上, 形貌类似于Srivastava 等[34]制备的“花瓣状”纳米片, 进一步研究发现这种方法生长出来的纳米石墨片平均厚度仅为1nm, 并且在透射电镜下观察到了垂直于衬底的单层石墨烯薄膜(厚0.335nm). Berger 等[37-38]将SiC 置于高真空(1.33×10−10 Pa)、1300 ℃下, 使SiC 薄膜中的Si 原子蒸发出来, 制备了厚度仅为1~2个碳原子层的二维石墨烯薄膜. 最近韩国成均馆大学研究人员[39]在硅衬底上添加一层非常薄的镍(厚度< 300nm), 然后在甲烷、氢气与氩气混合气流中加热至1000℃, 再将其快速冷却至室温, 即能在镍层上沉积出6~10层石墨烯, 通过此法制备的石墨烯电导率高、透明性好、电子迁移率高(~3700 cm 2 /(V·s)),并且具有室温半整数量子Hall 效应, 而且经图案化后的石墨烯薄膜可转移到不同的柔性衬底, 可用于制备大面积的电子器件(如电极、显示器等), 为石墨烯的商业化应用提供了一条有效的途径. CVD 法可满足规模化制备高质量、大面积石墨烯的要求, 但现阶段较高的成本、复杂的工艺以及精确的控制加工条件制约了CVD 法制备石墨烯的发展, 因此该法仍有待进一步研究[40-42].3.2 晶体外延生长法(SiC 高温退火)[43-44]通过加热单晶6H-SiC 脱除Si, 从而得到在SiC 表面外延的石墨烯. 将表面经过氧化或H 2刻蚀后的SiC 在高真空下通过电子轰击加热到1000℃以除掉表面的氧化物, 升温至1250~1450, ℃恒温1~20min, 可得到厚度由温度控制的石墨烯薄片. 这种方法得到的石墨烯有两种, 均受SiC 衬底的影响很大: 一564 无机材料学报第26卷种是生长在Si层上的石墨烯, 由于和Si层接触, 这种石墨烯的导电性受到较大影响, 一种生长在C层上的石墨烯则有着极为优良的导电能力. 这种方法条件苛刻(高温、高真空)、且制造的石墨烯不易以从衬底上分离出来, 难以能成为大量制造石墨烯的方法.3.3氧化−还原法(含氧化−修饰−还原法)这是目前最常用的制备石墨烯的方法, 国内外科学家已经对这方面做了大量的研究[16, 45-46]. 石墨本身是一种憎水性物质, 与其相比, GO表面和边缘拥有大量的羟基、羧基、环氧等基团, 是一种亲水性物质, 正是由于这些官能团使GO容易与其它试剂发生反应, 得到改性的氧化石墨烯; 同时GO层间距(0.7~1.2nm)[47]也较原始石墨的层间距(0.335nm)大, 有利于其它物质分子的插层. 制备GO的办法一般有3种: Standenmaier法[48]、Brodie法[49]、Hummers法[50]. 制备的基本原理均为先用强质子酸处理石墨, 形成石墨层间化合物, 然后加入强氧化剂对其进行氧化. 因这些方法中均使用了对化工设备有强腐蚀性、强氧化性的物质, 故现今有不少GO 的改进合成方法[51-52]. GO的结构比较复杂, 目前还没有公认的结构式, 比较常用的一种如图4所示[53] (关于GO化学结构的讨论可参阅[46, 54]).GO还原的方法包括化学液相还原[21]、热还原[55-56]、等离子体法还原[57]、氢电弧放电剥离[58]、超临界水还原[59]、光照还原[60-62]、溶剂热还原[63-64]、微波还原[65-68]等, 其中又以化学液相还原研究的最多, 常见的还原剂有水合肼[21, 69-72]、H2[73-74]、二甲肼[75]、对苯二酚[76]、NaBH4[77]、强碱[78]、MeReO3/ PPh3[51] 、纯肼[79]、Al粉[80]、维生素C[81-82]、乙二胺[83]、Na/CH3OH[84], Ruoff与Loh等对此作了很好的综述[46, 85]. 结构完整的二维石墨烯晶体表面呈惰性状态, 化学稳定性高, 与其它介质的相互作用较图4 石墨烯氧化物的结构式[53]Fig. 4 The structure of graphene oxide[53] 弱, 并且石墨烯片之间有较强的范德华力, 容易产生聚集, 使其难溶于水及常用的有机溶剂, 这给石墨烯的进一步研究和应用造成了很多困难. 为了充分发挥其优良性质、改善其可成型加工性(如提高溶解性、在基体中的分散性等), 必须对石墨烯表面进行有效的修饰, 通过引入特定的官能团, 还可以赋予石墨烯新的性质, 进一步拓展其应用领域. 