13 11 2 0 10 11 57 4 4 2 13 7 0 0 6 9 5 32 0 0
0 0 X 1 0
0 0 1 1 0 0 0 0 0 0 1 0
故可得到指派问题的最优解X,这样 安排能使总的维修时间最少,维修时间为 z=4+4+9+11=28(小时)。
X (2)
都是指派问题的最优解。
4 指派问题
4.3 指派问题的求解 指派问题既是一类特殊的整数规划问题,又是特殊的运输问 题,因此可以用多种相应的解法来求解,然而这些解法都没有充 分利用指派问题的特殊性质,有效地减少计算量,直到1955年库 恩(W. W. Kuhn)提出的匈牙利法才有效地解决了指派问题。 匈牙利法的理论基础 定义2 独立零元素组 在效率矩阵中,有一组在不同行不同 列的零元素,称为独立零元素组,其每个元素称为独立零元素。 5 0 2 0 2 3 0 0 C 【例4】 已知效率矩阵 0 5 6 7 4 8 0 0 求其独立零元素组。
4 指派问题
0 , 不 指 派 第 i小 组 维 修 第 j台 机 床 x ij ( i , j 1, 2 ,3, 4 ) 1, 指 派 第 i 小 组 维 修 第 j 台 机 床 机车 该问题的数学模型为: 1 2 3 4 4 小组 min z cij xij i 1 j 1 1 x11 x12 x13 2 x11 15 x12 2 x21 x22 x23 任务约束 4 x 1, j 1, 2 , 3 , 4 3 x31 x32 x33 ij i 1 4 x41 x42 x43 人员约束 4 x ij 1, i 1, 2 , 3, 4 j 1 x ij 0 或 1 i , j 1 , 2 , 3 , 4