修饰是实现石墨烯分散、溶解和成型加工的最重要手段[18]. 目前人们常采用先对GO进行修饰然后再进行还原(即氧化-修饰-还原). 其中, 石墨烯的修饰主要有共价键修饰和非共价键修饰[46, 85].3.3.1共价键修饰由于GO表面及边缘上有大量的羧基、羟基和环氧等活性基团, 可以充分利用这些官能团的活性进行多种化学反应(图5)在石墨烯片上引入各种分子即可达到石墨烯的共价键修饰.酰胺化反应是石墨烯共价修饰较常用的一个途径. 为增强COOH的反应活性, 通常先将其活化, 常用的活化试剂有二氯亚砜[86-90]、1-乙基-3-(3-二甲基胺丙基)−碳化二亚胺(EDC)[91]、N, N`-二环己基碳化二亚胺(DCC)[92-93]等. Niyogi等[86]先将GO上的羧基转变为酰氯(用SOCl2活化)然后与十八胺的胺基反应, 还原后制得长链烷基修饰的石墨烯在四氢呋喃(THF)的溶解度达0.5mg/mL, 且在四氯化碳、二氯甲烷等常用有机溶剂中也均有较好的溶解性. Bourlinos等也考察了各种伯胺、氨基酸与胺基硅氧烷共价修饰的石墨烯, 发现经修饰的石墨烯在水或有机溶液有极好的稳定性[94]. 除酰胺化反应外, COOH的酯化反应或其它反应也可用于修饰石墨烯. Shen等[95]将羧酸转变成其钠盐后然后利用亲核取代反应将正丁基引入石墨烯片上, 还原后发现经共价修饰的石墨烯在一些有机溶剂如氯仿、甲苯均有较好的稳定性, 且溶液的紫外−可见吸收光谱非常吻合朗伯−比尔定律. Salavagione等[90]采用核磁共振、红外光谱法等多种手段证实了聚乙烯醇(PV A)可成功通过酯化反应键合到石墨烯表面, 而Veca 等[92]则利用PV A侧链的羟基在GO表面的接枝制备PV A与石墨烯的复合物, 用作高分子合金的相容剂. Stankovich等[96]利用异氰酸酯与GO上的羧基和羟基反应, 制备了一系列异氰酸酯基修饰的石墨烯, 该功能化石墨烯可以在DMF、NMP、DMSO、HMPA、THF 等非质子溶剂中形成稳定的胶束体系, 并能够长时间保持稳定, 该方法过程简单、条件温和、功能化程度高.除羧基可作为共价修饰的位点外, GO表面的环第6期袁小亚: 石墨烯的制备研究进展 565图5 石墨烯氧化物的共价修饰[85]Fig. 5 Schematic illustration of covalent functionalization of graphene [85]氧基团与羟基也可作为反应的活性点[97-99]. Yang 等[99]利用环氧基团与胺基的亲核取代反应制备表面硅功能化的石墨烯片(图6), 在硅树脂中加入少量该物质能大大改善树脂的力学性能. Satti [93]和Ruoff [100]等利用聚丙烯胺侧链的胺基与GO 表面的环氧基团的反应制备交联的石墨烯, 使得石墨烯薄膜的韧性与强度均有大幅度的提高. 利用高分子化合物主链或侧链的基团与GO 表面或边缘基团的化学反应不仅能改善石墨烯的各种性能, 而且也能制备种类繁多的高性能聚合物−石墨烯纳米复合材 料[101-105]. 石墨烯边缘一些活性双键或缺陷也能发生化学反应如自由基反应[106]、重氮化反应[107-108]、1, 3-偶极加成反应[109], 因此这些部位也能作为石墨烯共价修饰的活性位点.经共价修饰的石墨烯衍生物具有较好的溶解性和可加工性, 但由于杂原子官能团的引入, 破坏了石墨烯的大π共轭结构, 使其导电性与其它性能显著降低, 因此共价修饰的同时如何尽量保持石墨烯的本征性质是一个不容忽视的问题, 为更好地解决此问题, Samulski 与Li 等各自发展了新的共价修饰途径. Samulski 等[110]首先采用硼氢化钠预还原GO, 然后磺化, 最后再用肼还原的方法, 得到了磺酸基功能化的石墨烯. 该方法通过预还原除去了GO 中的多数含氧官能团, 很大程度上恢复了石墨烯的共轭结构, 其导电性显著提高, 而且由于在石墨烯表面引入磺酸基, 使其可溶于水, 便于进一步的研究及应用. Li 等用氨水调节GO 水溶液pH 等于10, 然后用肼还原同样得到导电性高(~7200 S /m)、力学性能好(拉伸模量: 35GPa)、透明性优异(透光率>96%)的石墨烯材料[111], 该法关键之处是控制溶液pH, 在碱性环境(pH=10)中石墨烯表面羧基变成羧酸负离子, 使得石墨烯片与片之间产生较强的静电排斥力(图7), 因此制备的石墨烯水溶液也具有非常好的稳定性.3.3.2 非共价键修饰除了通过在GO 表面上键合一些特定的化学基团来避免还原GO 时石墨烯片层间的重新堆集, 也能利用一些分子与石墨烯之间较强的相互作用力(如π−π堆积力、van der waals 作用力、氢键)来达到稳定单层石墨烯片的效果[85]. 通常这类分子含有较大的芳香环或较强的共轭体系, 能够与大π共轭结构的石墨烯发生较强的相互吸引而被吸附到石墨烯片层上从而得到稳定的胶体分散系统. 芘及其衍生物是一类常用于非共价修饰碳纳米管的共轭结构的分子[112-113], 利用它与石墨烯之间的π−π相互作用, Xu 等研究了芘丁酸对石墨烯的非共价修饰, 使566 无机材料学报第26卷图6 通过环氧位点表面硅功能化的石墨烯片[99]Fig. 6 Silane-functional graphene via chemical reaction on epoxy site[99]图7 化学法制备高分散水溶性石墨烯溶液[111]Fig. 7 Chemical route to the synthesis of aqueous graphene dispersions[111]其在水中形成稳定的分散, 并通过抽滤得到高性能柔性石墨烯薄膜[112]. Stankovich等在还原过程中使用高分子量聚苯乙烯磺酸钠(PSS)对GO表面进行吸附包裹, 避免了团聚, 成功制备了PSS包裹的改性单层石墨烯水溶液[114]. 这是由于PSS 与石墨烯之间有较强的非共价键作用(π−π堆积力), 阻止了石墨烯片的聚集, 使该复合物在水中具有较好的溶解性(1 mg/mL). Hao等[115]用四氰基苯醌作为石墨烯的稳定化剂, 同样获得了能溶于水及有机溶剂(DMSO、DMF) 的非共价修饰的石墨烯. 除利用小分子作为石墨烯的稳定剂外, 一些高分子也能通过非共价作用来修饰石墨烯[73, 116-120]. Li等利用具有大π共轭结构聚苯乙炔类高分子PmPV 与石墨烯之间的相互吸引作用, 制备了PmPV 非共价键修饰的石墨烯带[73].3.4其它方法除上述常用的几种制备石墨烯路线外, 国内外仍不断探索石墨烯新的制备途径. Chakraborty等[121]在成熟的石墨−钾金属复合物基础上制备了聚乙二醇修饰的石墨纳米片, 在有机溶剂及水中均溶解性较好. Wang等[122]利用Fe2+在聚丙烯酸阳离子交换树脂中的配位−掺碳作用, 发展了一种新型的、大规模制备石墨烯的方法: 原位自生模板法(in situ self-generating template), 该法具有产率高、产品晶型好的特点, 制备的石墨烯能作为甲醇燃料电池Pt 催化剂的优良载体. 最近, 复旦大学Feng首先采用Li方法[111]制备石墨烯溶液后, 然后通过高真空(P≈20Pa)低温冷冻干燥制备了高度疏松的粉体石墨烯, 该粉状物只需经简单的超声就能在DMF等有机溶剂中重新形成稳定的胶体分散体系[123], 该法提供了快速简便地大规模制备固态单层石墨烯的途径, 克服了传统方法只能制备分散、稳定石墨烯溶液的缺点, 为石墨烯商业化应用打下了良好基础.4 展望在短短的几年间, 石墨烯以其具有的优异性能及各种潜在的应用前景, 得到快速发掘和开发. 与此同时, 人们需要大量高质量、结构完整的石墨烯材料. 这就要求提高或进一步完善现有制备工艺的水平, 探索新的制备路径. 微机械法显然不能满足未来工业化的要求, 直接剥离法能制备高质量的石墨烯, 但产率太低、耗时太长; 化学气相沉积法可以制备出大面积且性能优异的石墨烯薄膜材料, 但现第6期袁小亚: 石墨烯的制备研究进展 567有的工艺不成熟以及成本较高都限制了其大规模应用, 因此还需进一步探索、完善. 氧化−还原法虽然能够以相对较低的成本制备出大量的石墨烯, 但即使被强还原剂还原后, 石墨烯的原始结构也并不能完全恢复(特别是经过共价修饰后的石墨烯), 而使其电子结构及晶体的完整性均受到严重的破坏,一定程度上限制了其在某些领域(如精密的微电子领域)中的应用. 因此, 如何大量、低成本制备出高质量的石墨烯材料仍是未来研究的一个重点. 此外, 由于表面修饰能改善或丰富石墨烯的各种性能, 也应该关注如何更好的修饰, 特别是非共价修饰,进一步提高石墨烯各方面性能, 促进其器件化、工业化、商品化的进程.参考文献:[1] Novoselov K S, Geim A K, Morozov S V, et al. Electric field effectin atomically thin carbon films. Science, 2004, 306(5696): 666−669.[2] Geim A K, Novoselov K S. The rise of graphene. Nat. Mater., 2007,6(3): 183−191.[3] Geim A K. Graphene: status and prospects. Science,2009,324(5934): 1530−1534.[4] Wu J S, Pisula W, Mullen K. Graphenes as potential material forelectronics. Chem. Rev., 2007, 107(3): 718−747.[5] Rao C N R, Sood A k, Voggu R, et al. Some novel attributes ofgraphene. J. Phys. Chem. Lett., 2010, 1(2): 572−580.[6] Allen M J, Tung V C, Kaner R B. Honeycomb carbon: a review ofGraphene. Chem. Rev., 2010, 110(1): 132−145.[7] Zhang Y, Tan J W, Stormer H L, et al. Experimental observationof the quantum Hall effect and Berry's phase in graphene. Nature, 2005, 438: 201−204.[8] Bolotin K I, Sikes K J, Jiang Z, et al. Ultrahigh electron mobilityin suspended graphene. Solid State Commun., 2008, 146(9/10): 351−355.[9] Balandin A A, Ghosh S, Bao W Z, et al. Superior thermal conduc-tivity of single-layer graphene. Nano Lett., 2008, 8(3): 902−907. [10] Schadler L S, Giannris S C, Ajayan P M. Load transfer in carbonnanotube epoxy composites. Appl. Phys. Lett., 1998, 73(26): 3842−3847.[11] Chae H K, Siberio-Pérez D Y, Kim J, et al. A route to high surfacearea, porosity and inclusion of large molecules in crystals. Nature, 2004, 427: 523−527.[12] Lee C, Wei X, Kysar J W, et al. Measurement of the elastic proper-ties and intrinsic strength of monolayer graphene. Science, 2008, 321(5887): 385−388.[13] Van den Brink J. Graphene-from strength to strength. Nat.Nanotechnol., 2007, 2(4): 199−201.[14] Weitz R T, Yacoby A. Graphene rests easy. Nat. Nanotechnol.,2010, 5(10): 699−700.[15] Kim J, Kim F, Huang J. Seeing graphene-based sheets. Materialstoday, 2010, 13(3): 28−38.[16] Park R, Ruoff R S. Chemical methods for the production of gra-phenes. Nat. Nanotechnol., 2009, 4(4): 217−224.[17] 徐秀娟, 秦金贵, 李振. 石墨烯研究进展. 化学进展, 2009,21(12): 2559−2567.[18] 黄毅, 陈永胜. 石墨烯的功能化及其相关应用. 中国科学B辑,2009, 39(9): 887−896.[19] 李旭, 赵卫峰, 陈国华. 石墨烯的制备与表征研究. 材料导报,2008, 22(8): 48-52.[20] Müllen M, Kübel C, Müllen K. Giant polycyclic aromatic hydro-carbons. Chem. Eur. J., 1998, 4(11): 2099−2109.[21] Stankovich S, Dikin D A, Piner R D, et al. Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite ox-ide. Carbon, 2007, 45(7): 1558−1565.[22] Hernandez Y, Nicolosi V, Lotya M, et al. High-yield production ofgraphene by liquid-phase exfoliation of graphite. Nat. Nanotech-nol., 2008, 3(9): 563−568.[23] Khan U, O'Neill A, Lotya M, et al. High-concentration solvent ex-foliation of graphene. Small, 2010, 6(7): 864−871.[24] Hamilton C E, Lomeda J R, Sun Z, et al. High-yield organic dis-persions of unfunctionalized graphene. Nano Lett., 2009, 9(10): 3460−3462.[25] Biswas S, Drzal L T. A novel approach to create a highly orderedmonolayer film of graphene nanosheets at the liquid−liquid inter-face. Nano Lett., 2009, 9(1): 167−172.[26] Qian W, Hao R, Hou Y, et al. Solvothermal-assisted exfoliationprocess to produce graphene with high yield and high quality.Nano Res., 2009, 2: 706−712.[27] Lotya M, Hernandez Y, King P J, et al. Liquid phase production ofgraphene by exfoliation of graphite in surfactant/water solutions.J.Am. Chem. Soc., 2009, 131(10): 3611−3620.[28] De S, King P J, Lotya M, et al. Flexible, transparent, conductingfilms of randomly stacked graphene from surfactant-stabilized, oxide-free graphene dispersions. Small, 2010, 6(3): 458−464. [29] Englert J M, Röhrl J, Schmidt C D, et al. Soluble graphene: genera-tion of aqueous graphene solutions aided by a perylenebisimide- based bolaamphiphile.Adv. Mater., 2009, 21(42): 4265−4269. [30] Li X, Zhang G, Bai X, et al. Highly conducting graphene sheetsand Langmuir–Blodgett films. Nat. Nanotechnol., 2008, 3(9): 538−542.[31] Janowska I, Chizari K, Ersen O, et al. Microwave synthesis oflarge few-layer graphene sheets in aqueous solution of ammonia.Nano Res., 2010, 3(2): 126−137.[32] Pu N W, Wang C, Sung Y, et al. Production of few-layer grapheneby supercritical CO2 exfoliation of graphite. Mater. Lett., 2009, 63(23): 1987−1989.[33] Knieke C, Berger A, Voigt M, et al. Scalable production of gra-phene sheets by mechanical delamination. Carbon, 2010, 48(11):。
功能化石墨烯的制备及应用研究进展杨程;陈宇滨;田俊鹏;郝思嘉【摘要】石墨烯以其优异的物理化学性能,近年来受到了学术和产业界的广泛关注.将石墨烯进行功能化,可改善石墨烯的分散性,并且能根据需求对石墨烯的物理化学性能进行针对性地优化,因而赋予石墨烯更广泛的用途,因此,功能化石墨烯成为石墨烯研究领域的热点之一.综述功能化石墨烯的最新进展,从共价结合和非共价结合两个方面阐述了其制备的方法,叙述近年来功能化石墨烯在复合材料、储能材料、光电材料、催化材料、环境净化、生物及传感材料等领域的应用研究进展.总结出功能化石墨烯的特点,即大多数活性基团搭载到石墨烯的表面上都能活跃地展现其应用性能.功能化石墨烯未来的研究方向主要是判定和控制石墨烯表面引入功能化物质的量的“定量”问题和精确在石墨烯表面选择功能化的位点并进行精细化学结构设计的“定位”问题..【期刊名称】《航空材料学报》【年(卷),期】2016(036)003【总页数】17页(P40-56)【关键词】石墨烯;功能化石墨烯;共价修饰;非共价修饰;应用研究【作者】杨程;陈宇滨;田俊鹏;郝思嘉【作者单位】北京航空材料研究院,北京100095;北京航空材料研究院,北京100095;北京航空材料研究院,北京100095;北京航空材料研究院,北京100095【正文语种】中文【中图分类】TB34石墨烯是一种由碳原子以sp2杂化互相形成平面共价键而组成的蜂窝状单层碳结构,也是众多纳米碳结构例如富勒烯、碳纳米管的基本结构单元[1]。
自2004年被Geim等成功制备以来,石墨烯以极高的机械强度、载流子迁移率和电导率、热导率、透光率、化学稳定性等特性[2-4],成为近年来的明星材料,受到学术和产业界的广泛关注[5-7]。
然而,与这些无与伦比的性能相对,在生产和生活中实际应用的石墨烯材料所需要的性能则是多种多样的。
例如,石墨烯是一种理论比表面积可达2630 m2/g的材料,在表面化学、吸附等领域具有极大的应用潜力。
石墨烯的功能化及其相关应用一、本文概述石墨烯,一种由单层碳原子紧密排列形成的二维纳米材料,自2004年被科学家首次成功分离以来,便以其独特的电子、热学和机械性能,引起了全球科研人员的广泛关注。
由于其具有超高的电子迁移率、超强的导热性和极高的力学强度,石墨烯被誉为“黑金”,并有望引领新一轮的工业革命。
本文旨在深入探讨石墨烯的功能化方法,以及这些功能化后的石墨烯在各个领域的应用前景。
我们将从石墨烯的基本性质出发,详细阐述其功能化的基本原理和技术手段,包括化学修饰、物理掺杂等。
随后,我们将对石墨烯在能源、电子、生物医学、复合材料等领域的应用进行详细介绍,并分析其潜在的市场价值和挑战。
我们将对石墨烯功能化及其应用的未来发展趋势进行展望,以期能为相关领域的科研工作者和从业人员提供有益的参考和启示。
二、石墨烯功能化的方法石墨烯作为一种二维碳纳米材料,拥有出色的电学、热学和力学性能,这使得它在多个领域具有广泛的应用前景。
然而,原始石墨烯的化学稳定性较高,与大多数溶剂和分子的相容性较差,这限制了其在实际应用中的使用。
因此,对石墨烯进行功能化修饰,以提高其与其他材料的相容性和稳定性,成为了石墨烯研究领域的重要方向。
目前,石墨烯的功能化方法主要包括共价键功能化和非共价键功能化两大类。
共价键功能化是通过化学反应将官能团或分子共价连接到石墨烯的碳原子上。
这种方法可以精确控制石墨烯的化学性质,实现对其电子结构和性质的调控。
常见的共价键功能化方法包括重氮反应、环加成反应和自由基加成反应等。
通过这些方法,可以在石墨烯上引入羟基、羧基、氨基等官能团,从而改善其在溶剂中的分散性和与其他材料的相容性。
非共价键功能化则是通过物理相互作用,如π-π堆积、静电作用、氢键等,将分子或聚合物吸附到石墨烯表面。
这种方法不需要破坏石墨烯的碳碳共价键,因此可以在保持石墨烯原有性质的基础上,实现对其功能的拓展。
常见的非共价键功能化方法包括π-π堆积作用、表面活性剂包裹和聚合物吸附等。
磺酸根有机小分子插层石墨烯的电化学性能研究石墨烯因其优异的电学、热学和力学性能,优异的透光性和较大的比表面积而受到人们的广泛追捧。
特别是2004年稳定的石墨烯制备成功后,出现了石墨烯研究的趋势。
如何低成本、大面积、大量、优质的制备石墨烯并应用于实践?1引言石墨烯的结构是一种二维蜂窝状点阵结构,主要组成形式是由碳六元环。
石墨烯不仅仅可以翘曲富勒烯,还能够卷曲成炭纳米管或者堆积成石墨。
由此可见,构成其他类石墨材料的基本组成单元是石墨烯。
理想的石墨烯构造是一种平面六边形的点阵,任一碳原子都与其他3个相邻的碳原子之间形成3个连接十分稳固的σ键,残余的一个P电子在垂直石墨烯平面的方向上,与周围原子形成贯通全层的大π键,此电子可以自由移动,赋予石墨烯优良的导电性。
石墨烯不仅仅有结构稳定的优点,还有高导热、高强度等优点。
石墨烯的上述种种优点使其在光、电、热等领域具有广阔的应用前景。
在复合材料方面,石墨烯更以其独特的性能独领风骚。
很多研究者认为石墨烯纳米填料的力、电以及热增强复合材料的应用将会迅速发展并风靡世界。
同时,如何制备出成本低廉、质量好的石墨烯成为研究的重点。
近年来,生物质废弃物以其低成本、环保、可回收利用等优点,成为一种功能性材料,受到国内外研究者的广泛关注。
此外,活性炭作为生物质废弃物的高附加值产品,具有高比表面积和丰富的空腔,具有良好的电化学性能。
到目前为止,对活性炭电化学性能的研究主要集中在双层电容和超级电容的应用上。
多孔活性炭、碳纤维、碳气凝胶、碳纳米管及石墨烯等碳材料家族成员作为超级电容器电极材料中常客,被应用于各种超级电容器电极材料中。
碳材料是一种以双电层电容储能机理为主的电极材料,这在电极材料中是十分典型的,这归功于其特殊的结构:多孔结构。
因此,碳基超级电容器的比电容上限受碳材料的比表面积影响,比表面积越大,就能够与更多的电解液充分接触形成界面,从而储存更多的电荷。
Yang等人以柠檬酸钠为前驱体,制备了厚度约10 nm的超薄多孔碳壳,在MKOH电解液中测试得比电容为251 F·g-1。
石墨烯产品及应用实验报告引言石墨烯是由碳原子构成的一种单层二维材料,具有出色的导电、导热和机械性能,同时还具备高透明性和柔韧性。
石墨烯的独特性质使其在诸多领域具有广泛的应用前景,如电子器件、传感器、储能材料等。
本实验旨在通过制备石墨烯产品并探索其应用,对石墨烯的性质和应用进行研究。
材料与方法实验材料1. 石墨粉2. 氧化石墨(GO)粉末3. 氧化剂4. 还原剂5. 氨水6. 醋酸7. 正十二烷基苯磺酸钠(SDBS)实验仪器1. 恒温水浴槽2. 磁力搅拌器3. 离心机4. 紫外-可见分光光度计5. 扫描电子显微镜(SEM)实验步骤1. 制备氧化石墨(GO)悬浮液:将石墨粉加入含有氧化剂的硫酸溶液中,反应后得到浑浊的氧化石墨悬浮液。
2. 还原氧化石墨:将步骤1得到的氧化石墨悬浮液加入还原剂和氨水的混合溶液中,在恒温水浴槽中加热搅拌一定时间,得到还原后的石墨烯悬浮液。
3. 分离清洗:使用离心机将还原后的石墨烯悬浮液离心,去除上清液并用醋酸洗涤,重复此步骤多次。
4. 添加分散剂:将清洗后的石墨烯悬浮液与SDBS溶液混合后,使用超声波处理,得到分散均匀的石墨烯悬浮液。
5. 测定光学性质:将石墨烯悬浮液置于紫外-可见分光光度计中,测定其吸光度和透射率。
6. 表征形貌:使用SEM观察石墨烯样品的形貌和结构。
结果与讨论光学性质测量通过紫外-可见分光光度计测量得到的石墨烯的吸光度和透射率如下:波长(nm)吸光度透射率400 0.43 0.78500 0.27 0.91600 0.15 0.95700 0.08 0.97从上表可以看出,石墨烯在可见光范围内具有很低的吸光度,表明其在透明材料方面具有潜力。
透射率方面,随着波长的增加,石墨烯的透射率逐渐增大,说明其对可见光的透过能力较好。
形貌表征通过SEM观察石墨烯样品的形貌,发现其呈现出典型的二维结构,具有平整的单层结构。
石墨烯的表面光滑且无明显瑕疵,颗粒间的连接较紧密。
实验方案备注
(1)4-磺酸基-氟硼酸重氮苯的合成
S1:称取17.3g4-磺胺酸(0.1 mol)固体溶于100ml蒸
馏水中后
S2: 将31.8 mL氟硼酸水溶液 (40 wt %, 0.2mol) 缓缓逐
滴加入磺胺酸水溶液中。
将混合溶液冷却至0℃。
S3:维持恒温5℃,将7.0 g亚硝酸钠(100mmol)溶于
蒸馏水中,缓缓加入上步所得溶液中。
添加完成,持
续搅拌2h。
S4:抽滤收集白色沉淀,再用乙醚洗涤数次。
将白色
沉淀冷冻干燥和储存。
时间:2.5h
(2)GP-SO3H(DS=1.21)的合成
S1:称取0.6g石墨烯粉末(GO,约0.05mol),其分散于500mL蒸馏水中. 使用5 wt %的碳酸钠水溶液调节其PH值至9左右。
(5.26gNa2CO3,溶于100ml水中)
S2:将调整过得溶液进行轻微的超声处理30min。
将GO溶液用离心机分离30min以移除未反应的石墨,转速为2000rpm。
S3:称量3.9g硼氢化钠(0.1 mmol)溶于10mL蒸馏水中,将其加入GO的水溶液中,在70℃下反应1h。
抽滤,使用蒸馏水洗涤直至其PH值达到7。
S4:将部分还原的GO重新分散到500mL的蒸馏水中,使用轻微声波震荡30min。
使用冰浴将其冷却至室温。
S5:称取0.68 g(2.5mmol)制得的4-磺酸基-氟硼酸重氮苯,溶于10mL蒸馏水中,将其缓缓逐滴加入S4得到的溶液中,在室温下搅拌6h。
反应溶液使用声波处理10min称量+30min 分散+1h预还原+2h 抽滤+30min分散+12h偶合+2h抽滤+完全还原24h
30min。
再称取0.68g(2.5mmol)制得的4-磺酸基-氟硼酸重氮苯重复上述步骤。
S6:反应完成后,使用5 wt % 的碳酸钠水溶液调节PH 值至10以上,伴随添加有沉淀生成。
将沉淀过滤出,并用蒸馏水(水)和乙醇洗涤,即可得到GO-SO3H。
S7:将GO-SO3H 重新分散在500mL的蒸馏水中,再加入水合肼(5060%, 32 mL),在 120℃下充分还原 24 h。
这步中磺酸基的存在使得石墨烯能够很好分散在水中。
再使用5 wt % 的碳酸钠水溶液调节PH值至10以上,过滤得到沉淀,用水完全洗涤,冷冻干燥得到GP-SO3H (1.19 g)。
(3)GP-SO3H纳米纸的制备
S1:将所需量的GP-SO3H分散在水中,使用超声处理。
然后使用离心机(2000 rpm)去除不溶的杂质。
通过带有400 nm 规格孔隙的PC膜抽滤得到数百纳米至30μm左右的,并自然风干。
S2:从过滤器上将独立的纳米纸剥离,在真空炉中在250℃下进行热处理24h。
即可得到可用的GP-SO3H纳米纸。
(4)石墨烯化学键合镀层
S1:将基片预先放置在装有GP-SO3H纳米纸碎片的反应炉中。
为防止硅橡胶残余的灰污染基片表面,高温硅橡胶被放置在反应炉预先设定的位置。
S2:将反应炉中抽真空,然后在30min内迅速将温度从室温升至500℃。
关闭真空抽取,然后在20min内将温度再次迅速升至1000℃。
S3:管内有气体产生,反应炉内的压力会逐渐升高至大气压,将真空阀转接Ar进气口。
将炉中尽快清理干
净,并维持大气压。
维持1000℃近30min,再将反应炉冷却至室温,最后将处理过的试样移出试管。
S4:使用水和丙酮洗去试样表面的粉尘,并用真空干燥箱干燥一晚。